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A signed measure on rough paths
associated to a PDE of high order:

results and conjectures

Daniel Levin and Terry Lyons

Abstract
Following old ideas of V. Yu. Krylov we consider the possibility

that high order differential operators of dissipative type and con-
stant coefficients might be associated, at least formally, with signed
measures on path space in the same way that Wiener measure is
associated with the Laplacian.

There are fundamental difficulties with this idea because the mea-
sure would always have locally infinite mass. However, this paper
provides evidence that if one considers equivalence classes of paths
corresponding to distinct parameterisations of the same path, the
measures might really exist on this quotient space.

Precisely, we consider the measures on piecewise linear paths with
given time partition defined using the semigroup associated to the dif-
ferential operator and prove that these measures converge in distribu-
tion when the test functions on path space are the iterated integrals
of the paths.

Given a “random” piecewise-linear path, we evaluate its “expected”
signature in terms of an explicit tensor series in the tensor algebra.
Our approach uses an integration by parts argument under very mild
conditions on the polynomial corresponding to the PDE of high order.

1. Introduction

V.Yu. Krylov [14] introduced finitely additive signed measures on paths as-
sociated to some special PDEs of high order. We believe his idea has con-
siderable unexploited potential and could ultimately produce the correct
replacement for Brownian motion to discuss equations of higher order in the
same way that one could discuss the second order case.
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Brownian motion is Markov process whose infinitesimal generator is the
Laplace operator Δ. Harmonic functions are the continuous solutions to the
constant coefficient PDE

Δu = 0.

An essential connection between Brownian motion and harmonic functions
was provided by Doob [6]. Harmonic functions are the continuous functions
u[Z(t)] for which Z(t) is a local martingale.

After Doob, the next big breakthrough connected more general PDEs and
Probability and came from Itô [13] - whose Stochastic Differential Equation
methods allowed one to construct new diffusions out of Brownian motion.
These methods have been very powerful for the study of wide classes of
second order PDEs with non-constant coefficients. For example, Stroock
and Varadhan [29] used these methods to show that non-divergence form
second order elliptic PDEs with continuous coefficients for the PDEs have
existence and uniqueness of solutions. Malliavin [25] used the Itô perspective
in his proof and extensions of Hörmander’s Theorem [12]. These probabilis-
tic methods (from Malliavin down) are now used in practical settings and,
for example, significantly influence approaches to the numerical analysis of
PDEs used in finance.

More recently, advances in our understanding of controlled differential
equations have lead to the theory of rough paths. The essence of that theory
is the study of controlled differential equations of the kind

dyt =
∑

i

V i (yt) dxi
t

y0 = a.

These equations can be thought of as describing the response y of a system
to a control x that varies in time. If the V i are Lipschitz, and the control x
is continuous and of bounded variation with values in a finite dimensional
vector space, then it is an exercise in Picard iteration to prove that the
solution y exists and is unique.

On the other hand many systems are subject to highly oscillatory exter-
nal forcing. The theory of rough paths identifies novel metrics on the space
of controls that makes the Itô functional x → y uniformly continuous. These
metrics capture the possibility that paths may have effect if they are close
in their global features, even though on the scale of microstructure they are
quite different.

Key to this development was the use of the iterated integrals to provide
an effective top down description of x [8] and a series of delicate analytic
estimates on ordinary differential equations controlling the changes to y
when the path x is varied within the class of paths with a common top
down description to a certain level [24].
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As a result a deterministic theory of stochastic differential equations has
emerged. The dyadic piecewise linear approximations to semi-martingales,
and hence to Brownian motion, are almost surely Cauchy sequences in these
rough path metrics (at least for p > 2). Uniformly continuous functions
extend to the completion and so provide a deterministic treatment of Itô-
Stratonovich SDEs. Applications include the extension, in [2], of the results
of Malliavin on the regularity of the density of a diffusion at a fixed time to
be extended to processes driven by fractional Brownian motion with Hurst
index greater than 1/4.

We explain an application. Monte Carlo is an effective (if slow) method
for solving linear second order PDEs in moderate dimensions. The very
process of solution makes it clear that solving such a PDE is theoretically
indistinguishable from integrating a functional of the solution to an SDE
over the Wiener path space. When one integrates smooth functions one
should always consider the possibility of cubature; that is to say replacing
the idealised measure with a discrete measure and integrating the functional
against this discrete measure. By choosing the discrete measure to integrate
polynomials perfectly one can sometimes achieve excellent results with the
substitute measure.

Extending this idea to path space requires that one can well approximate
the Itô functional by a linear combination of special functionals analogous to
polynomials. The first few terms in the signature are the appropriate ana-
logue. It is now understood that the iterated integrals of a path are, through
the signature, an effective structured tool for describing paths; moreover the
expectation of the signature of a random path can fully characterise the law
of the signature [7]. One chooses a finite collection of paths and weights
so that the expected signature for this discrete measure matches the ex-
pected signature for the underlying Wiener process. In view of results by
Kusuoka [18], Kusuoka and Stroock [15, 16, 17], Lyons and Victoir [22],
these methods have produced effective higher order numerical methods for
integrating second order PDEs.

This paper is about higher order operators, but it draws on this experi-
ence at second order even though the probabilities we study are not positive
or defined on the full path space.

