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Gradings on the Albert
algebra and on f4

Cristina Draper Fontanals and Cándido Mart́ın González

Abstract

We study group gradings on the Albert algebra and on the excep-
tional simple Lie algebra f4 over algebraically closed fields of charac-
teristic zero. The immediate precedent of this work is [13] where we
described (up to equivalence) all the gradings on the exceptional sim-
ple Lie algebra g2. In the cases of the Albert algebra and f4, we look
for the nontoral gradings finding that there are only eight nontoral
nonequivalent gradings on the Albert algebra (three of them being
fine) and nine on f4 (also three of them fine).

1. Introduction

The interest on gradings on simple Lie and Jordan algebras has been re-
markable in the last years. The gradings of finite dimensional simple Lie
algebras, ruling out al, d4 and the exceptional cases, are described in [7].
The gradings on simple Jordan algebras of type Hn(F ) and Hn(Q) are given
in the same reference, for an algebraically closed field F of characteristic zero
and a quaternion algebra Q. In that work, the authors use their previous re-
sults in [9] about gradings of associative algebras Mn(F ). In [6] all gradings
on the simple Jordan algebras of Clifford type have been described. The
fine gradings on al have been determined in [21] solving the related problem
of finding maximal abelian groups of diagonalizable automorphisms of the
algebras (not only in GL(n,C) but also in O(n,C) for n �= 8 and SP(2n,C)).
General notions about Lie gradings are considered in [37], and the real case is
treated in [22]. Notice that all the mentioned works make use of techniques
related to the associative case. The first studies of gradings on exceptional
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Lie algebras are [13] and [8], which describe the group gradings on g2. To
continue the study of exceptional Lie and Jordan algebras, we tackle in this
paper the task of describing nontoral group gradings on f4 and on the Albert
algebra. The notion of group grading is closely related to that of commuting
set of semisimple automorphisms (or equivalently abelian subgroup of semi-
simple automorphisms) of the algebra. But F4, the automorphism group
of the Albert algebra J , is isomorphic to the automorphism group of the
Lie algebra f4 = Der(J). So automorphism information can be transferred
from one to the other context. That is the reason to study both algebras
jointly.

We have ruled out the study of toral gradings on f4 (and then on J) be-
cause of the overwhelming proliferation of nonequivalent cases, and the fact
that, their determination (though tedious) follows from mechanical coars-
enings of the Cartan grading. On the contrary, the nontoral gradings on a
simple Lie algebra are not compatible with the root system. So they could
lead us to new ways of looking at the algebra. This is specially true in
the case of fine gradings, a fact that explains the activity around this sub-
ject (see, for instance, [23] or [35]). In other papers of Lie gradings ([36]),
the aim is to study the Lie gradings without the restriction of a grading
group, but we have preferred not to adopt this approach because of [16].
It is still an open question the existence of a grading group on any finite
dimensional graded simple Lie algebra over an algebraically closed field of
characteristic zero.

The techniques used to search the gradings have been of very different
nature. It could be said that this is a multidisciplinary field nowadays. There
is a first tool, very intuitive, which is the usage of models of the algebra.
Although it provides most of the existing gradings (actually all of them),
this fact is not easy to prove without a more powerful tool. This is why
we exploit the benefit of working inside the normalizer of a maximal torus
of the automorphism group. This turns out to be quite technical and less
intuitive (some computer aided arguments have been essential). However
this approach allows to confirm with full precision all the hypothesis about
how many nontoral gradings appear, the relation among them and other
aspects.

A summary of the contents of the work follows in the next paragraphs.

Section 2 presents some preliminaries, and compiles basic facts on grad-
ings and related topics. In Subsection 2.1 we introduce some terminology of
algebraic groups needed for our approach. In 2.2 we devote some attention
to recall the most known model of the Albert algebra, J = H3(C) for a
Cayley algebra C, described in [39]. Each model of a given algebra has its
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own advantages (and drawbacks) to present particular gradings, thus in 2.4
Tits construction of the Albert algebra is also recalled. In 2.3 we consider
the notion of toral grading. In the Lie algebras case, a grading is toral when
its homogeneous components are sum of root spaces. In general a grading
is toral if it is produced by a set of automorphisms contained in a torus of
the automorphism group. At this point we fix a maximal torus of F4, and
characterize the torality of a grading in different terms.

In Section 3 we start inducing gradings on J from gradings on the related
Cayley algebra C such that J = H3(C). This arises from the well-known
possibility of extending automorphisms of C to elements in F4 (G2 ⊂ F4).
It turns out that the unique (up to equivalence) nontoral grading of g2

induces a nontoral grading on f4 (a Z3
2-grading). Thus we are led to the

birth of our first nontoral grading on J . This grading will induce a numerous
family of gradings whose relatives come from a mixing process described in
Subsection 3.3. Previously, we consider all the gradings of the subalgebra
H3(F ), where F stands for the ground field. But automorphisms of H3(F )
can also be nicely extended to automorphisms of J . And curiously all of
these commute with automorphisms of J coming from C. Thus by crossing
the nontoral Z3

2-grading on J coming from C with all the gradings detected
in H3(F ) we obtain a family of six nontoral gradings on J described in 3.3.
But, as it is pointed out at the end of such subsection, one of these six
nontoral gradings admits a proper nontoral coarsening. Thus we are led to
a set of seven nonequivalent nontoral gradings on J .

Unfortunately we are not done with this set of gradings. To detect the
remaining nontoral gradings on J we need to invoke some other model of J
different from the usual H3(C). But at this point, Tits construction comes
in our help to provide a Z3

3-grading with comes from the natural embedding
of automorphisms of the algebra M3(F ) into F4. The origin of this Z3

3-
grading is a known nontoral Z2

3-grading of M3(F ) which can be lifted and
finally refined to the nontoral Z3

3-grading on J . In this way we get a set of
eight pairwise nonequivalent nontoral gradings. Furthermore, any nontoral
grading is equivalent to some of these. This is one of our main results
presented at the end of Section 3 (though the proof will have to be postponed
to the final sections of the work).

In Section 4 we focus on f4. How can we present a concrete grading on
a Lie algebra? One of the ways in which a grading on an algebra can be
given is to provide the set of automorphisms inducing the grading. Specially
because the automorphisms can be given in terms of toral elements and the
Weyl group. This happens because of the relevant fact that the quasitorus
inducing the grading is always contained in the normalizer of a maximal
torus. Consequently, our first task is to fix a particular representation of
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its Weyl group W and provide a set of representatives of conjugacy classes
in W. Next we present in Subsection 4.1 a maximal torus of F4 := aut(f4)
nicely related to the maximal torus previously presented in F4 := aut(J).
Also the action of W on the maximal torus is described.

Section 5 is intended to provide the main results on quasitori which will
allow the classification of fine and nontoral gradings. We introduce a family
of quasitori A(j, t) ⊂ F4 and immediately proceed with the study of those
which are nontoral. Theorem 4 describes the maximal quasitori of F4 up
to conjugacy which in particular yields the classification of fine gradings
on f4 up to equivalence (Corollary 4). Finally in Subsection 5.2 we get
a more detailed classification up to conjugacy of nontoral quasitori of F4.
This result contained in Theorem 5 might be of independent interest. As
a byproduct, we get an exhaustive set of representatives of 9 equivalence
classes of nontoral gradings on f4.

In Section 6 we revisit the gradings on the Albert algebra to provide a
proof that, up to equivalence, the nontoral gradings on this algebra are the
eight ones given in Theorem 3.

Having given the quasitori which induce all the nontoral gradings on f4 we
look more closely at the fine gradings in Section 7. There, we describe those
gradings in a twofold way. First we give the homogeneous components of
each grading in a previously fixed basis of the algebra. This description de-
pends on computational methods (simultaneous diagonalization algorithms).
In spite of their computational nature, these descriptions may be interesting
for applications in which explicit calculations are needed. The second de-
scription procedure for the gradings is the exhibition of models, which make
the grading appear in a natural setting with no appeal to a particular basis.
For instance, the fine Z3

3-grading on f4 comes from a Z3
3-grading in e6 which

can be described in a very convenient way by using the known model based
in the Z3-grading

e6 = sl(X1) ⊕ sl(X2) ⊕ sl(X3) ⊕ X1 ⊗X2 ⊗X3 ⊕ X∗
1 ⊗X∗

2 ⊗X∗
3

with zero homogeneous component three copies of the algebra of type a2

[1, p. 85]. The fine Z5
2-grading may be seen directly in f4 = Der(J) but

there is also an easy way to see it in the Tits unified construction for the
exceptional Lie algebras (see, for instance, [39, p. 122]). The same applies
to the Z3

2 × Z-fine grading. Finally, in 7.4 we justify why this philosophy
can be valid for describing most of the gradings on a simple Lie algebra.
To illustrate how this works, we describe the Z2

2 × Z4 and Z2
2 × Z8-nontoral

gradings on f4, and also the Z3
2 × Z8-fine grading equivalent to the Z3

2 × Z-
one, by using the model of f4 described in [12], which is based in an initial
Z4-grading.
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2. Preliminary definitions and results

2.1. Group gradings

Our aim is the study of group gradings on certain nonassociative algebras
over fields. If V is such an algebra and G is an abelian group, we shall say
that the decomposition

V =
⊕
g∈G

Vg

is a G-grading whenever for all g, h ∈ G, VgVh ⊂ Vgh.

In this work we shall use some notions borrowed from the theory of
algebraic groups. Since we only need linear algebraic groups, all concepts
must be understood in that context. Notice that the group of automorphisms
of the algebra V is an algebraic linear group. The ground field F will be
supposed to be algebraically closed and of characteristic zero throughout this
work. There is a deep relationship between gradings on V and quasitori of
the group of automorphisms aut(V ), according to [34, §3, p. 104]. Following
this reference, a commutative algebraic group whose identity component
is an algebraic torus is called an algebraic quasitorus. An algebraic linear
group is a quasitorus if and only if there is a basis relative to which the
elements of the quasitorus are simultaneously diagonalizable. If S is a finitely
generated abelian group, then its group of characters X(S) = hom(S, F×) is
a quasitorus and reciprocally, the group of characters of a quasitorus turns
out to be a finitely generated abelian group.

