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Estimates for the X-ray transform
restricted to 2-manifolds

M. Burak Erdoğan and Richard Oberlin

Abstract

We prove almost sharp mixed-norm estimates for the X-ray trans-
form restricted to lines whose directions lie on certain well-curved two
dimensional manifolds.

1. Introduction

The full X-ray transform, also known as the 1-plane transform, Xfull, is an
operator from the functions on R

d to the functions on Gd, the space of all
lines in R

d. It is defined as

Xfullf(l) =

∫
l

f, l ∈ Gd.

It is well-known [2, 20, 14] that the optimal conjectured mixed-norm esti-
mates for Xfull imply the Kakeya conjecture, which states that every com-
pact subset of R

d containing a unit line segment in every direction must
have Hausdorff dimension d.

Note that Gd is a 2d − 2-dimensional manifold, thus Xfull is over-deter-
mined for d ≥ 3, and it is of interest to consider its restrictions to lower
dimensional subspaces of Gd. We consider subspaces defined by restricting
the set of directions to a lower dimensional submanifold of Sd−1. One partic-
ular example is the restriction of Xfull to the space of light rays (lines in R

d

making a 45 degree angle with the plane xd = 0). In [21], Wolff obtained
mixed-norm estimates for this operator in all dimensions (almost sharp in R

3

and R
4). Also see [17] for a simplified proof of Wolff’s result. Almost sharp

mixed-norm estimates are also known in the cases when the set of directions
is given by a curve, see [9, 10].
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In this paper, we consider the X-ray transform restricted to directions
lying on a 2-surface in R

d−1:

z → θ(z) =
(
θ1(z), . . . , θd−1(z)

)
.

Specifically, let f be a function on R
d, z ∈ R

2, and y ∈ R
d−1. We define

T θ[f ](z, y) =

∫ 1

0

f(γ(z, y, s)) ds

where
γ(z, y, s) = y + s(θ(z) + ed).

Here e1, . . . , ed is an orthonormal basis for R
d and we identify R

d−1 with
span(e1, . . . , ed−1).

Letting B ⊂ R
2 be a fixed ball, we have the Kakeya-order mixed-norm

on the set of lines

‖T θ[f ]‖Lq(Lr) =

(∫
B

(∫
Rd−1

|T θ[f ](z, y)|r dy
) q

r

dz

) 1
q

and are interested in estimates

(1.1) ‖T θ[f ]‖Lq(Lr) � ‖f‖Lp(Rd).

Let sj be the “minimum degree” of a collection of j distinct monomials
in two variables: s1, s2 = 1; s3, . . . , s5 = 2; s6, . . . , s9 = 3; s10, . . . , s14 = 4; . . .
Let Sn =

∑n
j=1 sj. Then, for any smooth 2-surface in R

d−1, (1.1) may only
hold if the following inequalities are satisfied

1 +
d − 1

r
≥ d

p
,(1.2)

2

q
+

Sd−1

r
≥ Sd−1

p
,(1.3)

Sd−1

r
≥ Sd−1 − 2

p
.(1.4)

The first necessary condition above follows by applying T θ to the charac-
teristic function of a δ-ball and taking δ to zero. Similarly, the second one
follows by applying T θ to the characteristic function of a parallelepiped with
dimensions 1 × δs1 × δs2 × · · · × δsd−1 adapted to the cone of θ via an or-
der sd−1 Taylor expansion for θ. Finally, the third one can be obtained by
applying T θ to the characteristic function of a disjoint union of ∼ δ−2 par-
allelepipeds as above. Also note that (1.4) follows from (1.3) if we restrict
ourself to the natural case p ≤ q as it was observed in [10].
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We call a 2-surface “well-curved”, if the corresponding restricted X-ray
transform satisfies (1.1) for all (p, q, r) in the interior of the region determined
by (1.2), (1.3), (1.4). We expect the following to be examples of well-curved
2-surfaces in R

d−1

d θ(u, v)

4 (u, v, u2 + v2)

5 (u, v, u2 − v2, uv)

6 (u, v, u2, uv, v2)

7 (u, v, u2, uv, v2, u3 + v3)

8 (u, v, u2, uv, v2, u(u2 + v2), v(u2 + v2))

9 (u, v, u2, uv, v2, u3 + v3, u2v, uv2)

Note that the inequality (1.1) for critical exponents (p, q, r) = (pcr(d),
qcr(d), rcr(d)) specified below

pcr = qcr = 1 +
2(d − 1)

Sd−1

rcr = 1 +
2d

Sd−1 − 2

implies (1.1) for all possible values of (p, q, r) permitted by (1.2), (1.3),
and (1.4) by interpolation with trivial estimates. It is important to note
that

pcr ≤ qcr ≤ rcr.

To study these operators, we use the iterated T ∗T method from [5],
also see [6, 18, 7, 8, 13, 15] for some related work. In [9] and [10], this
method was extended to the mixed norm setting. Using a variation of
the method from [9], we will prove (1.1) with (p, q, r) arbitrarily close to
(pcr(d), qcr(d), rcr(d)) for some surfaces θ (including the well-curved example
surfaces above) when d = 4, 5, 7, 8, 9. The case d = 4 was already known
to hold, as shown by Wolff [21]. When d = 6, the method in [9] breaks
down since the Jacobian is identically zero; However, by using the inflation
argument from [6, 7], we are still able to obtain the almost sharp Lp → Lq

estimates.
The main difference between the method here and the method in [9] is

the “localization” argument. In [9], the set of directions is one-dimensional
and the mixed-norm estimates are obtained by reduction to the case where
the directions are localized to and well distributed within a small interval.
Higher dimensional localizations were used, within the context of Lp → Lq
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estimates, in [7]. There, the localization was performed with respect to
parallelepipeds whose axes had varying direction and varying length. Here,
in order to obtain mixed-norm estimates, it seems to be necessary to fix
(according to the surface θ) the directions of the axes (see Section 2). This
method also gives sharp estimates for certain surfaces θ of dimension greater
than 2 which are not “well-curved”. However, it appears that a general
result involving the mixed norm estimates is currently out of reach due to
the complicated nature of the Jacobians.

In Appendix A, we present an extension of the method in [5] to the
multilinear setting.