We study the “diffusions” associated with constant coefficient PDEs
that are generalizations of hypo-elliptic equations in the sense of Laurent
Schwartz and Lars Hörmander [12], [26]. Each equation we study has asso-
ciated with it a semigroup whose kernel is in Schwartz class. If we introduce
a finite partition of the time interval [0, T ] then it can be used with the
semigroup to construct a measure on piecewise linear paths. One can then
ask if there is a sense in which these measures converge (to give a “Brownian
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motion”). We will prove that, in a weak sense, there is a convergence result.
It is compatible with our evidence that this “distributional” limit exists as
a measure on rough paths without parameterization although we are not
yet close to testing this. We think the positive intermediate results pre-
sented here already have some interest and might lead to effective numerical
methods analogous to those described above.

Fix a partition, and consider the expected signature for a piecewise linear
path chosen randomly according to the measure associated to the partition
and semigroup. Our main result is that, if we take the limit as the mesh of
the partition goes to zero, this expected signature converges to a non-trivial
limit which is readily calculated. The limit of the expected signatures is an
explicit tensor series in the tensor algebra.

The rigorous result is not so obvious and the proof relies on carefully
structured logic with an integration by parts argument at its core. The total
variation of the measure on piecewise linear paths associated to a partition
explodes as one refines the partition. Our result can be interpreted as a
statement about the convergence of these measures in a weak sense against
the coordinate iterated integrals, which (following Chen [3]) are the natural
test functions on the space of un-parameterized paths.

The closed form value for the limit of expectations should also prove
valuable. The precise form we obtain, in the classical Brownian case, is a
key step to developing the high order numerical methods of Kusuoka-Lyons-
Victoir mentioned above. The explicit form suggests concrete algorithms for
numerical analysis on non-constant coefficient hypo-elliptic PDEs.

2. Constant coefficient operators

If f (x) = f (x1, . . . , xd) is a smooth function on Rd then, for each i ∈
(1, . . . , d) we denote the differential operator f → ∂

∂xi
f by Di. Then Di is

translation invariant. As the Di commute, any product Di1
1 . . .Did

d can be
written in canonical form DI where I = (i1, . . . , id) and i1, . . . , id are positive
integers. We call such I multi-indices.

More generally we call any polynomial in the Di a translation invariant
differential operator on Rd. Any such operator L can be expressed uniquely
as a sum, over distinct multi-indices I

L =
∑

I

aID
I ,

where aI ∈ R (or C) and where DI is interpreted to be 1 in the special case
where I = () . We will be concerned primarily with the case where a() = 0
and L annihilates constant functions. The degree of L is the maximum
cardinality of the multi-indices {I |aI �= 0}.
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Remark 2.1. Any translation invariant operator T can be conveniently

expressed as a multiplier Tf (x) =
(
MT f̂ (ξ)

)∨
(x) acting on the Fourier

transform. We use the following convention:

f → f̂ f̂ (ξ) =

∫
Rd

e−2πix.ξf (x) dx

g → ǧ ǧ (x) =

∫
Rd

e2πiξ.xg (ξ) dξ.

In the case of L the multiplier is a polynomial.

Definition 2.2. The Schwartz class S(Rd) is the set of functions f ∈
C∞ (Rd

)
such that

sup
x∈Rd

|x|N ∣∣(DIf) (x)
∣∣ < ∞

for all integers N ≥ 0 and all multi-indices I.

It is classical that the operators ∧ and ∨ are defined on S (Rd
)

and map
S (Rd

)
to itself.

Lemma 2.3. Schwartz class S(Rd) is an algebra.

Proof. Let f and g be in S(Rd) then

|x|N ∣∣(DIfg) (x)
∣∣ ≤ (1 + |x|2N

) ∣∣(DIfg) (x)
∣∣

≤
(
1 + |x|2N

) ∣∣∣∣∣ ∑
J�K=I

cI

(
DJf

)
(x)
(
DKg

)
(x)

∣∣∣∣∣
≤ 2|I|

∑
J�K=I

(
sup
x∈Rd

(
1 + |x|N

) ∣∣(DJf) (x)
∣∣)( sup

x∈Rd

(
1 + |x|N

) ∣∣(DKg) (x)
∣∣)

< ∞
since the sum is finite. �

Lemma 2.4. The multiplier for L =
∑

I aID
I is the polynomial

(2.1) P(ξ) =
∑

I

aI(2πiξ1)
i1 · · · (2πiξd)

id.

That is to say

Lf (x) =
(
P (ξ) f̂ (ξ)

)∨
(x) .

For example if L = −1
2
Δ then P (ξ) = 2π2

∑d
j=1 |ξj |2.
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Remark 2.5. This map taking constant coefficient differential operators to
polynomials is an algebra isomorphism when both spaces are given the natural
multiplication and addition operators.

There is an important duality between differential operators and poly-
nomials.

Proposition 2.6. Consider the differential operator

L :=
∑

I

aID
i1
1 . . .Did

d

and the polynomial

P̃(ξ) :=
∑

I

ãI (2πiξ1)
i1 · · · (2πiξd)

id .

Then
LP̃ |ξ=0 = L̃P |ξ=0,

where
P (ξ) =

∑
I

aI (2πiξ1)
i1 · · · (2πiξd)

id

and
L̃ =

∑
I

ãID
i1

1 . . .D
id

d .

Proof. It is enough to prove this when L and P̃ are monomials∏
k

Dik
k and

∏
k

ξrk
k .

According to our notations, P and L̃ are respectively monomials∏
k

(2πiξk)
ik and

∏
k

(
1

2πi
Dk

)rk

.