If V = ⊕g∈GVg is a G-grading, the map ψ : X(G) → aut(V ) mapping each
α ∈ X(G) to the automorphism ψα : V → V given by Vg � x �→ ψα(x) :=
α(g)x is a group homomorphism. In particular ψ(X(G)) is a quasitorus. And
conversely, if Q is a quasitorus and ψ : Q → aut(V ) is a homomorphism,
ψ(Q) is formed by semisimple automorphisms ([26, p. 99]) and we have a
X(Q)-grading V = ⊕g∈X(Q)Vg given by

Vg =
{
x ∈ V | ψ(q)(x) = g(q)x ∀q ∈ Q

}
.

When we speak in this paper about a G-grading V = ⊕g∈GVg, we
mean that G is generated by the set {g ∈ G | Vg �= 0}, called the
support of the grading and denoted by Supp(G). In terms of algebraic
groups, this is equivalent to the fact that the homomorphism ψ : Q →
aut(V ) is injective. Let us see it. If G is generated by the support and
ψ(q0) = idV for some q0 ∈ Q, x = ψ(q0)x = g(q0)x for any x ∈ Vg,
so g(q0) = 1 for any g in the support. But since G is generated by the
support, we have g(q0) = 1 for any g ∈ G and this implies q0 = 1.
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Reciprocally if ψ is a monomorphism, the
subgroup S of G generated by the support is
S = X(Q′) for some quasitori Q′. The inclusion
i : S → G induces by duality an epimorphism
π : Q → Q′. The grading induced by S comes
from a homomorphism ψ′ : Q′ → aut(V ) mak-
ing commutative the diagram on the right. Since ψ is a monomorphism,
so is π. Hence π is an isomorphism and by duality the same can be said
about i. Thus S = G.

We say that two gradings V = ⊕g∈GXg = ⊕g′∈G′Yg′ are isomorphic if
there is f ∈ aut(V ) and α : G→ G′ a group isomorphism such that f(Xg) =
Yα(g) for any g ∈ G. So, if ψ : X(G) → aut(V ) and ψ′ : X(G′) → aut(V ) are
the corresponding homomorphisms, and we take α∗ : X(G′) → X(G), α∗(β) =
βα, and Ad(f) : aut(V ) → aut(V ) given by Ad(f)(ρ) = fρf−1, the previous
condition is equivalent to the commutativity Ad(f) ψ′ = ψα∗.

We say that two gradings V = ⊕g∈GXg = ⊕g′∈G′Yg′ are equivalent if
the sets of homogeneous subspaces are the same up to isomorphism, that is,
there are an automorphism f ∈ aut(V ) and a bijection between the supports
α : Supp(G) → Supp(G′) such that f(Xg) = Yα(g) for any g ∈ Supp(G). Our
objective is to classify gradings up to equivalence. A convenient invariant
for equivalence is that of type. Suppose we have a grading on a finite dimen-
sional algebra, then for each positive integer i we will denote (following [24])
by hi the number of homogeneous components of dimension i. In this case we
shall say that the grading is of type (h1, h2, . . . , hl), for l the greatest index
such that hl �= 0. Of course the number

∑
i ihi agrees with the dimension

of the algebra.

Another key notion is that of a coarsening of a given grading. Thus
consider an F -algebra V , a G-grading V = ⊕g∈GXg and an H-grading V =
⊕h∈HYh. We shall say that the H-grading is a coarsening of the G-grading
if and only if each nonzero homogeneous component Yh with h ∈ H is a
direct sum of some homogeneous components Xg. In this case we shall
also say that the G-grading is a refinement of the H-grading. Notice that
there is not a relationship between G and H , but if ψ : X(G) → aut(V ) and
ψ′ : X(H) → aut(V ) are the homomorphisms producing the above gradings,
any automorphism in ψ′(X(H)) acts as a scalar multiple of the identity in Xg

and hence, all of them commute with ψ(X(G)).

The concept of universal grading group is fundamental to obtain the
coarsenings of a given grading. Though this notion is given in the context
of simple Lie algebras in [13, Section 2.2], it can be translated to more
general settings. Consider as before a nonassociative F -algebra V , but with
a grading V = ⊕i∈IVi which is not supposed to be a group grading, that is,
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each Vi is nonzero and for any i, j ∈ I there is k ∈ I such that ViVj ⊂ Vk.
Define the group GI := Z(I)/M where Z(I) is the free Z-module generated
by I and M the Z-submodule generated by the elements i+ j− k such that
0 �= ViVj ⊂ Vk. We shall denote by x̄ the equivalence class of x ∈ Z(I)
in the quotient GI . We get a GI-grading on V given by V = ⊕ī∈GI

V ′̄
i

where V ′̄
i =

∑
j̄=ī Vj. In general this new grading is not equivalent to the

original one. For instance we could have GI = 0, in which case the new
grading is the trivial one. But if the original grading of V is equivalent
to an abelian group grading, then it is easily proved that the canonical
map I → GI given by i �→ ī is injective and the new grading is equivalent
to the original one. Moreover any coarsening of this grading comes from
a group epimorphism as in [13, Proposition 2(2), p. 90]. More precisely,
if V = ⊕g∈GXg is a G-grading and V = ⊕h∈HYh is a coarsening, then
if G is the universal grading group, there is an epimorphism p : G → H
such that Yh = ⊕p(g)=hXg. It is this universal property which suggests the
term universal when applied to GI . Getting back to our context, (abelian)
group gradings, we can characterize the universal grading group in terms
of linear algebraic groups. If ψ : Q → aut(V ) is a grading with G = X(Q),
then G is the universal grading group if and only if for any coarsening
ψ′ : Q′ → aut(V ), there is a monomorphism i : Q′ → Q such that ψ′ = ψi.
This is easily proved applying duality to the above universal property of G.
From another viewpoint, G is the universal group of a grading if and only
if X(G) is a maximal element in the set of quasitori of aut(V ) producing
exactly the same grading.

A group grading is fine if its unique refinement is the given grading. If G
is the universal group of a grading ψ : X(G) → aut(V ), the grading is fine if
and only if ψ(X(G)) is a maximal abelian subgroup of semisimple elements,
which is usually called a MAD (“maximal abelian diagonalizable”) in papers
about fine gradings, like [20]. Besides, each MAD Q ⊂ aut(V ) produces
a X(Q)-fine grading on V such that X(Q) is the universal group of this
grading. The converse is true in the sense just mentioned but notice that
there are fine G-gradings such that ψ(X(G)) is not a MAD, for instance
the Z3

2 ×Z8-grading on f4 described in 7.4 or the Z-grading on g2 described
in [13, Theorem 2,(4)]. In particular from the above, the number of fine
gradings on V up to equivalence is the same than the number of MAD’s of
aut(V ) up to conjugation (and less than the number of fine gradings up to
isomorphism, in general).

Other notations which will be used along this paper are the following.
For a linear algebraic group G and a subset S ⊂ G, the centralizer of S
in G will be denoted by CG(S). Analogously, by NG(S) we shall mean the
normalizer of S in G.
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2.2. About the Albert algebra and f4

Consider the Cayley F -algebra C, which under our hypothesis on the ground
field must be isomorphic to Zorn’s vector matrix algebra. Take the standard
involution x �→ x̄, the norm n : C → F given by n(x) := xx̄ and the trace
tr : C → F defined as tr(x) := x+ x̄. Recall that the polar form of n is the
symmetric bilinear form bn : C ×C → F such that bn(x, y) := 1

2

(
n(x+ y)−

n(x) − n(y)
)
. The Albert algebra

J = H3(C) = {x = (xij) ∈M3(C) | xij = xji}

is the exceptional reduced Jordan algebra, that is, the set of matrices of the
form

(2.1)

⎛⎝α1 o3 o2

o3 α2 o1

o2 o1 α3

⎞⎠
where αi ∈ F and oi ∈ C (i = 1, 2, 3). Since our base field is of characteristic
zero, we can shelter on the linear theory of Jordan algebras and the product
in J may be defined as x ·y := 1

2
(xy+yx), where juxtaposition stands for the

usual matrix product. This simple Jordan algebra is exceptional in the sense
that it is not a subalgebra of the symmetrization of any associative algebra.
It will be convenient to introduce some notations for further reference. Thus
the element in J obtained in (2.1) for αi = 1 and αj = ok = 0 for j �= i and
any k will be denoted by Ei, so that 1 :=

∑3
1Ei is the unit of J . And for

any a ∈ C we define by a(i) the element in J obtained making oi = a and
oj = αk = 0 for j �= i and any k, in (2.1). The multiplication table of the
commutative algebra J may be summarized in the following relations:

E2
i = Ei, Ei · a(i) = 0, a(i) · b(i) = bn(a, b)(Ej + Ek),

Ei · Ej = 0, Ei · a(j) = 1
2
a(j), a(i) · b(j) = 1

2
(b̄ā)(k),

where (i, j, k) is any cyclic permutation of (1, 2, 3) and a, b ∈ C. Following
Schafer ([39, (4.41), p. 109]), any x ∈ J satisfies a cubic equation x3 −
Tr(x)x2 + Q(x)x − N(x)1 = 0 where Tr(x),Q(x),N(x) ∈ F . Moreover, the
inversibility of x (in Jordan context) is equivalent to the fact that N(x) �= 0.

For further reference we fix first (e1, e2, u1, u2, u3, v1, v2, v3) the standard
basis of the Cayley algebra C, defined for instance in [13, Section 3], given
by the relations

e1uj = uj = uje2,
e2vj = vj = vje1,

uiuj = vk = −ujui,
−vivj = uk = vjvi,

uivi = e1,
viui = e2,

where e1 and e2 are orthogonal idempotents, again (i, j, k) is any cyclic
permutation of (1, 2, 3), and the remaining relations are null. Thus we can fix
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our standard basis of the Albert algebra:

B = (E1, E2, E3, e
(3)
1 , e

(3)
2 , u

(3)
1 , u

(3)
2 , u

(3)
3 , v

(3)
1 , v

(3)
2 , v

(3)
3 , e

(2)
2 , e

(2)
1 ,−u(2)

1 ,−u(2)
2 ,

−u(2)
3 ,−v(2)

1 ,−v(2)
2 ,−v(2)

3 , e
(1)
1 , e

(1)
2 , u

(1)
1 , u

(1)
2 , u

(1)
3 , v

(1)
1 , v

(1)
2 , v

(1)
3 ).