The second author would like to thank D. Oberlin for helpful conversa-
tions, including the suggestion of some of the model surfaces under consid-
eration here.

2. Bilinear reduction

Since the operator T is local and translation-invariant in a suitable sense,
and p ≤ q ≤ r, we can assume that f is supported in B(0, 1) ⊂ R

d. Also,
since we are not considering endpoints, it suffices to establish the restricted
weak-type inequality

(2.1)
〈
χF , T [χE]

〉
� |E| 1

p‖χF‖Lq′ (Lr′)

where q′ and r′ are dual to the exponents q and r, and E ⊂ B(0, 1) ⊂ R
d,

F ⊂ B × R
d−1, and B is a fixed ball in R

2. Note that (2.1) is equivalent to
(for 1 < p < ∞) ∣∣{x : T ∗[χF ] ≥ β}∣∣ � β−p′‖χF‖p′

Lq′(Lr′ ).

Therefore, in (2.1), we can assume that for some 0 < β̃ � 1, and for
each x ∈ E,

(2.2) β̃ ≤ T ∗[χF ] ≤ 2β̃.

One may calculate that for x ∈ R
d and functions g on R

2 × R
d−1

T ∗[g](x) =

∫
B

g(γ∗(x, z)) dz

where
γ∗(x, z) =

(
z, proj

Rd−1(x) − 〈x, ed〉θ(z)
)
.

Note that T ∗[g](x) is an averaging of g over the set of lines passing through x.
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2.1. Localization

The following lemma is a variant of certain lemmas found, for example,
in [21], [18], and [9].

For R1, R2 > 0, y ∈ R
2, and linearly independent w1, w2 ∈ R

2, we
consider the parallelogram

Pw1,w2(y, R1, R2) =
{
y + s1w1 + s2w2 : (s1, s2) ∈ [−R1, R1] × [−R2, R2]

}
.

Lemma 2.1. Let 0 < ε < 1, and let B ⊂ R
2 be a fixed ball. Then, for every

G ⊂ B with |G| > 0, there exist R1, R2 with |G|1+ε � R1, R2 � 1 and y ∈ R
2

such that

(2.3) |G ∩ Pw1,w2(y, R1, R2)| � |G|1+ε

and such that for every y′ and R′
1R

′
2 < R1R2

(2.4) |G ∩ Pw1,w2(y
′, R′

1, R
′
2)| <

(
R′

1R
′
2

R1R2

) ε
2

|G ∩ Pw1,w2(y, R1, R2)|.

The implicit constants above may depend on B, ε, w1, w2.

Proof. Choose R̄1, R̄2 � 1 and ȳ so that B ⊂ Pw1,w2(ȳ, R̄1, R̄2), and let
ε′ = ε

1+ε
. Then

|G ∩ Pw1,w2(ȳ, R̄1, R̄2)| ≥
(

R̄1R̄2

R̄1R̄2

)ε′

|G|.

Let R1, R2 be chosen with R1R2 minimal so that there exists a y with

|G ∩ Pw1,w2(y, R1, R2)| ≥
(

R1R2

R̄1R̄2

)ε′

|G|.

Clearly

(2.5) R1R2 � |G| 1
1−ε′ = |G|1+ε .

By the minimality of R1R2, and the fact that G ⊂ B, we also have R1, R2 � 1
and so R1, R2 � |G|1+ε. Again from (2.5),

|G ∩ Pw1,w2(y, R1, R2)| �
(
|G| 1

1−ε′

R̄1R̄2

)ε′

|G| � |G|1+ε.



96 M. Burak Erdoğan and R. Oberlin

The minimality of R1, R2 then guarantees that for every y′ and R′
1R

′
2 <

R1R2, we have

|G ∩ Pw1,w2(y
′, R′

1, R
′
2)| <

(
R′

1R
′
2

R̄1R̄2

)ε′

|G|

≤
(

R′
1R

′
2

R1R2

)ε′

|G ∩ Pw1,w2(y, R1, R2)|

≤
(

R′
1R

′
2

R1R2

) ε
2

|G ∩ Pw1,w2(y, R1, R2)|. �

2.2. Decomposition

We now decompose E with respect to the parallelograms obtained from
Lemma 2.1. Fix w1, w2 depending on d (and in particular depending on the
surface specified for d).

For each x ∈ E, let

Gx = {z : γ∗(x, z) ∈ F}.
We have Gx contained in the fixed ball B and |Gx| = T ∗[χF ](x) ≈ β̃.
Applying Lemma 2.1 with G = Gx and ε > 0 (which will be determined
later), we obtain R1,x, R2,x and yx satisfying (2.3) and (2.4). Note that for
each Ri,x

β̃1+ε � Ri,x � 1

and so, by absorbing a possible factor of ≈ | log(β̃)|2, it suffices to show that

(2.6) 〈T ∗[χF ], χE′〉 � β̃ε|E ′| 1
p‖χF‖Lq′ (Lr′)

where Ri � Ri,x ≤ Ri on E ′.
Cover R

2 by parallelograms Pw1,w2(yj, R1, R2) which have measure-zero
overlap. For each j, let

Fj = F ∩ (Pw1,w2(yj , 2R1, 2R2) × R
d−1
)

and
Ej = {x ∈ E ′ : yx ∈ Pw1,w2(yj, R1, R2)}.

Then

(2.7) 〈T ∗[χF ], χE′〉 ≤
∑

j

〈T ∗[χF ], χEj
〉 � β̃−ε

∑
j

〈T ∗[χFj
], χEj

〉

where the second inequality follows from (2.3) and the fact that Pw1,w2(yx,
R1, R2) ⊂ Pw1,w2(yj, 2R1, 2R2) if yx ∈ Pw1,w2(yj, R1, R2). In Sections 3 and 4,
we prove the estimate

(2.8) 〈T ∗[χFj
], χEj

〉 � β̃2ε|Ej|
1
p‖χFj

‖Lq′(Lr′ ).
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It thus follows from Hölder’s inequality that∑
j

〈T ∗[χFj
], χEj

〉 � β̃2ε
∑

j

|Ej |
1
p‖χFj

‖Lq′(Lr′ )(2.9)

≤ β̃2ε
(∑

j

|Ej|
) 1

p
(∑

j

‖χFj
‖p′

Lq′(Lr′ )

) 1
p′

.