Now one always has (∏
k

Dik
k

)(∏
k

ξrk
k

)
=
∏
k

Dik
k ξrk

k

and if ik �= rk then

Dik
k ξrk

k

∣∣
ξ=0

=

(
1

2πi
Dk

)rk

(2πiξk)
ik

∣∣∣∣
ξ=0

= 0

and if ik = rk then one has

Dik
k ξik

k

∣∣
ξ=0

=

(
1

2πi
Dk

)ik

(2πiξk)
ik

∣∣∣∣∣
ξ=0

= ik!

and taking the product one has the result. �
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3. Semigroups

Definition 3.1. (Minimal growth condition). A polynomial P(ξ), ξ ∈ R
d is

said to satisfy the minimal growth condition if

Re P(ξ) → +∞, |ξ| → ∞.

Proposition 3.2. If a real-valued polynomial P(ξ), ξ ∈ Rd satisfies the
minimal growth condition then there exist A > 0 and α > 0 such that

P (ξ) ≥ A|ξ|α, |ξ| → ∞.

In particular,

(3.1) P(ξ)/ log |ξ| → +∞, |ξ| → ∞.

Proof. We adapt an example from [12, Example A.2.7]. The set

E =
{(

1 + |ξ|2,P (ξ) , ξ
)}

is a semi-algebraic set in R2+d, and so the function

f (x) = inf
1+|ξ|2=x

P(ξ) = inf {y; (x, y, ξ) ∈ E} .

is also semi-algebraic [12, Corollary A.2.4]. This function is finite every-
where, positive and continuous, and converging to +∞ as x → ∞ since
P(ξ) → +∞, as |ξ| → ∞. We now apply [12, Theorem A.2.5], to conclude
that

f (x) = Axα (1 + o (1)) , x → +∞.

We observe that α can not be negative or zero, otherwise the minimal growth
condition is violated.1 �

Corollary 3.3. If the polynomial P(ξ), ξ ∈ R
d satisfies the minimal growth

condition 3.1 then exp (−P(ξ)) is in S(Rd).

Remark 3.4. In contrast to the one dimensional case, a polynomial P(ξ),
ξ ∈ Rd can satisfy ReP(ξ) → +∞, |ξ| → ∞ while m (r) = inf |ξ|>r ReP(ξ)
can grow more slowly than any given power of r (consider ξ = (x, y) ∈ R2

and the polynomial (y − xn)2 + x2, n ∈ N).

1We thank Lars Hormander and Boris Zilber for independently telling us how to prove
this result.



978 D. Levin and T. Lyons

Remark 3.5. Radial behaviour is not a good indicator of the overall be-
haviour of a polynomial. For example, let ξ = (x, y) ∈ R2 and P(ξ) =
(y − xn)2, then ReP(ξ)/ |ξ|2−ε → ∞ along every ray but P(ξ) = 0 on the
curve y = xn.

Remark 3.6. It might be worth remarking that there are other stronger
conditions on polynomials (e.g. leading to Gevrey class PDEs) which were
introduced by Hörmander [26, Corollary 3.5.3] which ensure that the principal
term dominates the derivative pointwise for large ξ; these are very popular
conditions used to capture ellipticity. Our original proofs of the main re-
sult assumed these conditions. However the integration by parts argument
presented here, and suggested by Bruce Driver, avoids dependence on such
pointwise estimates.

Lemma 3.7. If P satisfies the minimal growth condition, then the semigroup
of operators Pt characterised by

Pt : f → (e−tP(ξ)f̂)∨

is well defined and continuous as a family of continuous operators on S(Rd).

Proof. Now, if f ∈ S(Rd) then f̂ ∈ S(Rd). By the condition 3.1 and our
remarks, e−tP(ξ) is in S(Rd). By Lemma 2.3 S(Rd) is an algebra. So e−tP(ξ)f̂
and hence (e−tP(ξ)f̂)∨ are also in S(Rd). Each of these transformations is a
continuous function from S(Rd) to S(Rd). �

Definition 3.8. Let L be a constant coefficient differential operator on
S(Rd) whose multiplier is a polynomial P satisfying the minimal growth
condition. If f ∈ S(Rd), then we define e−tLf, also written as Ptf , by

e−tLf(x) = (e−tP(ξ)f̂)∨.

In view of Lemma 3.7, the operators Pt, e−tL form a semigroup of continuous
operators on S(Rd).

The following lemma is a consequence of our assumption that P satisfies
the minimal growth condition 3.1.

Lemma 3.9. The operator Pt can be represented as convolution with a kernel
as follows:

Ptf (x) =

∫
Rd

f (y)ϕt (x − y) dy =

∫
Rd

ϕt(y)f(x − y)dy,

where

ϕt (x) =

∫
Rd

e−tP(ξ)e2πix.ξdξ

is in S(Rd).
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Proof.

Ptf (x) = (e−tP(ξ)f̂)∨ =

∫
Rd

e−tP(ξ)

∫
Rd

f(y)e2πi(x−y).ξdydξ,

i.e. the kernel can be explicitly written as

ϕt(x) =

∫
Rd

e−tP(ξ)e2πix.ξdξ.

�
We will use the notation ϕt frequently in the rest of the paper.

Corollary 3.10. The operator Pt can be consistently defined for finite mea-
sures μ

Ptμ (x) =

∫
Rd

ϕt (x − y)μ (dy) ,

and Pt acts from L1 to L1 ∩ L∞ and it is also bounded as an operator
L∞ → L∞.

We do not claim that this map is well behaved as t → 0 or as t → ∞
and in general it will not be [5].