Let us define now the group F4 := aut(J) and its Lie algebra f4 = Der(J).
Recall (see for instance [27, p. 285]) that the automorphism group F4 and the
automorphism group F4 := aut(f4) are isomorphic via the map Ad: F4 → F4

such that Ad(f)d := fdf−1 for any f ∈ F4 and d ∈ f4. This isomorphism
of algebraic groups provides a tool for translating gradings from the Albert
algebra to f4 and conversely. However, unfortunately this translating tool
does not preserve equivalence. This phenomenon is similar to the one ex-
plained in [13, Section 4] in the similar context produced by the analogue
group isomorphism Ad: G2 = aut(C) → aut(g2) = aut(Der(C)).

2.3. Maximal torus of F4

Let us fix certain maximal torus of F4. We use the standard basis of J
above defined. Define now the maximal torus T0 of F4 whose elements are
the automorphisms of J which are diagonal relative to B. This is isomorphic
to (F×)4 and it is easy to see that the matrix of any such automorphism
relative to B is

diag
(
1, 1, 1, α,

1

α
, β, γ,

δ2

αβ γ
,
1

β
,
1

γ
,
α β γ

δ2
, δ,

1

δ
,
α β

δ
,
α γ

δ
,
δ

β γ
,
δ

α β
,
δ

α γ
,
β γ

δ
,

δ

α
,
α

δ
,
β

δ
,
γ

δ
,

δ

α β γ
,
δ

β
,
δ

γ
,
α β γ

δ

)
(2.2)

for some α, β, γ, δ ∈ F×. Define now tα,β,γ,δ as the automorphism in T0

whose matrix relative to B is just the above one.
Consider a grading of an algebra A given by a group homomorphism

ρ : X(G) → aut(A). This grading is said to be toral if ρ(X(G)) is contained
in some torus of the algebraic group aut(A).

Notice that by means of the above isomorphism Ad: F4 → F4, a grading
on J is toral if and only if it is applied to a toral grading on f4. This does not
imply that the number of nontoral gradings (up to equivalence) on J and
on f4 is necessarily the same, because the mechanism of translating gradings
does not preserve equivalence.

An useful characterization of the torality of a grading on J is the follow-
ing:

Proposition 1. A grading on the Albert algebra J is toral if and only if the
elements of the standard basis of J (or any conjugated basis) are homoge-
neous.
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Proof. Consider a toral grading induced by automorphisms {ti}i∈I all of
them contained in the previous maximal torus T0 of J (which supposes no
restriction because any other maximal tori is conjugated to T0). Then ob-
viously the simultaneous diagonalization of J relative to the family {ti}i∈I

provides the original grading and the elements in the standard basis are
homogeneous. Conversely, if this holds, then any element in this basis is
an eigenvector of any of the grading automorphisms. Thus these automor-
phisms are in the maximal torus specified before and the grading is toral. �

In particular, the proof of this proposition implies that if a grading on J
is toral, then there are three orthogonal idempotents contained in the zero
component (because up to conjugacy, {E1, E2, E3} is contained in such com-
ponent). Another way of checking the torality is to look at the rank of the
zero part of the induced grading on f4, it will be toral in case this rank is 4
(see [13, Subsection 2.4]).

By using this set of idempotents, we can give more information about
the general form of any semisimple automorphism of J , because they are
the building blocks of the grading sets. First notice that there is a group
monomorphism D4 → F4. Indeed, if

U ∈ O(C, n) = {g ∈ GL(C) | bn(x, y) = bn(g(x), g(y)) ∀x, y ∈ C},

there are U ′, U ′′ ∈ O(C, n) such that U(xy) = U ′(x)U ′′(y) for any x, y ∈ C.
This is called global triality principle in [11, Th. 3, p. 90]. Let ΨU : J → J
given by

(2.3) ΨU(Ei)=Ei, ΨU(x(i)) = (fi(x))
(i) for f1(x) = U(x̄), f2 = U ′, f3 = U ′′.

It is easy to check that ΨU is an automorphism of J fixing each idempotent.
Conversely, if ψ is an automorphism of J fixing each idempotent, there exists
U ∈ O(C, n) such that ψ = ΨU . Moreover, any semisimple automorphism
in F4 is toral, since F4 is a connected group, so that up to conjugacy it is
contained in T0, fixes each Ei and is of the form ΨU for some U ∈ O(C, n).

Besides, there are two outstanding automorphisms which deserve some
consideration. The first one θ : J → J applies Ei �→ Ei+1 and x(i) �→ x(i+1)

cyclically. The second one ϑ : J → J is given by

E1 ↔ E2, E3 �→ E3, x(1) ↔ x̄(2), x(3) �→ x̄(3).

These automorphisms fix the set {E1, E2, E3} and are of order three and
two respectively. Our previous argument shows that any semisimple element
in F4 fixing the set {E1, E2, E3} is a composition of one automorphism in
{id, θ, θ2, ϑ, ϑθ, ϑθ2} with one in {ΨU | U ∈ O(C, n)}.
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2.4. Tits construction of the Albert algebras

There is another way in which the Albert algebra can be constructed. Let us
start with the F -algebra A = M3(F ) and denote by TrA,QA,NA : A→ F the
coefficients of the generic minimal polynomial such that

x3 − TrA(x)x2 + QA(x)x− NA(x)1 = 0 for all x ∈ A.

Recall that if x = (xij) ∈ A then TrA(x) =
∑3

1 xii,

QA(x) = −x12x21 + x11x22 − x13x31 − x23x32 + x11x33 + x22x33,

and NA(x) = det(x). Define also the quadratic map 
 : A→ A given by

x� := x2 − TrA(x)x+QA(x)1.

For any x, y ∈ A denote

x× y := (x+ y)� − x� − y�,

and

x∗ :=
1

2
x× 1 =

1

2
TrA(x)1 − 1

2
x.

Finally consider the Jordan algebra A+ whose underlying vector space agrees
with that of A but whose product is x · y = 1

2
(xy + yx). Next, define in

A3 := A× A× A the product

(a1, b1, c1)(a2, b2, c2) :=(
a1·a2 + (b1c2)

∗+(b2c1)
∗, a∗1b2 + a∗2b1+

1

2
(c1 × c2), c2a

∗
1 + c1a

∗
2 +

1

2
(b1 × b2)

)
.

Then A3 with this product is isomorphic to J = H3(C). This is the so called
Tits construction of the Albert algebra. This allows us to identify J with
the algebra A3 in the rest of this section. For further reference we shall recall
that the norm N (module the identification of J with the Tits construction)
is given by

(2.4) N(a, b, c) = NA(a) + NA(b) + NA(c) − TrA(abc)

for any a, b, c ∈ A (see [30, p. 525]).

One of the relevant facts on Tits construction from our viewpoint is
that it allows to embed aut(A) in F4 via the map aut(A) → F4 given by
f �→ f • where f • : J → J is the automorphism such that f •(x, y, z) :=
(f(x), f(y), f(z)). As a further consequence we will be able to get gradings
on J coming from gradings in the associative algebra A via this monomor-
phism of algebraic groups.
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3. Inducing gradings on the Albert algebra

Some remarkable subalgebras of J = H3(C) induce gradings on J by means
of a particular embedding of its automorphism group in F4. For instance, the
automorphism group of H3(F ) can be considered as a subgroup of F4 pro-
viding thus a source of gradings on J : those whose grading automorphisms
come from automorphisms of H3(F ). More generally, if V is an algebra such
that aut(V ) is a subgroup of F4, then any grading in V will also induce a
grading on J . We shall see that this happens for instance for the octonion
F -algebra. It turns out that this idea for inducing gradings on J provides a
great number of the gradings existing on J .

3.1. Gradings from octonions

Let C be the Cayley algebra. We consider as in the previous section the
standard basis of C. We shall also need the maximal torus of G2 := aut(C)
given by the automorphisms tα,β whose matrix relative to the standard ba-
sis is

diag(1, 1, α, β, (αβ)−1, α−1, β−1, αβ).

It has been first proved in [15], and then in [13, Subsection 3.3], that up
to equivalence the unique nontoral grading on C is the Z3

2-grading whose
order-two grading automorphisms are {t1,−1, t−1,1, f0} where f0 is the auto-
morphism whose matrix relative to the standard basis is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The construction J = H3(C) of the Albert algebra is particularly interesting
for extending derivations and automorphisms from C to J . More precisely
if f ∈ aut(C) is an automorphism of C then we can construct the auto-
morphism f̂ of J fixing the idempotents Ei and such that f̂(o(i)) := f(o)(i)

for i = 1, 2, 3 and any o ∈ C. This provides a monomorphism of algebraic
groups i : G2 → F4 such that f �→ f̂ . By differentiating at 1 we get a
monomorphism of Lie algebras di(1) : Der(C) = g2 → Der(J) = f4 mapping
each derivation d ∈ Der(C) to the derivation d̂ ∈ Der(J) annihilating the
idempotents and making d̂(o(i)) = d(o)(i), for i = 1, 2, 3. This, of course,
has an immediate application to gradings: any grading on C induces a
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grading on J . Indeed, a G-grading on C comes from an algebraic group
homomorphism ρ : X(G) → aut(C), therefore iρ : X(G) → aut(J) provides a
G-grading on the Albert algebra. This device gives a first source of gradings
on J , namely, all those coming from gradings on C. Since i maps tori of
aut(C) to tori of aut(J), toral gradings on C induce toral gradings on J .
The unique nontoral grading on C up to equivalence provides a Z3

2-grading

on J induced by the automorphisms {t̂1,−1, t̂−1,1, f̂0} whose homogeneous
spaces are

J1,1,1 = 〈E1, E2, E3, 1
(3), 1(2), 1(1)〉,

J1,1,−1 = 〈(−e1 + e2)
(3), (−e1 + e2)

(2), (−e1 + e2)
(1)〉,

J1,−1,1 = 〈(u2 + v2)
(3), (u2 + v2)

(2), (u2 + v2)
(1)〉,

J−1,1,1 = 〈(u1 + v1)
(3), (u1 + v1)

(2), (u1 + v1)
(1)〉,

J1,−1,−1 = 〈(−u2 + v2)
(3), (−u2 + v2)

(2), (−u2 + v2)
(1)〉,

J−1,1,−1 = 〈(−u1 + v1)
(3), (−u1 + v1)

(2), (−u1 + v1)
(1)〉,

J−1,−1,1 = 〈(−u3 + v3)
(3), (−u3 + v3)

(2), (−u3 + v3)
(1)〉,

J−1,−1,−1 = 〈(u3 + v3)
(3), (u3 + v3)

(2), (u3 + v3)
(1)〉.(3.1)

For this grading we have hi = 0 except h3 = 7, h6 = 1. Thus the grading
is of type (0, 0, 7, 0, 0, 1). It is easy to prove that the subalgebra of f4 whose

elements are those d ∈ f4 such that [d, t̂1,−1] = [d, t̂−1,1] = [d, f̂0] = 0 is three-
dimensional. Thus, the grading on f4 induced by{Ad(t̂1,−1),Ad(t̂−1,1),Ad(f̂0)}
is nontoral since its zero homogeneous component has dimension 3, hence its
rank is less than 4 = rank(f4). We summarize the results in this subsection
in the following:

Proposition 2. The unique nontoral grading on J coming from a grading
on C is the above grading (3.1) up to equivalence.