We have p′ ≥ q′ and so(∑
j

|Ej |
) 1

p
(∑

j

‖χFj
‖p′

Lq′(Lr′ )

) 1
p′ �

(∑
j

|Ej |
) 1

p
(∑

j

‖χFj
‖q′

Lq′(Lr′ )

) 1
q′

(2.10)

� |E ′| 1
p‖χF‖Lq′ (Lr′)

where the last inequality follows from the finite overlap of the Pw1,w2(yj, 2R1,
2R2). Combining (2.7), (2.9), and (2.10), we obtain (2.6).

3. Main estimate

We now prove

〈T ∗[χF ], χE〉 � β̃2ε|E| 1
p‖χF‖Lq′ (Lr′),

for (p, q, r) close to (pcr(d), qcr(d), rcr(d)) (where ε > 0 depends on rcr(d)−r),
under the assumptions:

I) For some y ∈ R
2 and β̃1+ε � R1, R2 � 1

(3.1) F ⊂ Pw1,w2(y, 2R1, 2R2) × R
d−1.

II) For each x ∈ E,

(3.2) β̃1+ε � T ∗[χF ](x) � β̃.

III) For each x ∈ E, y′ ∈ R
2, and R′

1R
′
2 < R1R2,

(3.3) T ∗
[
χF∩(Pw1,w2 (y′,R′

1,R′
2)×Rd−1)

]
(x) �

(
R′

1R
′
2

R1R2

) ε
2

T ∗ [χF ] (x).

By Section 2, this suffices to prove (1.1).
Absorbing a possible factor of ≈ | log(β̃)|, we assume without loss of

generality that T ∗[χF ] ≈ β ′ on E where β̃1+ε � β ′ � β̃.
The quantities

α =
〈T ∗[χF ], χE〉

|F | and β =
〈T ∗[χF ], χE〉

|E|
will appear throughout this section. Of course β ≈ β ′.
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3.1. Iterated maps and parameter-space towers

Let n be the integer satisfying d + 1 ≤ 3n ≤ d + 3. Fix a line (z0, y0) to be
specified below, and define the maps

Φ1(t1) = γ(z0, y0, t1)

and
Φ∗

1(t1, z1) = γ∗(Φ1(t1), z1).

For i = 2, . . . , n define the iterated maps

Φi

(
t1, z1, . . . , ti−1, zi−1, ti

)
= γ

(
Φ∗

i−1(t1, z1, . . . , ti−1, zi−1), ti
)

and
Φ∗

i

(
t1, z1, . . . , ti, zi

)
= γ∗(Φi(t1, z1, . . . , ti−1, zi−1, ti), zi

)
.

For any Ω ⊂ (R1 × R
2)

n
and 1 ≤ i ≤ n, let

Ω∗
i =

{
(t1, z1, . . . , ti, zi) : (t1, z1, . . . , tn, zn) ∈ Ω

}
,

Ωi =
{
(t1, z1, . . . , ti−1, zi−1, ti) : (t1, z1, . . . , tn, zn) ∈ Ω

}
.

Definition 3.1. Let ᾱ, β̄ > 0, and Ω ⊂ (R1 × R
2)

n
. We say that Ω is

an (ᾱ, β̄) tower if there exists a (z0, y0) ∈ F so that the following conditions
hold.

(3.4) |Ω1| ≥ 2−4nᾱ.

For 1 < i ≤ n

(3.5) |s : (ω∗, s) ∈ Ωi| ≥ 2−4nᾱ for every ω∗ ∈ Ω∗
i−1.

For 1 ≤ i ≤ n

Φi(ω) ∈ E for every ω ∈ Ωi(3.6)

|z : (ω, z) ∈ Ω∗
i | ≥ 2−4nβ̄ for every ω ∈ Ωi(3.7)

Φ∗
i (ω

∗) ∈ F for every ω∗ ∈ Ω∗
i .(3.8)

The following is essentially Lemma 1 of [5].

Lemma 3.2. There exists an (α, β) tower.

3.2. Change of variables

Let Ω be an (α′, β ′) tower where α′ � α and β ′ � β.
Fix t1 ∈ Ω1. If 3n = d + 3 let

Π =
{
(z1, t2, z2, . . . , tn−1, zn−1, tn) : (t1, z1, . . . , tn, zn) ∈ Ω

}
,

if 3n = d + 2 let

Π =
{
(z1, t2, z2, . . . , tn, zn) : (t1, z1, . . . , tn, zn) ∈ Ω

}
,
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and if 3n = d + 1 let
Π = Ω.

Set Φ = Φn(t1, ·) if 3n = d + 3, Φ = Φ∗
n(t1, ·) if 3n = d + 2, and Φ = Φ∗

n

if 3n = d + 1.
Then

Φ : Π → E

if 3n = d + 3 and
Φ : Π → F

if 3n = d + 2, d + 1.
From Bezout’s theorem, these mappings are generically finite-to-one.

Thus,

(3.9) |E| �
∫

Π

J(ω) dω

if 3n = d + 3 where J = | det(∂Φ/∂u1, v1, . . . , tn)|, and

(3.10) |F | �
∫

Π

J(ω) dω

if 3n = d + 1, d + 2 where

J = | det(∂Φ/∂u1, v1, . . . , tn, un, vn)| if 3n = d + 2

and
J = | det(∂Φ/∂t1, u1, v1, . . . , tn, un, vn)| if 3n = d + 1.

Above, we write zi = (ui, vi).
In Section 4, we show that Ω may be chosen so that

(3.11) |J | � αkdβldR1R2

on Ω where kd and ld are given by

kd = 2(n − 1), ld =
Sd−1

2
− n.

Since Ω is an (α′, β ′) tower with α′ � α, and β ′ � β, we have

|Π| � αn−1βn−1, if 3n = d + 3,
|Π| � αn−1βn, if 3n = d + 2,
|Π| � αnβn, if 3n = d + 1.