4. The Integral Kernel acting on polynomials and its
generator

This section contains the analytic result on which our main theorem depends.
The semigroup Pt defined above naturally acts as a semigroup of integral
operators on the Schwartz functions; it also acts on polynomials; it is easy
to show that the semigroup has L as its infinitesimal generator on the space
of Schwartz functions; we need to prove that the generator on polynomials
is also L. Although it would be surprising if the result were not true it
definitely needs a proof. It seems that the minimal growth condition is close
to the natural condition on L for such a result.

One could hope to get the lemma by using the result for Schwartz func-
tions, and identifying Schwartz functions that agree with the polynomials
on large intervals. Such an approach would require tail estimates on ϕt as t
goes to zero. The authors carried out this approximation method under the
condition that the multiplier was in Gevrey class (see [26]). It might also be
proved by using the infinitiesimal generator of the semigroup on Schwartz
functions, and identifying the adjoint action. We give a direct proof. The
crucial analytic component is an integration by parts.2

2We are very grateful to Bruce Driver for suggesting the outline of the integration by
parts argument we give here –before his intervention we had no thought for this approach.
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Lemma 4.1. (Integration by parts). If u is a smooth function with the
property that

(4.1) sup
0≤|I|≤N

∫ ∣∣Di1
1 · · ·Did

d u (ξ)
∣∣ dξ < ∞

and if q is a polynomial of degree at most N then for each fixed y∫
Rd

e2πiy.ξq

(
− 1

2πi
D1, . . . ,− 1

2πi
Dd

)
u (ξ) dξ

=

∫
Rd

(
q

(
1

2πi
D1, . . . ,

1

2πi
Dd

)
e2πiy.ξ

)
u (ξ) dξ

= q (y1, . . . , yd)

∫
Rd

e2πiy.ξu (ξ) dξ.

Proof. This is a well known result. The heart of the proof is the observation
that

−
∫

Rd

Dku (ξ) e2πiy.ξdξ =

∫
Rd

u (ξ)Dke
2πiy.ξdξ =

∫
Rd

u (ξ) 2πiyke
2πiy.ξdξ.

To prove this one introduces a smooth function φ that is 1 on an open
neighbourhood of 0 and of compact support. We put φr (x) := φ (x/r) and
observe that, by applying Green’s theorem on a ball of large but finite radius,
one knows that

−
∫

Rd

(φru (ξ))Dke
2πiy.ξdξ =

∫
Rd

Dk (φru (ξ)) e2πiy.ξdξ

=

∫
Rd

φrDk (u (ξ)) e2πiy.ξdξ +

∫
Rd

u (ξ)Dk (φr) e2πiy.ξdξ.

If
∫

Rd

∣∣Dk (u (ξ))
∣∣ dξ < ∞ then the dominated convergence theorem implies

that

lim
r→∞

∫
Rd

φrDk (u (ξ)) e2πiy.ξdξ =

∫
Rd

Dk (u (ξ)) e2πiy.ξdξ

while Dkφ (x/r) = 1
r
(Dkφ) (x/r) and (Dkφ) is bounded. So again, given∫

Rd |u (ξ)| dξ < ∞, using the dominated convergence theorem we see that

lim
r→∞

∫
Rd

u (ξ)Dk (φr) e2πiy.ξdξ = 0.
�

Remark 4.2. The hypotheses (4.1) of Lemma 4.1 are satisfied by u (ξ) =
e−tP(ξ) if the polynomial P satisfies the minimal growth condition.
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Remark 4.3. It is elementary and well known that if L is a bounded linear
operator on a Banach space E, the operator e−tL defined by the series

∞∑
n=0

(−tL)n

n!

converges in operator norm in Hom (E, E) and moreover for any f ∈ E the
limit of

e−tLf − f

t
exists in E and equals −Lf .

Lemma 4.4. Suppose L is a constant coefficient differential operator whose
multiplier P (as defined in equation (2.1)) satisfies the minimal growth con-
dition 3.1. Suppose further that f (x) is a polynomial of degree at most N .

1. The differentiation operators Dk are bounded operators on polynomials
of degree at most N and hence L is a bounded operator.

2. Therefore, e−tLf is well defined, through its series, as a polynomial of
degree at most N .

3. The convergence of the series is in any norm that is finite for all
polynomials of degree at most N ; the resulting polynomial e−tLf is
independent of N greater than the degree of f or any choice of norm.

4. The convolution (ϕt ∗ f) is also well defined as an integral.

5. For each point x
(ϕt ∗ f) (x) = e−tLf (x) .

Proof. By the condition (3.1) ϕt is in Schwartz class and so integrates
polynomials. By the definition for convolution,

(ϕt ∗ f) (x) =

∫
Rd

f (x − y)ϕt(y)dy

when the right hand side makes sense. From the definition of ϕt

f (x − y)ϕt(y) = f (x − y)

∫
Rd

e2πiy.ξe−tP(ξ)dξ

and since f is a polynomial we can apply Lemma 4.1 to deduce that

f (x − y)

∫
Rd

e2πiy.ξe−tP(ξ)dξ

=

∫
Rd

e2πiy.ξf

(
x1 +

1

2πi
D1, . . . , xd +

1

2πi
Dd

)
e−tP(ξ)dξ.
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Let Gx (ξ) be the smooth function

f

(
x1 +

1

2πi
D1, . . . , xd +

1

2πi
Dd

)
e−tP(ξ) ∈ S (Rd

)
and let Ĝx denote the Fourier transform of Gx. Then Ĝx is also in Schwartz
space. From the above calculation one observes that

f (x − y)ϕt(y) =

∫
Rd

e2πiy.ξ

(
f

(
x1 +

1

2πi
D1, . . . , xd +

1

2πi
Dd

)
e−tP(ξ)

)
dξ

=

∫
Rd

e2πiy.ξGx (ξ) dξ = Ĝx (y) .