3.2. Gradings on H3(F )

It is known from [28, p. 184-185] that any automorphism of H3(F ) is of the
form In(p) : x �→ pxp−1 where p can be taken in the group SO(3) := SO(3, F )
consisting of those 3× 3 matrices x with entries in F such that xxt = 1 and
det(x) = 1 (the notation xt meaning the transpose of the matrix x). Thus we
have an algebraic group isomorphism In : SO(3) → aut(H3(F )) =: G. Now
consider the algebra M3(C) with the usual matrix product. This contains,
as a subalgebra, M3(F ) and for any x, y, z ∈ M3(C) we have (xy)z = x(yz)
if any of x, y, z belongs to M3(F ). Since H3(F ) is a (Jordan) subalgebra of
J = H3(C), for any p ∈ SO(3) the map In(p) : J → J such that x �→ pxp−1

(products in M3(C)) is an automorphism of J . Thus we have an algebraic
group monomorphism In : SO(3) → F4 and thus a monomorphism SO(3) ∼=
G→ F4 = aut(J) so that we can extend automorphisms from H3(F ) to J
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(in fact this monomorphism maps In(p) seen as an element in G to In(p) as
element in F4). So we have constructed a tool for translating gradings from
H3(F ) to J . This suggests the convenience of describing group gradings on
H3(F ). The work [7] contains an exhaustive and deep description of gradings
on some simple Jordan and Lie algebras, in particular the gradings onHn(F )
could be obtained along the line of this work. But in our particular setting it
is worth to find this description by using elementary algebraic group theory.
This will provide a comfortable landscape for testing geometric tools and
will provide a more self contained exposition.

It is well known that a maximal torus P of SO(3) is given by the matrices
of the form

pα,β :=

⎛⎝1 0 0
0 α β
0 −β α

⎞⎠
with α, β ∈ F such that α2 + β2 = 1. Then denote by τα,β := In(pα,β) the
corresponding element in G = aut(H3(F )). The set of all τα,β is a maximal
torus T of G and the set of eigenvalues of τα,β is Sα,β = {1, z, z−1, z2, z−2}
for z := α + iβ (where i2 = −1). Assuming |Sα,β| = 5, we find for τα,β the
following eigenspaces

(3.2)
H3(F )1 = 〈E1, E2 + E3〉, H3(F )z = 〈−i(3) + 1(2)〉,
H3(F )z−1 = 〈i(3) + 1(2)〉, H3(F )z2 = 〈−iE2 + iE3 + 1(1)〉,
H3(F )z−2 = 〈iE2 − iE3 + 1(1)〉,

where the subindex indicates the eigenvalue of τα,β . This gives a Z-grading
of H3(F ), with n-th component H3(F )zn. This is toral and fine (as it is
produced by the whole torus T ). Any other toral grading of H3(F ) is a
coarsening of this.

For |Sα,β| < 5 we have the following excluding possibilities:

• 1 = z which gives the trivial grading.

• 1 = z2 which excluding the previous case implies z = −1. This is
the Z2-grading induced by the involutive automorphism τ−1,0 and it is
given by

H3(F )1 = 〈E1, E2, E3, 1
(1)〉, H3(F )−1 = 〈1(2), 1(3)〉.(3.3)

• z = z−2 implying z3 = 1. Ruling out previous cases, this induces a
Z3-grading coming for instance from τ−1/2,

√
3/2. The grading is

H3(F )1 = 〈E1, E2 + E3〉,
H3(F )z = 〈1(2) − i(3), iE2 − iE3 + 1(1)〉,
H3(F )z2 = 〈1(2) + i(3),−iE2 + iE3 + 1(1)〉.(3.4)
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• z2 = z−2 implying z4 = 1. This gives a Z4 -grading coming from τ0,1.
The grading is

(3.5)
H3(F )1 = 〈E1, E2 + E3〉, H3(F )z = 〈−i(3) + 1(2)〉,
H3(F )z−1 = 〈i(3) + 1(2)〉, H3(F )z2 = 〈E2 −E3, 1

(1)〉.

The gradings in (3.2)-(3.5) are therefore the unique cyclic (hence nec-
essarily toral, see Appendix) gradings. To find the rest of the gradings on
H3(F ) we compute the centralizers of the grading automorphisms produc-
ing the previous gradings. The computations of the various centralizers are
easy taking advantage of the isomorphism SO(3) → G. For any τα,β with
|Sα,β| = 5 we have CG(τα,β) = T (for this, we only need to prove that the cen-
tralizer of pα,β in SO(3) is the maximal torus P ), so that the grading (3.2) is
fine, as mentioned. The centralizer of τ−1,0 has two connected components:
the identity component is the maximal torus T and CG(τ−1,0)/T ∼= Z2.
Working in SO(3), the identity component of the centralizer of p−1,0 is the
torus P while its other component is sP where s = −E1 + 1(1). Taking any
τ ∈ T , the grading induced by {τ−1,0, τ} is some of (3.2)-(3.5). But if we
consider the grading {τ−1,0, In(s)}, we get the Z2 × Z2-grading given by

H1,1 = 〈E1, E2 + E3, 1
(1)〉, H1,−1 = 〈1(2) − 1(3)〉,

H−1,1 = 〈E2 −E3〉, H−1,−1 = 〈1(2) + 1(3)〉,

which is isomorphic to:

(3.6)
H1,1 = 〈E1, E2, E3〉, H1,−1 = 〈1(1)〉,
H−1,1 = 〈1(2)〉, H−1,−1 = 〈1(3)〉.

On the other hand CG(〈τ−1,0, In(s)〉) = CG(τ−1,0), which implies that (3.6) is
fine (and nontoral taking into account [13, Theorem 1]). The grading (3.4) is
produced by t−1/2,

√
3/2 whose centralizer is T . The grading (3.5) is produced

by τ0,1 whose centralizer is again T .
Summarizing all the above results we claim:

Theorem 1. Any nontrivial grading on H3(F ) is equivalent to one of the
gradings (3.2)–(3.6) above.

The gradings induced on the Albert algebra by the monomorphism from
aut(H3(F )) to F4 are all of them toral, but these automorphisms of J coming
from H3(F ) commute with the automorphisms coming from C, a fact which
will provide larger abelian sets of semisimple automorphisms and hence a
source of nontoral gradings on J .
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3.3. A family of nontoral gradings on the Albert algebra

We now construct a machinery for building gradings on the Albert algebra
J = H3(C) by mixing gradings on C with those on H3(F ). We must start
with the simple observation that J = H3(C) ∼= H3(F ) ⊗ F ⊕ K3(F ) ⊗ C0

(tensor product of F -spaces) where K3(F ) is the subspace of 3×3 skewsym-
metric matrices with entries in F and C0 := {x ∈ C | tr(x) = 0} the
subspace of trace zero elements in C. The above isomorphism is given by
Ei �→ Ei ⊗ 1, 1(i) �→ 1(i) ⊗ 1 and for x ∈ C0, x

(i) �→ (ejk − ekj) ⊗ x, being
(i, j, k) any cyclic permutation of (1, 2, 3) and eij the elementary (i, j)-matrix
in M3(F ). Taking in J ′ = H3(F )⊗ F ⊕K3(F )⊗C0, which is a subspace of
M3(F )⊗C, the product (c⊗x) · (d⊗ y) = 1

2
((c⊗x)(d⊗ y)+ (d⊗ y)(c⊗x))

for (c⊗ x)(d ⊗ y) = cd ⊗ xy, J ′ is a Jordan subalgebra of M3(F ) ⊗ C such
that the previous vector space isomorphism between J and J ′ is an algebra
isomorphism. Module this identification of J with J ′, the embedding of G2

in F4 described in Subsection 3.1 can be seen in the following way. Given
f ∈ G2, take f̂ the restriction of id ⊗ f ∈ GL(M3(F ) ⊗ C) to J ′, which is
an automorphism of J ′ (notice that C0 is f -invariant for any f ∈ G2). On
the other hand given any automorphism g of H3(F ), g is the restriction to
H3(F ) of an automorphism g of M3(F ) commuting with the transposition
involution. Hence g(K3(F )) ⊂ K3(F ) and we can define g̃ as the restriction
of g ⊗ id ∈ GL(M3(F ) ⊗ C) to J ′, which is an automorphism of J ′. A triv-
ial though remarkable fact is the commutativity f̂ g̃ = g̃f̂ for any f ∈ G2,
g ∈ aut(H3(F )). Thus we have:

Theorem 2. Let {f1, . . . , fk} ⊂ G2 and {g1, . . . , gn} ⊂ aut(H3(F )) be com-

muting sets of diagonalizable automorphisms. Then {f̂1, . . . , f̂k, g̃1, . . . , g̃n}⊂
F4 is a commuting set of diagonalizable automorphisms of J . In particular
if C is graded by a group G1 and H3(F ) is graded by a second group G2,
then the Albert algebra J is G1 ×G2-graded.