It thus follows from (3.9), (3.10), (3.11), and the definitions of α and β
that

(3.12) R1R2〈χF , T [χE]〉Sd−1
2

+d−1 � |E|Sd−1
2 |F |d.
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From (3.1) and Hölder’s inequality, it follows that

(3.13)

( |F |
(R1R2)

1− r′
q′

) 1
r′

� ‖χF‖Lq′ (Lr′).

Thus, combining (3.12) and (3.13), we obtain〈
χF , T [χE]

〉
� |E| 1

pcr ‖χF‖Lq′cr (Lr′cr ).

This implies that 〈
χF , T [χE]

〉
� β2ε|E| 1

p‖χF‖Lq′(Lr′ )

where (p, q, r) are given by an arbitrarily small interpolation of (pcr, qcr, rcr)
with (1, 1, 1).

4. Lower bounds for the Jacobians

Let Ω0 be the (α, β) tower guaranteed by Lemma 3.2. For any fixed t1, . . . , ti,∣∣{t : min
j=1,...,i

|t − tj | � α}∣∣� α.

Thus, by induction, one may find an (α′, β) tower Ω1 ⊂ Ω0, with α′ � α so
that |ti − tj | � α for (t1, z1, . . . , tn, zn) ∈ Ω1 and 1 ≤ i < j ≤ n.

Additional refinements of Ω1 needed to bound the Jacobian will have to
be tailored to the individual 2-surface in question. However, we will use the
following lemma repeatedly.

Lemma 4.1. Let 0 < C < 1, ᾱ > 0, and let Ω be an (ᾱ, Cβ) tower. Let
1 ≤ i ≤ n, and let {Pw1,w2(yω, R′

1, R
′
2)}ω∈Ωi

be a family of parallelograms

with R′
1R

′
2 � R1R2(C)

2
ε . Then

Ω′ =
{
(ω, zi, . . . , tn, zn) ∈ Ω : zi /∈ Pw1,w2(yω, R′

1, R
′
2)
}

is an (ᾱ, 1
2
Cβ) tower.

Proof. It suffices to check that for each ω ∈ Ω1,∣∣{zi /∈ Pw1,w2(yω, R′
1, R

′
2) : (ω, zi, . . . , tn, zn) ∈ Ω}∣∣ ≥ 2−4n 1

2
Cβ

which follows from

(4.1)
∣∣{zi ∈ Pw1,w2(yω, R′

1, R
′
2) : (ω, zi, . . . , tn, zn) ∈ Ω}∣∣ < 2−4n 1

2
Cβ.

To see (4.1), note that, from (3.8), we have{
zi ∈ Pw1,w2(yω, R′

1, R
′
2) : (ω, zi, . . . , tn, zn) ∈ Ω

} ⊂ {zi : γ∗(Φi(ω), zi) ∈ F
}
.
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But, from (3.6), we have Φi(ω) ∈ E and so from (3.3)

∣∣{zi : γ∗(Φi(ω), zi) ∈ F}∣∣ � (R′
1R

′
2

R1R2

) ε
2

β ′

Since β ′ � β, we thus have (4.1) from our choice of R′
1R

′
2. �

4.1. The case 3n = d + 1

One may calculate that for ω = (t1, z1, . . . , tn, zn) and zi = (ui, vi)

Φ(ω) =
(
zn, y0 +

n∑
i=1

ti(θ(zi−1) − θ(zi))
)
.

Thus,

J =
∣∣ det(∂Φ/∂t1, u1, v1, . . . , tn, un, vn)

∣∣ = Jt · Jz

where

(4.2) Jt =

n−1∏
i=1

(ti+1 − ti)
2, and

(4.3) Jz =
∣∣det(θu(z1), θv(z1), . . . , θu(zn−1), θv(zn−1),

θ(z0) − θ(z1), . . . , θ(zn−1) − θ(zn))
∣∣.

Above, we denote θu = ∂θ
∂u

and θv = ∂θ
∂v

.
On Ω1, we have Jt � α2(n−1). Thus, it remains to find an (α′, β ′) tower

Ω ⊂ Ω1 with Jz � R1R2β
ld on Ω and β ′ � β.

4.1.1. d = 5

We now work under the assumption that d = 5 and that θ is of the form

θ(u, v) = (u, v, θ̄(u, v)).

We may then simplify (4.3) to

Jz =
∣∣ det(θ̄(z0) − θ̄(z1) − (u0 − u1)θ̄u(z1) − (v0 − v1)θ̄v(z1),

θ̄(z2) − θ̄(z1) − (u2 − u1)θ̄u(z1) − (v2 − v1)θ̄v(z1))
∣∣.

Assuming that the entries in θ̄ are polynomials of degree 2 or less, this
simplifies to

Jz =

∣∣∣∣det

(
ū2

0θ̄uu

2
+

v̄2
0 θ̄vv

2
+ ū0v̄0θ̄uv,

ū2
2θ̄uu

2
+

v̄2
2 θ̄vv

2
+ ū2v̄2θ̄uv

)∣∣∣∣
where

z̄0 = z1 − z0, z̄2 = z2 − z1.



102 M. Burak Erdoğan and R. Oberlin

After some algebra, we obtain

(4.4) Jz =

∣∣∣∣(ū0, v̄0)

(
0 1
−1 0

)(
ū2

v̄2

)∣∣∣∣ ·
∣∣∣∣(ū0, v̄0)

(
A B

2
B
2

C

)(
ū2

v̄2

)∣∣∣∣
where

A =
1

2
det(θ̄uu, θ̄uv), B =

1

2
det(θ̄uu, θ̄vv), C =

1

2
det(θ̄uv, θ̄vv).

We need the following lemma to further refine the parameter space tower.

Lemma 4.2. Let A, B, C ∈ R satisfy B2−4AC �= 0, let w1, w2 be chosen, as
specified below, according to A, B, C, let 0 ≤ i < j ≤ n and let Ω be an α′, β ′

tower with β ′ � β. Then, there is an (α′, β ′′) tower Ω′ ⊂ Ω with β ′′ � β ′ so
that

|Qi,j| � R1R2

on Ω′ where

Qi,j(t1, . . . , zn) := A(uj − ui)
2 + B(uj − ui)(vj − vi) + C(vj − vi)

2.

Proof . Let z = zj − zi. Assume first that B2 − 4AC > 0.
If A �= 0, we have

Qi,j = A(u − D+v)(u − D−v)

where

D+ =
−B +

√
B2 − 4AC

2A
, and D− =

−B −√
B2 − 4AC

2A
.