Since the inverse Fourier transform converges pointwise for functions in
S (Rd

)
one has

∫
Rd Ĝx (y) dy = Gx (0). Hence,∫

Rd

ϕt(y)f (x − y) dy = Gx (0)

= f

(
x1 +

1

2πi
D1, . . . , xd +

1

2πi
Dd

)
e−tP(ξ)

∣∣∣∣
ξ=0

.

So it is enough to prove that for any polynomial f and x = (x1, . . . , xd) one
has

f

(
x1 +

1

2πi
D1, . . . , xd +

1

2πi
Dd

)
e−tP(ξ)

∣∣∣∣
ξ=0

= e−tLf (x) .

where all expressions are interpreted naively. Since L is translation invariant,
one may change variable so that x = 0 and f is another polynomial. Because
all the expressions are linear we can treat only the monomial case. It is
enough to prove that

(
1

2πi
D1

)k1

. . .

(
1

2πi
Dd

)kd

e−tP(ξ)

∣∣∣∣∣
ξ=0

= e−tL (x1)
k1 . . . (xd)

kd

∣∣∣
x=0

.

It suffices to prove that for all r

(
1

2πi
D1

)k1

. . .

(
1

2πi
Dd

)kd

P (ξ)r

∣∣∣∣∣
ξ=0

= Lr (x1)
k1 . . . (xd)

kd

∣∣∣
x=0

.

The map L → P is an algebra map (Remark 2.5), so one sees that it is
enough to prove this identity for general L and P taking r = 1. This case
follows from Proposition 2.6. �
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Corollary 4.5. If L is a constant coefficient differential operator whose
multiplier P satisfies the minimal growth condition 3.1, Pt is the integral
operator defined in Lemma 3.9 and f is a polynomial then

lim
t→0

(Ptf − f)(x)

t
= (−Lf)(x),

and indeed the limit

lim
t→0

(Ptf − f)

t
= (−Lf)

exists in any norm that is bounded on polynomials of bounded degree.

Proof. Now, by definition, for each x, Ptf (x) = (ϕt ∗ f) (x) . By the previ-
ous lemma the function (ϕt ∗ f) is a polynomial and equals e−tLf (x). Fix
some integer N greater than the degree of f . By elementary functional
analysis, the limit

lim
t→0

e−tLf − f

t

exists in any norm on the space of polynomials of degree N that makes L a
bounded operator. For example

‖g‖ = sup
x∈Rd

|g (x)|
1 + |x|N+1

is such a norm and in particular e−tLf−f
t

converges to −Lf locally uniformly
and pointwise. �

Remark 4.6. Linear operators T , such as Pt and L, are initially defined on
scalar valued functions. However, they can be uniquely extended to (finite
dimensional) vector valued functions so that 〈e∗, Tx〉 := T 〈e∗, x〉 for every e∗

in the dual space. We do this without further remark.

Corollary 4.7. For x ∈ R
d, let gn(x) = x ⊗ · · · ⊗ x︸ ︷︷ ︸

n

∈ R
dn then

lim
t→0

(Ptgn − gn)(x)

t
= (−Lgn)(x),

for every x ∈ Rd. The convergence to the limit is locally uniform.

Proof. Fix a basis for the dual space to Rd and use the words ω of length
of n in these basis elements to be the dual E∗ of R

d ⊗ · · · ⊗ R
d︸ ︷︷ ︸

n

. The limit

lim
t→0

(Ptgn − gn)

t
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exists if and only if〈
ω, lim

t→0

(Ptgn − gn)

t

〉
= lim

t→0

Pt 〈ω, gn〉 − 〈ω, gn〉
t

exists for all ω. But 〈ω, gn〉 is a scalar polynomial of degree n and so the
second limit exists by the previous result. �

5. Measures on paths

Definition 5.1. Let D = S ≤ t0 < t1 < · · · < tn ≤ T be a partition of
the interval [S, T ]. Then μD is the unique Borel measure on

(
R

d
)n

which
satisfies, for cylinder sets C =A1 × . . . × An, Ai a Borel subset of Rd,

μD(C) =

∫
· · ·
∫

x1∈A1,...,xn∈An

ϕt1−t0 (x1)ϕt2−t1 (x2 − x1) . . .

ϕtn−tn−1 (xn − xn−1) dx1dx2 . . . dxn.

The semigroup property ensures that the measures μD are consistent
as one enlarges D etc., and V.Yu. Krylov regards the family as defining a
“finitely additive” measure P on paths:

P (Xti ∈ Ai, i ∈ [1, n]) = μD(C)

and one can consult [14] (see also Hochberg [9]) for details. However the
total variation of μD typically increases to infinity exponentially in #D as
one refines the partition. In this paper, we work directly with finite measures
derived from μD and supported on the space PL[0, T ] of all continuous
piecewise linear paths on [0, T ].

Definition 5.2. Let D = S ≤ t0 < t1 < · · · < tn ≤ T be a partition of
[S, T ] and (x0, . . . , xn) ∈ (Rd)n+1. Define πD ((x0, . . . , xn)) to be the path
γ ∈ PL[−∞,∞] defined on [tj−1, tj ] by

γt =
(tj − t)x

j−1
+ (t − tj−1)xj

tj − tj−1

, t ∈ [tj−1, tj ]

and for t in [−∞, t0] set γt = x0 and in [tn,∞], set γt = xn.