It is always the case that the grading induced by {f̂1, . . . , f̂k, g̃1, . . . , g̃n}
is a refinement of the one given by {f̂1, . . . , f̂k}. Besides if one of the grad-

ings {f̂1, . . . , f̂k} or {g̃1, . . . , g̃n} is nontoral, the refinement is also nontoral.
These results allow us to combine gradings on C with gradings on H3(F ).
Thus, if we pick the (unique up to equivalence) nontoral grading on C
given by {t1,−1, t−1,1, f0} and any of the gradings (3.2)-(3.6) plus the trivial
grading, which are given respectively by: {τα,β} (with |Sαβ| = 5), {τ−1,0},
{τ−1/2,

√
3/2}, {τ0,1}, {τ−1,0, In(s)} and {1}, we get six nontoral gradings on J

which are given in the next result.
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Corollary 1. The following six nonequivalent gradings on the Albert algebra
are nontoral:

a) {t̂1,−1, t̂−1,1, f̂0, τ̃α,β} with |Sα,β| = 5. This is a Z3
2 × Z-grading.

b) {t̂1,−1, t̂−1,1, f̂0, τ̃−1,0}. This is a Z4
2-grading.

c) {t̂1,−1, t̂−1,1, f̂0, τ̃− 1
2
,
√

3
2

}. This is a Z3
2 × Z3-grading.

d) {t̂1,−1, t̂−1,1, f̂0, τ̃0,1}. This is a Z3
2 × Z4-grading.

e) {t̂1,−1, t̂−1,1, f̂0, τ̃−1,0, Ĩn(s)}. This is a Z5
2-grading.

f) {t̂1,−1, t̂−1,1, f̂0}. This is a Z3
2-grading.

We now describe explicitly the six previous gradings.

a) If ε = ±1 then the grading is

J0000 = 〈E1, E2 + E3〉, J000ε = 〈−i ε(3) + 1(2)〉,(3.7)
J001ε = 〈iε(e1 − e2)(3) + (e1 − e2)(2)〉, J0010 = 〈(−e1 + e2)(1)〉,

J010ε = 〈−iε(u2 + v2)(3) − (u2 + v2)(2)〉, J0100 = 〈(u2 + v2)(1)〉,
J100ε = 〈−iε(u1 + v1)(3) − (u1 + v1)(2)〉, J1000 = 〈(u1 + v1)(1)〉,

J011ε = 〈iε(u2 − v2)(3) + (u2 − v2)(2)〉, J0110 = 〈(u2 − v2)(1)〉,
J110ε = 〈iε(u3 − v3)(3) + (u3 − v3)(2)〉, J1100 = 〈(u3 − v3)(1)〉,
J101ε = 〈iε(u1 − v1)(3) + (u1 − v1)(2)〉, J1010 = 〈(u1 − v1)(1)〉,

J111ε = 〈−iε(u3 + v3)(3) − (u3 + v3)(2)〉, J1110 = 〈(u3 + v3)(1)〉,
J0002 = 〈−i(E2 − E3) + 1(1)〉, J000−2 = 〈−i(E2 − E3) − 1(1)〉.

This grading is a Z3
2 × Z-grading of type (25, 1).

b) This is the Z4
2-grading

J0000 = 〈E1, E2, E3, 1(1)〉, J0001 = 〈1(3), 1(2)〉,(3.8)
J0010 = 〈(e1 − e2)(1)〉, J0100 = 〈(u2 + v2)(1)〉,
J1000 = 〈(u1 + v1)(1)〉, J1100 = 〈(u3 − v3)(1)〉,
J1010 = 〈(u1 − v1)(1)〉, J1001 = 〈(u1 + v1)(3), (u1 + v1)(2)〉,

J0110 = 〈(−u2 + v2)(1)〉, J0101 = 〈(u2 + v2)(3), (u2 + v2)(2)〉,
J0011 = 〈(e1 − e2)(3), (e1 − e2)(2)〉, J1110 = 〈(u3 + v3)(1)〉,
J1101 = 〈(u3 − v3)(3), (u3 − v3)(2)〉, J1011 = 〈(u1 − v1)(3), (u1 − v1)(2)〉,

J0111 = 〈(u2 − v2)(3), (−u2 + v2)(2)〉, J1111 = 〈(u3 + v3)(3), (u3 + v3)(2)〉,

which is of type (7, 8, 0, 1).
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c) This is the Z3
2 × Z3-grading given by

J0000 = 〈E1, E2 + E3〉, J1000 = 〈(u1 + v1)(1)〉,(3.9)
J0100 = 〈(u2 + v2)(1)〉, J0010 = 〈(e1 − e2)(1)〉,
J0110 = 〈(u2 − v2)(1)〉, J1010 = 〈(u1 − v1)(1)〉,
J1100 = 〈(u3 − v3)(1)〉, J1110 = 〈(u3 + v3)(1)〉,

J0001 = 〈−i1(3) + 1(2), iE2 − iE3 + 1(1)〉, J1001 = 〈i(u1 + v1)(3) + (u1 + v1)(2)〉,
J0101 = 〈i(u2 + v2)(3) + (u2 + v2)(2)〉, J0011 = 〈i(e1 − e2)(3) + (e1 − e2)(2)〉,
J0111 = 〈i(u2 − v2)(3) + (u2 − v2)(2)〉, J1011 = 〈i(u1 − v1)(3) + (u1 − v1)(2)〉,
J1101 = 〈i(u3 − v3)(3) + (u3 − v3)(2)〉, J1111 = 〈i(u3 + v3)(3) + (u3 + v3)(2)〉,

J0002 = 〈i1(3) + 1(2), iE2 − iE3 − 1(1)〉, J1002 = 〈i(u1 + v1)(3) − (u1 + v1)(2)〉,
J0102 = 〈i(u2 + v2)(3) − (u2 + v2)(2)〉, J0012 = 〈−i(e1 − e2)(3) + (e1 − e2)(2)〉,
J0112 = 〈i(u2 − v2)(3) − (u2 − v2)(2)〉, J1012 = 〈−i(u1 − v1)(3) + (u1 − v1)(2)〉,
J1102 = 〈i(u3 − v3)(3) − (u3 − v3)(2)〉, J1112 = 〈i(u3 + v3)(3) − (u3 + v3)(2)〉,

which is of type (21, 3).

d) This is the Z3
2 × Z4-grading

J0000 = 〈E1, E2 + E3〉, J1000 = 〈(u1 + v1)(1)〉,(3.10)
J0100 = 〈(u2 + v2)(1)〉, J0010 = 〈(e1 − e2)(1)〉,
J0110 = 〈(u2 − v2)(1)〉, J1010 = 〈(u1 − v1)(1)〉,
J1100 = 〈(u3 − v3)(1)〉, J1110 = 〈(u3 + v3)(1)〉,

J0001 = 〈−i1(3) + 1(2)〉, J1001 = 〈i(u1 + v1)(3) + (u1 + v1)(2)〉,
J0101 = 〈i(u2 + v2)(3) + (u2 + v2)(2)〉, J0011 = 〈i(e1 − e2)(3) + (e1 − e2)(2)〉,
J0111 = 〈i(u2 − v2)(3) + (u2 − v2)(2)〉, J1011 = 〈i(u1 − v1)(3) + (u1 − v1)(2)〉,
J1101 = 〈i(u3 − v3)(3) + (u3 − v3)(2)〉, J1111 = 〈i(u3 + v3)(3) + (u3 + v3)(2)〉,

J0002 = 〈E3 − E2, 1(1)〉, J0003 = 〈i1(3) + 1(2)〉,
J1003 = 〈i(u1 + v1)(3) − (u1 + v1)(2)〉, J0103 = 〈i(u2 + v2)(3) − (u2 + v2)(2)〉,

J0013 = 〈−i(e1 − e2)(3) + (e1 − e2)(2)〉, J0113 = 〈−i(u2 − v2)(3) + (u2 − v2)(2)〉,
J1013 = 〈−i(u1 − v1)(3) + (u1 − v1)(2)〉, J1103 = 〈−i(u3 − v3)(3) + (u3 − v3)(2)〉,

J1113 = 〈i(u3 + v3)(3) − (u3 + v3)(2)〉,

which is of type (23, 2).

e) This is the Z5
2-grading given by

J00000 = 〈E1, E2 + E3, 1(1)〉, J00010 = 〈−1(3) + 1(2)〉,(3.11)
J00001 = 〈E3 − E2〉, J10010 = 〈(u1 + v1)(3) + (u1 + v1)(2)〉,

J10001 = 〈(u1 + v1)(1)〉, J01010 = 〈(u2 + v2)(3) + (u2 + v2)(2)〉,
J01001 = 〈(u2 + v2)(1)〉, J00110 = 〈(e1 − e2)(3) + (e1 − e2)(2)〉,
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J00101 = 〈(−e1 + e2)(1)〉, J00011 = 〈1(3) + 1(2)〉,
J00111 = 〈(e2 − e1)(3) + (e1 − e2)(2)〉, J01011 = 〈(u2 + v2)(3) − (u2 + v2)(2)〉,

J01101 = 〈(u2 − v2)(1)〉, J01110 = 〈(u2 − v2)(3) + (u2 − v2)(2)〉,
J01111 = 〈(−u2 + v2)(3) + (u2 − v2)(2)〉, J10011 = 〈(u1 + v1)(3) − (u1 + v1)(2)〉,

J10101 = 〈(u1 − v1)(1)〉, J10110 = 〈(u1 − v1)(3) + (u1 − v1)(2)〉,
J10111 = 〈(−u1 + v1)(3) + (u1 − v1)(2)〉, J11001 = 〈(u3 − v3)(1)〉,

J11010 = 〈(u3 − v3)(3) + (u3 − v3)(2)〉, J11011 = 〈(−u3 + v3)(3) + (u3 − v3)(2)〉,
J11101 = 〈(u3 + v3)(1)〉, J11110 = 〈(−u3 − v3)(3) − (u3 + v3)(2)〉,

J11111 = 〈(u3 + v3)(3) − (u3 + v3)(2)〉,

which is of type (24, 0, 1).

f) This is the Z3
2-grading (3.1), which is nontoral of type (0, 0, 7, 0, 0, 1),

as mentioned in Proposition 2.