Then taking w1 = (D+, 1) and w2 = (D−, 1) we may apply Lemma 4.1 twice
to find Ω′ with |u − D+v| � R2 and |u − D−v| � R1 on Ω′.

If A = 0, we have B �= 0 and

Qi,j = v(Bu + Cv).

Then taking w1 = (1, 0), w2 = (−C, B), we may apply Lemma 4.1 twice to
find Ω′ with |v| � R2 and |Bu + Cv| � R1 on Ω′.

If B2 − 4AC < 0

|Qi,j| = |v|2
∣∣∣∣A(u

v

)2

+ B
u

v
+ C

∣∣∣∣ ≥ |v|2
∣∣∣∣B2 − 4AC

4A

∣∣∣∣ .
Similarly |Qi,j| � |u|2, and thus |Qi,j| � |z|. Then taking any w1, w2 we may
apply Lemma 4.1 twice to find Ω′ with |z| � max(R1, R2)

2 on Ω′. �
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We now assume the non-degeneracy condition (which is equivalent to the
condition from [4], as was pointed out to the second author by D. Oberlin)
B2 − 4AC �= 0. From Lemma 4.2, we may find an (α′, β ′) tower Ω2 ⊂ Ω1

with β ′ � β so that
Q(z̄0) � R1R2

for (z0, z1) ∈ Ω2 where

Q(z̄0) =

∣∣∣∣(ū0, v̄0)

(
A B

2
B
2

C

)(
ū0

v̄0

)∣∣∣∣ .
Choose i �= j ∈ {1, 2} so that Ri ≥ Rj . Refining further, find Ω3 ⊂ Ω2 so
that |z̄0| ≈ |z̄2| ≈ Ri on Ω3.

Let

z̄1 =

(
0 −1
1 0

)(
A B

2
B
2

C

)(
ū0

v̄0

)
.

Then, since |z̄0| ≈ |z̄1| ≈ Ri and

| det(z̄0, z̄1)| = Q(z̄0) � R1R2,

we have | sin(ρ)| � Rj

Ri
where ρ is the angle between z̄0 and z̄1.

Let ρ02 be the angle between z̄2 and z̄0 and let ρ12 be the angle between
z̄2 and z̄1. Then

Jz = |z̄0||z̄1||z̄2|2| sin(ρ02)|| sin(ρ12)| ≈ R4
i | sin(ρ02)|| sin(ρ12)|.

For each z̄0, choose Dz̄0 so that min(| sin(ρ02)|, | sin(ρ12)|) ≤ Dz̄0 for ex-

actly half of the z̄2. Note that Dz̄0 � β
R2

i
. If Dz̄0 � Rj

Ri
then, for the other half

of the z̄2, we have

| sin(ρ02)|| sin(ρ12)| �
R2

j

R2
i

and so Jz � (R1R2)
2 ≥ R1R2β for half of the z̄2.

Since | sin(ρ)| � Rj

Ri
, we have | sin(ρ12)| � Rj

Ri
if | sin(ρ02)| � Rj

Ri
and we

have | sin(ρ02)| � Rj

Ri
if | sin(ρ12)| � Rj

Ri
. Thus, if Dz̄0 � Rj

Ri
, we have

| sin(ρ02)|| sin(ρ12)| � Rj

Ri
Dz̄0 � Rj

Ri

β

R2
i

and thus
Jz � βR1R2

for half of the z̄2.
In either case, we may find an (α′, β ′′) tower Ω4 ⊂ Ω3 with β ′′ � β so

that Jz � βR1R2 on Ω4.
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4.1.2. d = 8

In this case, we assume that θ is of the form

θ(u, v) = (u, v, u2, uv, v2, u(u2 + v2), v(u2 + v2)).

We simplify1 the Jacobian (4.3) to

Jz =
∣∣ det(z̄2, z̄3) det(z̄1, z̄2)|z̄2|2

∣∣
× ∣∣ det(z̄3, z̄1 + z̄2)|z̄2 + z̄3|2 +det(z̄2, z̄3)|z̄1 + z̄2 + z̄3|2 +det(z̄1, z̄2 + z̄3)|z̄3|2

∣∣,
where z̄j := zj−1 − zj for j = 1, 2, 3. Let ρij be the clockwise angle z̄i to z̄j .
After some algebra, we can rewrite

Jz = |z̄1|2|z̄2|5|z̄3|2| sin(ρ23) sin(ρ12)|×∣∣∣sin(ρ12)|z̄3|+sin(ρ23)
|z̄1 + z̄2 + z̄3|2 − |z̄2 + z̄3|2

|z̄1| +sin(ρ31)
|z̄2 + z̄3|2 − |z̄3|2

|z̄2|
∣∣∣.

Using that for any i, j, k, ρij + ρjk = ρik, 〈z̄i, z̄j〉 = |zi||zj | cos(ρij), and
trigonometric identities we write

Jz = |z̄1|2|z̄2|5|z̄3|2| sin(ρ23) sin(ρ12)|∣∣|z̄1| sin(ρ23) + |z̄2| sin(ρ23 + ρ21) + |z̄3| sin(ρ21)
∣∣.

To obtain the required lower bound for Jz, it suffices to use a localization
to squares. Namely, in Lemma 2.1 and Lemma 4.1, we let w1, w2 be the
coordinate axis directions and require that R1 = R2 = R. Note that using
Lemma 4.1 as in Lemma 4.2, we can guarantee that we have an (α′, β ′) tower
Ω2 ⊂ Ω1 with β ′ � β so that

|z̄j | � R, and | sin(ρij)| � β/R2

on Ω2. This implies that

Jz � R5β2
∣∣|z̄1| sin(ρ23) + |z̄2| sin(ρ23 + ρ21) + |z̄3| sin(ρ21)

∣∣.
To estimate the remaining term we have to refine Ω2 once more. Note

that for each fixed z̄1, z̄2 and a fixed argument for z̄3, we have∣∣|z̄1| sin(ρ23) + |z̄2| sin(ρ23 + ρ21) + |z̄3| sin(ρ21)
∣∣ � (β/R)| sin(ρ21)| � β2/R3

for each value of |z̄3| except for |z̄3| in an interval of length � (β/R). There-
fore by removing a set of measure � β for z̄3, we can find an (α′, β ′′) tower
Ω ⊂ Ω2 with β ′′ � β on which

Jz � R2β4 = R1R2β
4.