Definition 5.3. PD is the measure πD (μD).

For every D, PD is a signed measure supported on the space PL[0, T ] of
continuous piecewise linear paths.

Definition 5.4. If f is a Borel measurable function defined on PL[0, T ]
then we define ED (f) to be the integral

∫
ω∈PL[0,T ]

f (ω)PD (dω).

Note that ED (1) = 1, and PD is a finite measure. In general it is not
positive, and the total variation of PD is greater than 1.
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6. The Signature of a path

We give several auxiliary algebraic definitions which will be used later.

Definition 6.1. Let V be a vector space. Then we denote the space of formal
power series over V (where V ⊗0 is R, the field of scalars) by:

T ((V )) =

∞⊕
k=0

V ⊗k.

Then T is an associative algebra with unit.

If a = (a0, a1, a2, . . . ), b = (b0, b1, b2, . . . ), are two elements of T , where
ak, bk ∈ V ⊗k, λ ∈ R then the sum, tensor product and the action of scalars
are given by

a + b = (a0 + b0, a1 + b1, a2 + b2, . . . ),

a ⊗ b =

(
. . . ,

k∑
j=0

aj ⊗ bk−j, . . .

)
,

λa = (λa0, λa1, λa2, . . . ).

The exponential exp(a) of a tensor a is the formal power series

exp (a) =
∞∑

n=0

a⊗n

n!
.

Definition 6.2. The truncated tensor algebra T (n) is defined to be

T (n)(V ) =
n⊕

k=0

V ⊗k,

equipped with the product for a = (a0, a1, . . . an), b = (b0, b1, . . . , bn),

a⊗ b =

(
a0b0, . . . ,

n∑
j=0

aj ⊗ bn−j

)
.

We use πn to denote the natural projection of T ((V )) into T (n)(V ). πn is
an algebra homomorphism.

Recall the definition for the signature of a path.
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Definition 6.3. Let 0 ≤ s < t ≤ T . If γ is a continuous path of finite
length in a Banach space then the series

(6.1) Xs,t(γ) =

∞∑
k=0

∫
s<t1<···<tk<t

dγ(t1) ⊗ · · · ⊗ dγ(tk)

of iterated integrals is called the signature of the path γ over the interval [s, t].

Remark 6.4. In the sequel, we use X as a shorter notation for X0,1.

One of the most important properties of the signature is that it is a
homomorphism from the space of paths of finite length with concatenation
to the tensor series with the tensor product as multiplication (for the proof
see [3]). In particular,

Lemma 6.5. (Chen’s Theorem). The signature is multiplicative in the sense
that for any u ∈ [s, t]:

(6.2) Xt,u(γ) ⊗ Xu,s(γ) = Xt,s(γ).

For the proof of the above lemma see [24] or [3].

7. The main result: Theorem 7.4

We now want to consider the ED−expectation of the signature of a path.
This is a fundamental transform from measures on rectifiable paths into
elements of the tensor algebra. Under certain restrictions it has been shown
to determine the measure itself [7].

Remark 7.1. As above, let gn(x) = x ⊗ · · · ⊗ x︸ ︷︷ ︸
n

, and define

L
(
x ⊗ · · · ⊗ x︸ ︷︷ ︸)

n

∣∣∣∣∣
x=0

= (Lgn)(0).

Definition 7.2. Henceforth D = {0 ≤ t0 ≤ · · · ≤ tr ≤ 1} is a partition of
[0, 1] and

#D = max {ti+1 − ti, i = 0, . . . , r − 1} .

#D is an indicator of the refinement of the partition D.

Consider again the measures μD on paths introduced in Section 5.

Remark 7.3. It is obviously an interesting question to ask if the mea-
sures PD converge in some sense as #D → 0. We have the following positive
theorem about weak existence:
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Theorem 7.4. The limit, as we refine D, of the PD-expectation of the sig-
nature (as a function on path space) exists and can be computed explicitly in
terms of the constant coefficient differential operator L:

E(X) = lim
#D→0

ED (X) = exp

(
−

∞∑
n=0

1

n!
L
(
x ⊗ · · · ⊗ x︸ ︷︷ ︸)

n

∣∣∣∣
x=0

)
.

Example 7.5. Let L = −1
2

∑d
i=1

∂2

∂x2
i
. Then L(xi1 . . . xin)|(x1,...,xd)=0 = 0

unless n = 2 and i1 = i2. Moreover, L(xixi)|(x1,...,xd)=0 = −1. Thus, for the
case where γ is distributed like a Brownian path defined on [0, 1] we recover
the result of Fawcett [7] or Lyons-Victoir [22]:

E (X (γ)) = exp

(
−

∞∑
n=0

1

n!

d∑
i1=1,...,in=1

L(xi1 . . . xin)|(x1,...,xd)=0 ei1 ⊗ . . . ⊗ ein

)

= exp

(
− 1

2

d∑
i=1

L(x2
i )
∣∣
(x1,...,xd)=0

ei ⊗ ei

)

= exp

(
1

2

d∑
i=1

ei ⊗ ei

)
,

where ei, i = 1, . . . , d are an orthonormal basis for Rd.

Now we proceed with the proof of our main result.