Before finishing this subsection we would like to exhibit another (non-
toral) grading obtained as a coarsening of the one in case d) above. Thus
consider the grading on the Albert algebra induced by the automorphisms
{t̂1,−1, t̂−1,1, f̂0τ̃0,1}. This is the Z2

2 × Z4-grading whose homogeneous com-
ponents are:

J000 = 〈E1, E2 + E3〉, J001 = 〈ie(3)1 − e
(2)
1 , ie

(3)
2 − e

(2)
2 〉,(3.12)

J002 = 〈e(1)1 , E3 − E2, e
(1)
2 〉, J003 = 〈ie(3)1 + e

(2)
1 , ie

(3)
2 + e

(2)
2 〉,

J010 = 〈(u2 + v2)
(1)〉, J012 = 〈(u2 − v2)

(1)〉,
J011 = 〈iv(3)

2 + u
(2)
2 , iu

(3)
2 + v

(2)
2 〉, J013 = 〈iu(3)

2 − v
(2)
2 , iv

(3)
2 − u

(2)
2 〉,

J100 = 〈(u1 + v1)
(1)〉, J102 = 〈(u1 − v1)

(1)〉,
J101 = 〈iv(3)

1 + u
(2)
1 , iu

(3)
1 + v

(2)
1 〉, J103 = 〈iu(3)

1 − v
(2)
1 , iv

(3)
1 − u

(2)
1 〉,

J110 = 〈(u3 − v3)
(1)〉, J112 = 〈(u3 + v3)

(1)〉,
J111 = 〈iu(3)

3 − v
(2)
3 , iv

(3)
3 − u

(2)
3 〉, J113 = 〈iv(3)

3 + u
(2)
3 , iu

(3)
3 + v

(2)
3 〉,

which is of type (6, 9, 1). Note that it is nontoral too because toral gradings
have at least three division orthogonal idempotents in its zero component.

3.4. Gradings from M3(F )

Up to the moment we have detected seven equivalence classes of nontoral
gradings on J , all of them coming from the refinements of the nontoral
grading on C by gradings on H3(F ). In order to find new nontoral gradings
on the Albert algebra we need to look at J from another point of view, that
is, we can use a different model of J which provides a new perspective. For
instance, Tits construction of J recalled in Subsection 2.4.
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Thus let us consider again the associative algebra A := M3(F ) and the
monomorphism ι : aut(A) → F4 such that f �→ f • as described in 2.4.
If {fi} is a finite commutative family of semisimple automorphisms of A,
the same is true for the family {f •

i }. Hence, for a G-grading on A given
by a group homomorphism ρ : X(G) → aut(A) we immediately can define
the grading on J given by ιρ : X(G) → F4. Consider now the Z2

3-grading
on A produced by the commuting automorphisms f := In(p) and g := In(q)
where p = diag(1, ω, ω2) being ω a primitive cubic root of the unit and

q =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ .

These automorphisms of A are semisimple of order 3. The group they gener-
ate, 〈f, g〉, is usually called Pauli group. The simultaneous diagonalization
of A relative to {f, g} yields A = ⊕2

i,j=0Aij for

A00 = 〈1A〉, A01 =〈ω2e11 − ωe22 + e33〉, A02 =〈−ωe11 + ω2e22 + e33〉,
A10 =〈e13 + e21 + e32〉, A11 =〈ω2e13 − ωe21 + e32〉, A12 =〈−ωe13 + ω2e21 + e32〉,
A20 =〈e12 + e23 + e31〉, A21 =〈ω2e12 − ωe23 + e31〉, A22 =〈−ωe12 + ω2e23 + e31〉,

where again eij denotes the elementary (i, j)-matrix in M3(F ). Thus we
have a Z2

3-nontoral grading on A (since any maximal torus of A fixes a
frame of idempotents and so any toral grading has a zero component of
dimension at least 3). Next we can consider the grading induced on J
by {f •, g•}. If we make a simultaneous diagonalization of J relative to
these automorphisms we get the Z2

3-grading J = ⊕2
i,j=0A

3
i,j, which has 9

summands of dimension 3 each one. This Z2
3-grading on J is obviously toral

according to Lemma 2 in the Appendix. Let us consider a third semisimple
automorphism φ of order 3 in the centralizer of {f •, g•}. This will allow us to
refine the previous Z2

3-grading on J to a Z3
3-grading. So consider φ ∈ aut(J)

given by φ(a0, a1, a2) = (a0, ωa1, ω
2a2) where ω is as before a primitive cubic

root of the unit. It is clear that {f •, g•, φ} is a commutative set of semisimple
automorphisms of J . Making again a simultaneous diagonalization of J
relative to {f •, g•, φ} we get J = ⊕2

i,j,k=0Ji,j,k with

Ji,j,0 = Aij × 0 × 0,
Ji,j,1 = 0 × Aij × 0,
Ji,j,2 = 0 × 0 ×Aij ,

so that we have 27 one-dimensional homogeneous components. In particu-
lar this Z3

3-grading on J is fine and nontoral (otherwise J0,0,0 would contain
three orthogonal idempotents, by Proposition 1). Consequently, the sub-
group 〈f •, g•, φ〉 of F4 is maximal among the abelian subgroups of F4 whose
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elements are semisimple (MAD). Observe also that the generators of the sub-
spaces Aij of A are invertible elements in A, hence taking into account (2.4),
the generators of the homogeneous components Ji,j,k are also invertible in J .
Thus we have found a basis of invertible homogeneous elements in the Albert
algebra.

Since we are describing gradings on the Albert algebra in the usual stan-
dard basis and this last Z3

3-grading has been given in a different one, we are
now giving the mentioned grading relative to some standard basis. We take,
for instance, the grading:

J000 = 〈E1 + E2 + E3〉, J001 = 〈ωE1 + ω2E2 + E3〉,
J002 = 〈ω2E1 + ωE2 + E3〉, J010 = 〈u(3)

3 + e
(2)
1 + v

(1)
3 〉,

J011 = 〈ω2u
(3)
3 + ωe

(2)
1 + v

(1)
3 〉, J012 = 〈ωu(3)

3 + ω2e
(2)
1 + v

(1)
3 〉,

J020 = 〈v(3)
3 − e

(2)
2 + u

(1)
3 〉, J021 = 〈ω2v

(3)
3 − ωe

(2)
2 + u

(1)
3 〉,

J022 = 〈ωv(3)
3 − ω2e

(2)
2 + u

(1)
3 〉, J100 = 〈−v(3)

2 − u
(2)
2 + e

(1)
1 〉,

J101 = 〈−ω2v
(3)
2 − ωu

(2)
2 + e

(1)
1 〉, J102 = 〈−ωv(3)

2 − ω2u
(2)
2 + e

(1)
1 〉,

J110 = 〈e(3)2 − u
(2)
1 + v

(2)
1 〉, J111 = 〈ω2e

(3)
2 − ωu

(2)
1 + v

(1)
1 〉,

J112 = 〈ωe(3)2 − ω2u
(2)
1 + v

(1)
1 〉, J120 = 〈v(3)

1 + v
(2)
3 + v

(1)
2 〉,

J121 = 〈ω2v
(3)
1 + ωv

(2)
3 + v

(1)
2 〉, J122 = 〈ωv(3)

1 + ω2v
(2)
3 + v

(1)
2 〉,

J200 = 〈u(3)
2 + v

(2)
2 + e

(1)
2 〉, J201 = 〈ω2u

(3)
2 + ωv

(2)
2 + e

(1)
2 〉,

J202 = 〈ωu(3)
2 + ω2v

(2)
2 + e

(1)
2 〉, J210 = 〈u(3)

1 + u
(2)
3 + u

(1)
2 〉,

J211 = 〈ω2u
(3)
1 + ωu

(2)
3 + u

(1)
2 〉, J212 = 〈ωu(3)

1 + ω2u
(2)
3 + u

(1)
2 〉,

J220 = 〈−e(3)1 − v
(2)
1 + u

(1)
1 〉, J221 = 〈−ω2e

(3)
1 − ωv

(2)
1 + u

(1)
1 〉,

J222 = 〈−ωe(3)1 − ω2v
(2)
1 + u

(1)
1 〉.(3.13)

It is produced by the set of commuting diagonalizable automorphisms

{tω2,ω2,ω2,1, tω2,ω,1,ω2, ϕ},

where ϕ = θ ◦ ΨU for U ∈ O(C, n) is given by the matrix relative to the
standard basis of C ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
−1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
following the notations in 2.3. This Z3

3-grading is fine and nontoral, since all
the homogeneous components are one-dimensional. Following [19, (7.4)
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THEOREM, p. 278] for odd prime p there is a unique conjugacy class of
elementary abelian nontoral p-subgroup. This is obtained for p = 3 and it is
isomorphic to Z3

3 (see also [19, TABLE II, p. 258]). Therefore the previous
Z3

3-gradings on the Albert algebra are isomorphic.
In Section 6 we shall be able to give another description of this grading

in terms of the Weyl group of F4. Besides, the uniqueness of the Z3
3-grading

will also be a consequence.

Once we have described the previous gradings on the Albert algebra, we
can announce the first of our main results:

Theorem 3. Up to equivalence, the only nontoral gradings on the Albert
algebra are those described in (3.7), (3.8), (3.9), (3.10), (3.11), (3.1), (3.12)
and (3.13).

The nontoral fine gradings on J are the ones described in (3.7), (3.11)
and (3.13).

In fact, there are four fine gradings, taking into account that the Cartan
decomposition is a toral and fine grading on f4 which induces a toral and fine
grading on J . The proof of the above theorem will have to be postponed to
a forthcoming section.

4. Weyl group of f4

In the next sections we shall use the Weyl group as an important tool for our
purposes. First of all we must invoke a version of the Borel-Serre theorem
(Theorem 6) asserting that a supersolvable subgroup of semisimple elements
in an algebraic group is contained in the normalizer of some maximal torus.
In particular, this can be applied to finitely generated abelian groups. The
point of this is that most of our arguments can be carried out within the
normalizer of a maximal torus, hence the relevance of the Weyl group, which
in our context is isomorphic to the quotient of the normalizer of any maximal
torus by the torus itself.