1We used Maple to simplify the Jacobians.
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4.2. The case 3n = d + 2

One may calculate that for ω = (z1, . . . , tn, zn) and zi = (ui, vi)

Φ(ω) =
(
zn, y0 +

n∑
i=1

ti(θ(zi−1) − θ(zi))
)
.

Thus,
J = | det(∂Φ/∂u1, v1, . . . , tn, un, vn)| = Jt · Jz

where

Jt =

n−1∏
i=1

(ti+1 − ti)
2, and

Jz =
∣∣ det(θu(z1), θv(z1), . . . , θu(zn−1), θv(zn−1),(4.5)

θ(z1) − θ(z2), . . . , θ(zn−1) − θ(zn))
∣∣.

On Ω1, we have Jt � α2(n−1). Thus, it remains to find an (α′, β ′) tower
Ω ⊂ Ω1 with Jz � R1R2β

ld on Π and β ′ � β.

4.2.1. d = 7

In this case, we assume that θ is of the form

θ(u, v) = (u, v, u2, uv, v2, P (u, v)),

where P (u, v) = au3 + bu2v + cuv2 + dv3. We simplify the Jacobian (4.5) to

Jz =
∣∣ det(z̄1, z̄2)

∣∣2|P (z̄1)|,
where z̄j := zj+1 − zj . At this point we assume that |P (z̄1)| � |L(z̄1)||z̄1|2,
where L(z̄1) = 〈z̄1, (a, b)〉 for some vector (a, b). For example, with θ(u, v) =
(u, v, u2, uv, v2, u3 + v3) we may take (a, b) = (1, 1).

We apply Lemma 3.2 and Lemma 4.1 with w1 = (a, b) and w2 ⊥ w1, and
refine further as in the previous cases to obtain a (α′, β ′) tower Ω such that
β ′ � β, and

|z̄1| � max(R1, R2),

| det(z̄1, z̄2)| � β,

|L(z̄1)| � min(R1, R2).

This implies that

Jz � β2R1R2 max(R1, R2) � β5/2R1R2.
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4.3. The case 3n = d + 3

One may calculate that for ω = (z1, t2, . . . , zn−1, tn) and zi = (ui, vi)

Φ(ω) = y0 +

n−1∑
i=1

ti(θ(zi−1) − θ(zi)) + tn(θ(zn−1) + ed).

Thus,

J = | det(∂Φ/∂u1, v1, . . . , un−1, vn−1, tn)| = Jt · Jz

where

Jt =
n−1∏
i=1

(ti+1 − ti)
2, and

Jz =
∣∣det(θu(z1), θv(z1), . . . , θu(zn−1), θv(zn−1),(4.6)

θ(z1) − θ(z2), . . . , θ(zn−2) − θ(zn−1))
∣∣.

On Ω1, we have Jt � α2(n−1). Thus, it remains to find an (α′, β ′) tower
Ω ⊂ Ω1 with Jz � R1R2β

ld on Π and β ′ � β.

4.3.1. d = 9

In this case, we assume that θ is of the form

θ(u, v) = (u, v, u2, uv, v2, u3 + v3, u2v, uv2),

We simplify the Jacobian (4.6) to

Jz =
∣∣ det(z̄1, z̄2)

∣∣4|ū3ū2ū1 + v̄3v̄2v̄1|,

where z̄1 := z2 − z1, z̄2 := z3 − z1, and z̄3 := z3 − z2.
We apply Lemma 3.2 and Lemma 4.1 with w1 = (0, 1) and w2 = (1,−1),

and refine further as in previous cases to obtain a (α′, β ′) tower Ω2 such that
β ′ � β, and

|z̄j | ∼ max(R1, R2),(4.7)

|ūj| ∼ R2,(4.8)

|1 + v̄1/ū1| ≥ c1R1/R2,(4.9)

|ρ12| � β/ max(R1, R2)
2,(4.10)

where ρij ∈ [−π/2, π/2] is the angle between z̄i and z̄j.
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Case 1: R1 � R2. By (4.7) and (4.8), we have |v̄j| > 2|ūj|, which implies
that

|ū3ū2ū1 + v̄3v̄2v̄1| � |v̄3v̄2v̄1| � R3
1.

Also, by (4.7) and (4.10), we have | det(z̄1, z̄2)| � β. Therefore,

Jz � β4R3
1 � β9/2R1R2.

Case 2: R2 � R1, and β/R2
2 � |ρ12| ≤ c2R1/R2. Here c2 � c1 is a fixed

small constant.
Note that since |z̄j | ∼ R2 for each j, |ρ12| ≤ c2R1/R2, and z̄2 = z̄1 + z̄3,

by choosing c2 sufficiently small, we have |ρ13| ≤ c3R1/R2, where c3 � c1.
We have two subcases 1 + v̄1/ū1 ≤ −c1R1/R2 and 1 + v̄1/ū1 ≥ c1R1/R2.

In the former case, since |ρ13|, |ρ12| � c1R1/R2, we have

v̄j/ūj ≤ −1 − c4R1/R2,

for each j. Therefore,

J(z) � β4R3
2

∣∣1 +
v̄1

ū1

v̄2

ū2

v̄3

ū3

∣∣ = β4R3
2

(− v̄1

ū1

v̄2

ū2

v̄3

ū3
− 1
)

(4.11)

≥ β4R3
2((1 + c4R1/R2)

3 − 1) � β4R3
2R1/R2 � β9/2R1R2.

In the latter case, we can additionally assume that v̄1/ū1 ≤ 1/4 (Otherwise
v̄j/ūj � 1 for each j by the arguments above. This case can be handled as
in case 1). As above, we now have (if c2 is sufficiently small)

1/2 ≥ v̄j/ūj ≥ −1 + c4R1/R2

for each j. As in (4.11), we have

J(z) � β4R3
2

∣∣1 +
v̄1

ū1

v̄2

ū2

v̄3

ū3

∣∣ ≥ β4R3
2

(
1 − ∣∣ v̄1

ū1

v̄2

ū2

v̄3

ū3

∣∣)
≥ β4R3

2

(
1 − ∣∣ v̄1

ū1

∣∣) � β4R3
2R1/R2 � β9/2R1R2.