Definition 7.6. Consider the ideal T0

((
R

d
))

in T
((

R
d
))

of elements

0 ⊕ R
d ⊕ (Rd ⊗ R

d
)⊕ · · · ⊕ (Rd ⊗ · · · ⊗ R

d
)⊕ · · ·

with zero constant term. For every x in T0

((
Rd
))

, the series

exp(x) = 1 + x +
x ⊗ x

2!
+ · · ·

involves only finitely many terms with a given tensor degree, therefore it
converges and so defines a map from T0

((
Rd
))

to T
((

Rd
))

. We identify Rd

with 0 ⊕ Rd ⊕ 0 ⊕ 0 ⊕ · · · ⊂ T0

((
Rd
))

and denote the restriction of exp to
this Rd by g, so that if e ∈ Rd then

g(e) = exp(e) = 1 + e +
e ⊗ e

2!
+ · · ·

Note that g is a tensor-valued function defined on Rd.
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Proof. Let D = {0 = t0 < t1 < · · · < tn = 1} be a partition of [0, 1], and
recall the definition of the measure PD (definition 5.3) and its expectation
operator ED (definition 5.4) in terms of the semigroup Pt. We extend ED to
functions that take their values in the infinite tensor series (such as (Xt,u)
and g(γt)) by integrating the terms in the series term by term to produce a
new series.

Recall from the spatial translation invariance and the semigroup prop-
erty of Pt that, for any D with u ∈ D, one has independence of (Xt,u)t<u

and (Xu,s)s>u over the measure PD. By Lemma 3.9 the kernel ϕt for Pt is
in Schwartz class. If the path γ is linear off D, then each term in its sig-
nature Xt,u is a polynomial in the values of γ (ti), ti ∈ D, so it is obvious
that ED(Xt,u) is defined. Using Lemma 6.5, we have

Xt,u ⊗ Xu,s = Xt,s.

Suppose that u ∈ D. Then the independence mentioned above ensures that

E
D
(Xt,u) ⊗ E

D
(Xu,s) = E

D
(Xt,s)

and

(7.1) E
D

(X) = E
D

(Xt0,tn) = E
D

(Xt0,t1) ⊗ · · · ⊗ E
D

(
Xtn−1,tn

)
.

Since γ is linear on the interval (ti, ti+1), i.e. γu = γti + (u − ti)e, e ∈ Rd:

Xti,ti+1
(γ) = 1 +

∞∑
k=1

∫
ti<u1<···<uk<ti+1

dγu1 ⊗ · · · ⊗ dγuk

= 1 +

∞∑
k=1

∫
ti<u1<···<uk<ti+1

e du1 ⊗ · · · ⊗ e duk

= 1 +
∞∑

k=1

e⊗k

∫
ti<u1<···<uk<ti+1

du1 . . . duk(7.2)

= 1 +
∞∑

k=1

e⊗k

k!
(ti+1 − ti)

k

= 1 +

∞∑
k=1

1

k!

(
γti+1

− γti

)⊗k
= exp

(
γti+1

− γti

)
.

Where, here and in rest of this section

(γt − γs)
⊗k := (γt − γs) ⊗ · · · ⊗ (γt − γs)︸ ︷︷ ︸

k

.

Further, by equation (7.1) and by equation (7.2),

ED (X) = ED (exp (γt1−γt0)) ED (exp (γt2−γt1)) · · ·ED

(
exp

(
γtn−γtn−1

))
.
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Let Di = {ti, ti+1} and D̃i = {0, ti+1 − ti}. Then exp
(
γti+1

− γti

)
is

σ {γt|t ∈ Di} measurable and Di ⊂ D so that

ED

(
exp

(
γti+1

− γti

))
= EDi

(
exp

(
γti+1

− γti

))
and translation-invariance leads one to

EDi

(
exp

(
γti+1

− γti

))
= E{0,τ} (exp (γτ − γ0)) , τ = ti+1 − ti,

= E{0,τ} (exp (γτ ) |γ0 = 0)

= Pτ (g (x)) (0)

=

∞∑
k=1

1

k!
Pτ (x

⊗k)(0),

where {0, τ} is the trivial partition of [0, τ ] and, by our previous remarks,
the sum

∑∞
k=1

1
k!

Pτ (x
⊗k)(0) is well defined as a tensor series. Now, for

k = 0, . . . , n − 1, define τk = tk+1 − tk; then
∑n−1

k=0 τk = 1. Then, using
the multiplicative property, we have

ED (X) =

n−1∏
k=0

Pτk
(g (x)) (0).

Let us consider the truncation E
(N)
D (X) of ED (X) etc. Recall that Pτ pre-

serves tensor degree (and also the space of polynomials). Then, working in
T (N)

(
Rd
)
, obtained from T

((
Rd
))

by quotienting out the ideal of tensors
of tensor degree strictly greater than N , one has

E
(N)
D (X) =

n−1∏
k=0

Pτk

(
g(N)

)
(0).

We recall from Lemma 4.4 that for any x0 and the polynomial gn(x) =
x ⊗ · · · ⊗ x︸ ︷︷ ︸

n

one has

lim
t→0

(Ptgn − gn)(x0)

t
= (−Lgn)(x0).