In order to describe the abstract Weyl group of f4, we must begin by
fixing a basis ∆ = {αi | i = 1, . . . , 4} of a root system of f4. Its Dynkin
diagram is

◦ ◦ ◦> ◦
α4α2 α3α1

and its Cartan matrix is

(4.1)

⎛⎜⎜⎝
2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

⎞⎟⎟⎠ .
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Take the euclidean space E =
∑4

i=1 Rαi with the inner product ( , )
described for instance in [25, Section 8]. The Weyl group of f4 is the sub-
group W of GL(E) generated by the (simple) reflections si with i = 1, 2, 3, 4,
given by

si(x) := x− 〈x, αi〉αi, where 〈x, y〉 :=
2(x, y)

(y, y)
.

Note that the inner product is invariant under the action of the Weyl group.
Identifying GL(E) to GL(4,R) by means of the matrices relative to the
R-basis ∆, the reflections si are represented by

s1 =

⎛⎜⎜⎝
−1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , s2 =

⎛⎜⎜⎝
1 1 0 0
0 −1 0 0
0 1 1 0
0 0 0 1

⎞⎟⎟⎠ ,

s3 =

⎛⎜⎜⎝
1 0 0 0
0 1 2 0
0 0 −1 0
0 0 1 1

⎞⎟⎟⎠ , s4 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 −1

⎞⎟⎟⎠ ,

since the Cartan integers 〈αi, αj〉 are just the entries of the Cartan matrix.

We shall consider W ⊂ GL(4,R) ordered lexicographically, that is, first
for any two different couples (i, j), (k, l) such that i, j, k, l ∈ {1, 2, 3, 4} we
define (i, j) < (k, l) if and only if either i < k or i = k and j < l, and
second, for any two different matrices σ = (σij), σ

′ = (σ′
ij) in W, σ < σ′

if and only if σij < σ′
ij where (i, j) is the least element (with the previous

order in the couples) such that σij �= σ′
ij . One possible way to compute the

Weyl group with this particular enumeration is provided by the following
code implemented with Mathematica:

W=Table[si,{i,4}];
a[L ,x ]:=Union[L,

Table[L[[i]].x,{i,Length[L]}],
Table[x.L[[i]],{i,Length[L]}]]

Do[W=a[W,si],{i,4}] (6 times repeated)

We get a list of 1152 = 2732 elements in the table W which is nothing
but the Weyl group W of f4. We are denoting by σi the i-th element of W
lexicographically ordered. The following result comes from a straightforward
computation which may be done with any matrix multiplication software.
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Proposition 3. The 1152 elements of the Weyl group W of f4 are distributed
in 25 orbits (=conjugacy classes) according to the following table

order no. of elements no. of orbits representatives
1 1 1 σ748 = 1
2 139 7 σ28, σ42, σ55, σ103,

σ105, σ142, σ405

3 80 3 σ7, σ15, σ114

4 228 5 σ1, σ3, σ56,
σ104, σ110

6 464 7 σ4, σ8, σ9, σ14,
σ30, σ78, σ106

8 144 1 σ2

12 96 1 σ10

1152 25

The column in the left gives the order of every element in the correspond-
ing orbit. We shall denote by I the set of indices of representatives in the
right column:

1, 2, 3, 4, 7, 8, 9, 10, 14, 15, 28, 30, 42, 55, 56, 78, 103, 104, 105, 106,(4.2)

110, 114, 142, 405, 748.

For more information about the different orbits and representatives in terms
of simple reflections, see the final paragraphs in the Appendix.

4.1. The maximal torus of aut(f4)

If h is a Cartan subalgebra of L = f4, consider L = h ⊕ (⊕α∈h∗Lα) the
decomposition in root spaces relative to h, that is, Lα = {x ∈ L | [h, x] =
α(h)x∀h ∈ h} if α ∈ h∗, Φ = {α ∈ h∗ | Lα �= 0} the root system, and take a
basis ∆ = {α1, α2, α3, α4} of the root system. Identifying the roots to their
coordinates relative to the basis ∆, the 24 positive roots of Φ+ are:

(4.3)

(0, 0, 0, 1), (0, 1, 1, 1), (1, 2, 2, 1),
(0, 0, 1, 0), (0, 1, 2, 0), (1, 1, 2, 2),
(0, 1, 0, 0), (1, 1, 1, 1), (1, 2, 3, 1),
(1, 0, 0, 0), (0, 1, 2, 1), (1, 2, 2, 2),
(0, 0, 1, 1), (1, 1, 2, 0), (1, 2, 3, 2),
(0, 1, 1, 0), (1, 1, 2, 1), (1, 2, 4, 2),
(1, 1, 0, 0), (0, 1, 2, 2), (1, 3, 4, 2),
(1, 1, 1, 0), (1, 2, 2, 0), (2, 3, 4, 2).
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As usual, the nondegeneracy of the Killing form k allows to identify h to h∗,
calling tα the unique element in h satisfying α(h) = k(tα, h) for all h ∈ h, as
in [25, p. 37] (in this way the above mentioned inner product ( , ) in E is
(α, β) = k(tα, tβ)).

Any automorphism fixing pointwise h preserves the root spaces. The
set of all such automorphisms is a maximal torus of aut(L); more precisely,
given x, y, z, u ∈ F× there is a unique automorphism Ψ such that

Ψ|h = id, Ψ|Lα1
= x id, Ψ|Lα2

= y id, Ψ|Lα3
= z id, Ψ|Lα4

= u id

(particular case of the isomorphism theorem in [25, p. 75]). Obviously, if
α = n1α1 + n2α2 + n3α3 + n4α4, then Ψ|Lα = xn1yn2zn3un4id. Denote by
Ψxyzu the above automorphism Ψ, and by Th the maximal torus {Ψxyzu |
x, y, z, u ∈ F×} (Th depends only on h, and Ψxyzu depends on h and ∆).

On the other hand, we have got a concrete maximal torus of F4, since we
have got an algebraic group isomorphism Ad: F4 → F4 and we have already
introduced the maximal torus T0 of F4 (see (2.2)). Thus we get a maximal
torus T := Ad(T0) in F4, whose generic element is t′xyzu := Ad(txyzu). Let
us take as h the Cartan subalgebra of the elements fixed by T. Since T is
contained in Th, they necessarily coincide.

Let us choose a comfortable basis of f4 for which we know the matrix
representation of t′xyzu relative to it. Let ωi (i ∈ {1, . . . , 27}) be the i-th
element in B, the standard basis on J that we chose in Subsection 2.2.
Recall that txyzu(ωi) = ηiωi where ηi(= ηi(x, y, z, u)) is the i-th entry of the
vector

(
1, 1, 1, x,

1

x
, y, z,

u2

xyz
,
1

y
,
1

z
,
xyz

u2
, u,

1

u
,
xy

u
,
xz

u
,

u

yz
,
u

xy
,
u

xz
,
yz

u
,
u

x
,
x

u
,
y

u
,
z

u
,
u

xyz
,
u

y
,
u

z
,
xyz

u

)
.

For any v ∈ J define the map Rv : J → J such that a �→ av. Since
f4 = Der(J) = [RJ , RJ ] ([39, p. 117]), we can extract a basis of f4 from
the generators set {[Rωi

, Rωj
]}27

i,j=1. Taking into account that

Ad(txyzu)[Rωi
, Rωj

] = [Rtxyzu(ωi), Rtxyzu(ωj)] = ηiηj [Rωi
, Rωj

],

and defining S as the set of all couples (i, j) ∈ {1, . . . , 27}2 such that
[Rωi

, Rωj
] �= 0, we have that the eigenvalues of t′xyzu = Ad(txyzu) are those
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of the set {ηiηj | (i, j) ∈ S}, which are precisely:(
1, 1, 1, 1, x,

1

u
, y z,

u2

x y2 z
,
x

u
,
y z

u
,
u2

x y
,
u

x y
,
x y z

u
,
y z

u2
,
u

y
,
x y z

u2
,

1

x y
,
1

y
,
x2 y z

u2
,

z

x
, z,

x

y
,
z

u
, x z,

x z

u
,
x z

u2
,
x y z2

u2
,
z

y
,
1

x
, u,

1

y z
,
x y2 z

u2
,
u

x
,
u

y z
,
x y

u2
,
x y

u
,
u

x y z
,

u2

y z
,
y

u
,
u2

x y z
, x y, y,

u2

x2 y z
,
x

z
,
1

z
,
y

x
,
u

z
,

1

x z
,
u

x z
,
u2

x z
,
u2

x y z2
,
y

z

)
,(4.4)

where each eigenvalue is repeated according to its multiplicity (looking only
at S, we would not know the multiplicities because the set {ηiηj | (i, j) ∈ S}
has 228 elements, but 1 must appear 4 times, and the remaining values
at least once, so by dimension count those are just the multiplicities). On
the other hand, recalling that Th = T, there must exist rational functions
X, Y, Z, U ∈ F (x, y, z, u) in the list (4.4) such that the whole list agrees
with

(
1, 1, 1, 1, Xn1Y n2Zn3Un4 | (n1, n2, n3, n4) ∈ Φ

)
, with Φ = Φ+ ∪ (−Φ+)

and Φ+ given by (4.3). One solution is, for instance

(4.5) X =
u2

xy2z
, Y = yz, Z =

1

u
, U = x.