Case 3: R2 � R1, and |ρ12| � R1/R2. First note that

(4.12)
∣∣ det(z̄1, z̄2)

∣∣ � R2
2R1/R2 = R1R2.

Now we estimate the remaining term in J(z). With the previous notation
z̄1 := z2 − z1, z̄2 := z3 − z1, and z̄3 := z3 − z2, we have∣∣ū3ū2ū1 + v̄3v̄2v̄1

∣∣ =
∣∣u2 − u1

∣∣∣∣u2
3 − u3(u2 + u1) + g(z1, z2, v3)

∣∣
∼ R2

∣∣u2
3 − u3(u2 + u1) + g(z1, z2, v3)

∣∣ =: R2|J̃(z)|.
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By refining Ω2 once again, we have

(4.13)
∣∣2u3 − (u2 + u1)

∣∣ � R2.

Note that J̃ is a quadratic polynomial in u3 satisfying (by (4.13))

|J̃u3| � R2.

Therefore, for each fixed z1, z2, and v3, by removing an interval of length
∼ β/R2 for u3, we have

|J̃| � R2β/R2 = β.

Combining the above estimates, we obtain

J(z) � (R1R2)
4R2β � β9/2R1R2.

4.3.2. d = 6

In this case the Jacobian turn out to be identically zero. To obtain Lp → Lq

estimates we utilize the inflation argument from [6, 7]. We only give a sketch
of the argument. First, we replace the parameter space tower Π (after the
change of variables) with the following “parameter space tree”:

Π̄ =
{
(z1, t12, z12, t13, z13,t22, z22, t23, z23) :

(t1, z1, t12, z12, t13, z13), (t1, z1, t22, z22, t23, z23) ∈ Ω
}

which is a subset of R
14 of measure � α4β5. We also define the inflated map

ϕ : Π̄ → F × F ⊂ R
14 as

ϕ
(
z1, t12, . . . , z23

)
=
(
Φ∗

3(t1, z1, t12, z12, t13, z13), Φ
∗
3(t1, z1, t22, z22, t23, z23)

)
.

For the definition of Φ∗
3, see Section 3.1. As before we need to find a lower

bound for the Jacobian of ϕ which is valid on a subset of Π̄ of comparable
measure. One can write the Jacobian J as Jt · Jz where

Jt = (t12 − t1)(t22 − t1)(t13 − t12)
2(t23 − t22)

2,

Jz = det(z1 − z22, z1 − z12) det(z1 − z12, z13 − z12)
2 det(z1 − z22, z23 − z22)

2.

We can obtain the following lower bounds for Jt and Jz on a subset of π̄ of
measure � α4β5 by considerations as above:

|Jt| � α6, |Jz| � β5.

This implies that

|F | =
√

|F × F | �
√

α4β5α6β5 = α5β5.

Using the definition of α and β, we obtain all Lp → Lq estimates for
(1/p, 1/q) in the interior of the convex hull of the points (1/2, 2/5), (0, 1),
(1, 0), (1, 1), which is essentially optimal.
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A. Multi-linear estimates

In this appendix, we present an extension of the method in [5] to the multi-
linear setting. We only discuss various model cases.

A.1. Restricted directions

Let θ be the moment curve θ(u) = (u, u2, . . . , ud−1). Suppose I1 and I2 are
disjoint compact intervals, and gj is a function on Ij × R

d−1, j = 1, 2.
We can consider the (adjoint) bilinear X-ray estimate

‖T ∗[g1]T
∗[g2]‖

L
p′
2

� ‖g1‖Lq′‖g2‖Lq′ .

From the δ-ball counterexample, we have the usual necessary condition

(A.1)
d − 1

q′
≤ d

p′
.

Given a set of points E ⊂ B(0, 1) ⊂ R
d and sets of lines F1 ⊂ I1 ×R

d−1 and
F2 ⊂ I2 × R

d−1 consider the quantity

〈F1, F2, E〉T :=

∫
Rd

T ∗[χF1 ](x)T ∗[χF2 ](x)χE(x) dx.

Our aim is to obtain restricted weak type inequalities,

〈F1, F2, E〉T � |E|1−2/p′|F1|1/q′|F2|1/q′.

After pigeonholing and losing a log2, we can assume that T ∗[χF1] ≈ β1 on E
and T ∗[χF2 ] ≈ β2 on E (this slightly changes (p′, q′) that we obtain at the
end). Define

α1 :=
〈F1, F2, E〉T

β2|F1| ≈
∫

Rd χF1(x)T (χE)(x) dx.

|F1|
and

α2 :=
〈F1, F2, E〉T

β1|F2| ≈
∫

Rd χF2(x)T (χE)(x) dx.

|F2| .

Note that

β1β2 ≈ 〈F1, F2, E〉T
|E| ,

and, on average, TχE ≈ αj on Fj .
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We restrict ourself to the case when d = 2D is even. Define

φ1(u1) = (u1, x0 − t0θ(u1)),

φ2(u1, t1) = x0 − t0θ(u1) + t1(θ(u1) + ed),

...

φd−1(u1, t1, . . . , tD−1, uD) =
(
uD, x0 − t0θ(u1) +

D−1∑
j=1

tj [θ(uj) − θ(uj+1)]
)
,

φd(u1, t1, . . . , uD, tD) = x0 − t0θ(u1) +

D−1∑
j=1

tj [θ(uj) − θ(uj+1)]

+ tD(θ(uD) + ed).

We can set up a parameter space tower Ω with |Ω|=(β1α1)
D−�D/2�(β2α2)

�D/2�

so that

φj → F1, if j = 1 (mod 4),

φj → F2, if j = 3 (mod 4),

φj → E, if j is even.

Then the Jacobian of φd, [9], is

|J | = cd

D∏
j=1

|tj − tj−1|
∏

1≤j<k≤D

|uj − uk|4.