Since T (N)
(
Rd
)

is a finite dimensional algebra and L is a bounded linear

operator on T (N)
(
Rd
)

so the exponential function is well defined and the
following identity

lim
t→0

(
(exp (−tL) − I)

t
gn

)
(x0) = (−Lgn)(x0)
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is routine. Both of these identities extend to linear combinations of the gn

(such as g(N)); x0 can be set to 0. We may choose a norm ‖·‖T (N)(Rd) making

it a Banach algebra. Taking the difference and setting

h (t) =
∥∥Pt

(
g(N)

)
(0) − (exp (−tL) g(N)

)
(0)
∥∥

T (N)(Rd)

it follows that h (t) /t → 0 as t → 0. Because the space of polynomials
of degree at most N is finite dimensional the linear map v → Lv, defined
on T (N)

(
Rd
)
, must be bounded. Let its norm be KN . Similarly, Pt is a

linear semigroup on the finite dimensional space T (N)
(
Rd
)

and so, by routine

analysis
∥∥Pt

(
g(N)

)
(0)
∥∥ ≤ etK̃N‖g(N)‖ for some K̃ and in particular we have

for any m that∥∥∥∥ m∏
k=0

Pτk

(
g(N)

)
(0)

∥∥∥∥
T (N)(Rd)

≤ e
K̃N

∥∥∥g(N)
∥∥∥

T (N)(Rd)

∑m
k=0 τk

.

Similarly we have for any m that∥∥∥∥ n−1∏
k=m+1

exp
(−τkLg(N)

)
(0)

∥∥∥∥
T (N)(Rd)

≤ e
KN

∥∥∥g(N)
∥∥∥

T (N)(Rd)

∑n−1
k=m+1 τk

and so, using the identity

N∏
i=1

Ai −
N∏

i=1

Bi =
N∑

r=1

(( r−1∏
i=1

Ai

)
(Ar − Br)

( N∏
i=r+1

Bi

))

it follows that the difference∥∥∥∥∥
n−1∏
k=0

exp
(−τkLg(N)

)
(0) −

n−1∏
k=0

Pτk

(
g(N)

)
(0)

∥∥∥∥∥
T (N)(Rd)

≤ emax{KN ,K̃N}‖g(N)‖
n−1∑
k=0

∥∥Pτk

(
g(N)

)
(0) − exp

(−τkLg(N)
)
(0)
∥∥

T (N)(Rd)

≤ emax{KN ,K̃N}‖g(N)‖
n−1∑
k=0

h (τk)

≤ emax{KN ,K̃N}‖g(N)‖
n−1∑
k=0

h (τk)

τk
τk

≤
(

max
k=0...n−1

h (τk)

τk

)
emax{KN ,K̃N}‖g(N)‖

and h(τk)
τk

→ 0 since the max τk → 0.
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Finally, let τk → 0, k = 0 . . . n − 1

lim
#D→0

E
(N)
D (X) = lim

max
k=0...n−1

τk→0

n−1∏
k=0

Pτk

(
g

(N)
)

(0)

= lim
max

k=0...n−1
τk→0

n−1∏
k=0

exp
(−τkLg(N)

)
(0)

= exp

(
−

n−1∑
k=0

τkLg
(N)

(0)

)
= exp

(
− Lg

(N)

(e)
∣∣∣
e=0

)
.

Since Lg
(N)

(e)
∣∣
e=0

is eventually constant as N → ∞ and at that point
agrees with Lg (e)|e=0 the proof of Theorem 7.4 is finished. �

Remark 7.7. The identity (6.2) holds for any t < u < s and hence if we
denote by f(t, u) = E(Xt,u), and exploit time-invariance, it yields

f(t − u)f(u − s) = f(t − s).

Solving this functional equation, E(Xt,u) = e(t−u)α. So,

α =
d

du
|u=0E(X0,u).

8. Open questions

1. We have explained in Section 5 that the semigroup e−tL defines a
measure πD on piecewise linear paths partitioned at the times D. The
signature is a map defined on all rough paths and we can ask about
the existence of limits. We have observed that, in general, the total
variation norm of πD explodes with #D → 0. However, we have also
established that there are many test functions (coordinate iterated
integrals) φ for which

lim
#D→0

∫
φ (γ) πD (dγ)

exists. So it seems that a sort of distributional limit of the πD does
indeed exist. Now all these test functions are defined on the full space
of rough paths, and also ignore the parameterisation of the path γ.
So perhaps, it could happen that the measures πD do converge to a
finite signed measure on rough paths when one considers the filtration
that ignores parameterisation. The paper of Hambly and Lyons [8]
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proves in a precise way that two paths of finite variation with the same
coordinate iterated integrals are in fact tree-like re-parameterisations
of one another. It seems reasonable, although it is still open, that this
extends to p-rough paths for every p > 1. Even though we know all the
moments of this “measure”, at the time of writing, it does not seem
straightforward to determine the existence or otherwise of a measure
with these moments!

2. It is possible to ask for less than we do in 1. We can consider the push
forwards S (πD) of the measures πD into the tensor sequences T

((
Rd
))

and into the truncated tensor algebra T (n)
((

R
d
))

. For each D this

measure π
(n)
D is a well defined finite signed measure on T (n)

((
Rd
))

.

We have proved for every n that every moment of π
(n)
D has a limit and

this limit is explicit. Does a finite measure μn on T (n)
((

Rd
))

exist
with these moments, and in this case does its total variation norm
remain bounded as n → ∞. Optimistically

lim
n→∞

μn = μ ∈ Meas
(
T
((

R
d
)))

and, for each L there a p > 1 s.t.|μ| (S (p-rough paths)c) = 0.

3. Suppose that V i are vector fields, and IV is the Itô Map taking paths
in R

d to somewhere else via

dy = V i (y)dγ, y0 = a

then we can define an operator

vD (a) := ED (f (yT ))

and ask if it converges for smooth enough f and if the resulting function
v solved the non-constant coefficient PDE (see [22]).

4. It would be interesting if one could use the knowledge of the expec-
tation of the signature to extend the Kusuoka-Lyons-Victoir approach
to give numerical and analytic approximations to the solutions of non-
constant coefficient PDEs.
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