Let p(j) := 1 if j is odd, and p(j) := 2 if j is even. By the transversality
|uj − uk| � 1 if p(j) �= p(k). By refining Ω, we can assume that |uj − uk| �
βp(k) if p(j) = p(k), and |tj − tj−1| � αp(j). Thus

|E| � |Ω|αD−�D/2�
1 α

�D/2�
2

∏
1≤j<k≤D, p(j)=p(k)

β4
p(k).

We can symmetrize this by switching the roles of α1, β1 and α2, β2 and obtain

|E| � (α1α2)
D(β1β2)

D/2
∏

1≤j<k≤D, p(j)=p(k)

(β1β2)
2.

This gives us

|E| � (α1α2)
D(β1β2)

D(D−1)/2, if D is even,

|E| � (α1α2)
D(β1β2)

(D2−D+1)/2, if D is odd.
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Plugging in the notation, we have

〈F1, F2, E〉T � |E|D2−3D+2
D2+D (|F1|F2|) 2

D+1 , if D is even,

〈F1, F2, E〉T � |E|D2−3D+3
D2+D+1 (|F1|F2|)

2D
D2+D+1 , if D is odd.

This corresponds to p′ = D+1
2

d
d−1

, q′ = D+1
2

for even D, and p′ = D2+D+1
d−1

, q′ =
D2+D+1

d
for odd D.

A.2. Unrestricted directions

For z ∈ R
d−1, we have the unrestricted X-ray transform T = T θ where

θ(z) = z. Perhaps the estimates of most interest are the d-linear estimates

∥∥ d∏
j=1

T ∗[gj]
∥∥

L
p′
d

�
d∏

j=1

‖gj‖Lq′ .

where, say, each gj is supported on B(ξj,
1

100
), and where ξj = ej for j =

1, . . . , d− 1 and ξd = 0, see [1]. We give a sketch of the method when d = 3
for the weaker inequality

(A.2)
∣∣{x : T ∗[χFj

] ≥ βj , j = 1, . . . , d}∣∣ � ( d∏
j=1

|Fj |1/q′

βj

)p′/d

,

which follows from∫ d∏
j=1

T ∗[χFj
](x)χE(x)dx � |E|1−d/p′

d∏
j=1

|Fj|1/q′

where E = {x : T ∗[χFj
] ≈ βj, j = 1, . . . , d}.

Consider the inflated map

φ
(
z1, t1,1, z1,1, t2,1, z2,1

)
=
(
(z1,1, x0 + (t1,1 − t0)z1 − t1,1z1,1), (z2,1, x0 + (t2,1 − t0)z1 − t2,1z2,1)

)
which has Jacobian

|J | = |(t1,1 − t0)(t2,1 − t0) det(z1,1 − z1, z2,1 − z1)|.
We can construct a “Parameter space tree” Ω = {(z1, t1,1, z1,1, t2,1, z2,1)} of
measure α2

1β1β2β3 so that z1 ∈ B(ξ1,
1

100
), z1,1 ∈ B(ξ2,

1
100

), and z3 ∈
B(ξ3,

1
100

), and
φ(Ω) ⊂ F2 × F3.

Above,

α1 =

∫
T

∗
[χF1]T

∗
[χF2 ]T

∗
[χF3]χE

β2β3|F1| , etc..



112 M. Burak Erdoğan and R. Oberlin

By our “trilinear” hypotheses on z1, z1,1, and z2,1, we have | det(z1,1 −
z1, z2,1 − z1)| � 1 on Ω. Thus

|F2||F3| � β1β2β3α
4
1.

Combined with the permuted estimates, we have

(|F1||F2||F3|)2 � (β1β2β3)
3(α1α2α3)

4.

This gives (A.2) for d = 3 with p = 7
3
, q = 7. These exponents are weaker

than those implied by [19], but nonetheless illustrate that the method of [9]
may yield estimates with unrestricted directions beyond those of [12] and [3].

A.3. The Loomis-Whitney inequality

For j =1, . . . , d, let πj : R
d → R

d−1 be the map πj(x1, . . . , xd)=(x1, . . . , xj−1,
xj+1, . . . xd). The Loomis-Whitney inequality [16] states that

∫
Rd

d∏
j=1

fj(πj(x)) dx ≤
d∏

j=1

‖fj‖Ld−1

for functions f1, . . . , fd on R
d−1.

Below, we give (except for a constant factor) a “multilinear T ∗T” proof
for the case fj = χEj

.
Suppose E1, . . . , Ed ⊂ R

d−1 with each |Ei| < ∞ and let

〈E1, . . . , Ed〉 =

∫
Rd

∏
j

χEj
(πj(x)) dx.

Define

αj =
〈E1, . . . , Ed〉

|Ej | ,

and given y ∈ R
d−1 and a function g on R

d let

T i[g](y) =

∫
R

g(y + tei) dt.

so that ∫
Rd

∏
j

fj(πj(x)) dx =

∫
Rd−1

fi(y)T i
[∏

j 	=i

fj(πj(·))
]
(y) dy.

For i = 1, . . . , d let

E ′
i =

{
y ∈ Ei : T i

[∏
j<i

χE′
j(πj(·))

∏
j>i

χEj
(πj(·))

]
≥ αi

2i

}
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and, by induction on i, note that

〈E ′
1, . . . , E

′
i, Ei+1, . . . , Ed〉 ≥ 〈E1, . . . , Ed〉

2i
.

We may then find a parameter space tower Ω = {td, . . . , t1} ⊂ R
d and

y ∈ E ′
d so that |Ω| ≥ 2−

d(d+1)
2

∏d
j=1 αi and so that

πi(y +

d∑
j=1

tjej) ∈ Ei

for every i and (t1, . . . , td) ∈ Ω. Thus

〈E1, . . . , Ed〉 ≥ 2−
d(d+1)

2

d∏
j=1

αj ,

or in other words

〈E1, . . . , Ed〉 ≤ 2−
d(d+1)

2

d∏
j=1

|Ej | 1
d−1 .
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Department of Mathematics

University of Illinois
Urbana IL 61801

berdogan@math.uiuc.edu

Richard Oberlin
UCLA Mathematics Department

Los Angeles CA 90095
oberlin@math.ucla.edu

The first author is partially supported by NSF grant DMS-0600101.