Next we choose as our reference basis of f4 anyone extracted from

{[Rωi
, Rωj

]}(i,j)∈S

such that the matrix of t′xyzu relative to this basis is diagonal with the
list (4.4) as diagonal. One possible choice is

b1 = [Rω1 , Rω4 ] b2 = [Rω1 , Rω13 ] b3 = [Rω6 , Rω7 ] b4 = [Rω8 , Rω9 ]
b5 = [Rω2 , Rω21 ] b6 = [Rω1 , Rω19 ] b7 = [Rω7 , Rω8 ] b8 = [Rω1 , Rω17 ]
b9 = [Rω2 , Rω27 ] b10 = [Rω5 , Rω11 ] b11 = [Rω2 , Rω25 ] b12 = [Rω1 , Rω11 ]
b13 = [Rω5 , Rω9 ] b14 = [Rω1 , Rω9 ] b15 = [Rω4 , Rω11 ] b16 = [Rω5 , Rω7 ]
b17 = [Rω1 , Rω7 ] b18 = [Rω4 , Rω9 ] b19 = [Rω2 , Rω23 ] b20 = [Rω4 , Rω7 ]
b21 = [Rω1 , Rω15 ] b22 = [Rω9 , Rω11 ] b23 = [Rω7 , Rω11 ] b24 = [Rω7 , Rω9 ]
b25 = [Rω1 , Rω5 ] b26 = [Rω1 , Rω12 ] b27 = [Rω9 , Rω10 ] b28 = [Rω6 , Rω11 ]
b29 = [Rω2 , Rω20 ] b30 = [Rω1 , Rω16 ] b31 = [Rω10 , Rω11 ] b32 = [Rω1 , Rω14 ]
b33 = [Rω2 , Rω24 ] b34 = [Rω4 , Rω8 ] b35 = [Rω2 , Rω22 ] b36 = [Rω1 , Rω8 ]
b37 = [Rω4 , Rω6 ] b38 = [Rω1 , Rω6 ] b39 = [Rω5 , Rω8 ] b40 = [Rω4 , Rω10 ]
b41 = [Rω1 , Rω10 ] b42 = [Rω5 , Rω6 ] b43 = [Rω2 , Rω26 ] b44 = [Rω5 , Rω10 ]
b45 = [Rω1 , Rω18 ] b46 = [Rω6 , Rω8 ], b47 = [Rω8 , Rω10 ] b48 = [Rω6 , Rω10 ]

where these are root vectors relative to h, but the missing elements spanning
the Cartan subalgebra must be taken carefully. If we denote βi ∈ h∗ for
i = 1 . . . 48 such that [h, bi] = βi(h)bi for any h ∈ h, it is easy to check that
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(β4, β3, β2, β1) is a basis of Φ with Cartan matrix (4.1), and this will be our
selection for ∆ from now on (and respectively for αi). Thus, we can denote

(4.6)

b1 = vα4 b25 = v−α4

b2 = vα3 b26 = v−α3

b3 = vα2 b27 = v−α2

b4 = vα1 b28 = v−α1

b5 = vα3+α4 b29 = v−α3−α4

b6 = vα2+α3 b30 = v−α2−α3

b7 = vα1+α2 b31 = v−α1−α2

b8 = vα1+α2+α3 b32 = v−α1−α2−α3

b9 = vα2+α3+α4 b33 = v−α2−α3−α4

b10 = vα2+2α3 b34 = v−α2−2α3

b11 = vα1+α2+α3+α4 b35 = v−α1−α2−α3−α4

b12 = vα2+2α3+α4 b36 = v−α2−2α3−α4

b13 = vα1+α2+2α3 b37 = v−α1−α2−2α3

b14 = vα1+α2+2α3+α4 b38 = v−α1−α2−2α3−α4

b15 = vα2+2α3+2α4 b39 = v−α2−2α3−2α4

b16 = vα1+2α2+2α3 b40 = v−α1−2α2−2α3

b17 = vα1+2α2+2α3+α4 b41 = v−α1−2α2−2α3−α4

b18 = vα1+α2+2α3+2α4 b42 = v−α1−α2−2α3−2α4

b19 = vα1+2α2+3α3+α4 b43 = v−α1−2α2−3α3−α4

b20 = vα1+2α2+2α3+2α4 b44 = v−α1−2α2−2α3−2α4

b21 = vα1+2α2+3α3+2α4 b45 = v−α1−2α2−3α3−2α4

b22 = vα1+2α2+4α3+2α4 b46 = v−α1−2α2−4α3−2α4

b23 = vα1+3α2+4α3+2α4 b47 = v−α1−3α2−4α3−2α4

b24 = v2α1+3α2+4α3+2α4 b48 = v−2α1−3α2−4α3−2α4

where each vα is a root vector relative to the root α, verifying

Ad(txyzu)vm1α1+m2α2+m3α3+m4α4 = Xm1Y m2Zm3Um4vm1α1+m2α2+m3α3+m4α4 .

At last we choose our standard basis of f4 as

B′ =
(
4[b4, b28], 4[b27, b3], 8[b26, b2], 8[b25, b1], bi | i = 1, . . . , 48

)
,

formed by root vectors which have been precisely described above. This will
be needed in the next section to extend elements from W to F4. The first four
elements in B′, which of course form a basis of h, have not been arbitrarily
chosen, but they are respectively tα1 , tα2 , tα3 and tα4 for our election of ∆.

Notice that we have algebraic group isomorphisms α, β : (F×)4 → T such
that α(x, y, z, u) = t′xyzyu = Ad(txyzyu) and β(X, Y, Z, U) = ΨXY ZU (now we
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have fixed ∆). The map η : (x, y, z, u) �→ (X, Y, Z, U) (see (4.5)) is an auto-
morphism of the algebraic group (F×)4 and we have a commutative diagram

(F×)4

(F×)4
�� T�������

������� α

β

η

in which all the arrows are isomorphisms. But Ad: T0 → T is also an isomor-
phism, which allows to write the simultaneous diagonalization of J relative
to T0 as a Z4-grading in such a way that the induced grading on f4 by Ad is
just the root decomposition indexed in the coordinates of Φ relative to ∆,
that is, [RJn1,n2,n3,n4

, RJn′
1

,n′
2

,n′
3

,n′
4
] ⊂ L(n1+n′

1)α1+(n2+n′
2)α2+(n3+n′

3)α3+(n4+n′
4)α4

.

Let us explain this in a practical way: Since the set of eigenvalues of txyzu

is contained in the set of eigenvalues of t′xyzu, any eigenvalue of txyzu can be
written in the form Xm1Y m2Zm3Um4 . This defines a map from the set of
eigenvalues of txyzu to Z4 such that Xm1Y m2Zm3Um4 �→ (m1, m2, m3, m4),
providing a Z4-grading on the Albert algebra J = ⊕Jm1,m2,m3,m4 such that
(m1, m2, m3, m4) is in the image of the above map. To determine Jm1,m2,m3,m4

we find the eigenvalue of txyzu of the form Xm1Y m2Zm3Um4 , and then
take the element of the standard basis of the Albert algebra which is an
eigenvector for that eigenvalue. For instance, to find J1,2,2,1 we compute

XY 2Z2U = z and write J1,2,2,1 = 〈u(3)
2 〉 since u

(3)
2 is the basic element such

that txyzu(u
(3)
2 ) = zu

(3)
2 . The complete description of the grading is:

J0,0,0,0 = 〈E1, E2, E3〉,(4.7)

J0,0,0,1 = 〈e(3)1 〉, J0,0,1,0 = 〈e(2)1 〉, J0,0,−1,−1 = 〈e(1)1 〉,
J0,0,0,−1 = 〈e(3)2 〉, J0,0,−1,0 = 〈e(2)2 〉, J0,0,1,1 = 〈e(1)2 〉,

J−1,−1,−2,−1 = 〈u(3)
1 〉, J−1,−1,−1,0 = 〈u(2)

1 〉, J−1,−1,−1,−1 = 〈u(1)
1 〉,

J1,2,2,1 = 〈u(3)
2 〉, J1,2,3,2 = 〈u(2)

2 〉, J1,2,3,1 = 〈u(1)
2 〉,

J0,−1,−2,−1 = 〈u(3)
3 〉, J0,−1,−1,0 = 〈u(2)

3 〉, J0,−1,−1,−1 = 〈u(1)
3 〉,

J1,1,2,1 = 〈v(3)
1 〉, J1,1,1,0 = 〈v(2)

1 〉, J1,1,1,1 = 〈v(1)
1 〉,

J−1,−2,−2,−1 = 〈v(3)
2 〉, J−1,−2,−3,−2 = 〈v(2)

2 〉, J−1,−2,−3,−1 = 〈v(1)
2 〉,

J0,1,2,1 = 〈v(3)
3 〉, J0,1,1,0 = 〈v(2)

3 〉, J0,1,1,1 = 〈v(1)
3 〉,

which is of type (24, 0, 1). We remark again that this Z4-grading on the
Albert algebra is toral and fine and the induced grading on f4 is precisely
the Cartan grading. Alternatively we could have got this grading in Section 3
directly from the maximal torus of aut(J) but in that case its relationship
to the Cartan grading would have not been so direct. The group Z4 is
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the universal group of the grading. Moreover all the toral gradings on the
Albert algebra are coarsenings of this and so can be obtained by constructing
equivalence classes of epimorphisms Z4 → G modulo the relation given as
in [13, 4.1]. This is another way of understanding Proposition 1.

To finish this subsection we must devote a few lines to the action of the
Weyl group W on the maximal torus of F4. Since this is isomorphic to (F×)4

we can introduce this action as the integration of the action of W on the
Cartan subalgebra W× h → h such that σ · tα = tσ(α) for any σ = (aij) ∈ W
and α ∈ Φ (tα defined at the beginning of this section). Since σ is an
endomorphism of the dual space h

∗, then the transposed matrix σt represents
the dual map h → h. So identifying the elements in h with their coordinates
relative to the basis (tαi

)4
i=1, the action of σ on the element

∑
i xitαi

∈ h is
given by (x1, x2, x3, x4) · [(aij)4i,j=1]

t where the product · is the usual matrix
product. The integration of this is the desired action W × (F×)4 → (F×)4

which consequently acts in the form σ · (X, Y, Z, U) = (X ′, Y ′, Z ′, U ′) where

X ′ = Xa11Y a12Za13Ua14(4.8)

Y ′ = Xa21Y a22Za23Ua24

Z ′ = Xa31Y a32Za33Ua34

U ′ = Xa41Y a42Za43Ua44 .

4.2. Extending Weyl group elements to automorphisms of f4

In this subsection we shall use the isomorphism theorem of [25, p.75] for
extending any σ ∈ W to an automorphism σ̃ ∈ F4. In the context of the
mentioned theorem we can take L = L′ = f4, h = h

′ agreeing with the
Cartan subalgebra generated by the four first elements in B′ the standard
basis of f4, Φ = Φ′ the root system relative to h, we choose ∆ = ∆′ the
basis of Φ as in 4.1 (α1, . . . α4 the roots corresponding to b4, . . . b1 ∈ B′

respectively) and finally, we take as isomorphism h → h the induced by σ
(as above, by means of the identification h → h∗ through t �→ k(t,−)).
According to that theorem, for any choice xαi

∈ Lαi
\ {0} and x′σ(αi)

∈
Lσ(αi) \ {0} for i = 1, 2, 3, 4, there is only one σ̃ ∈ F4 such that σ̃(tαi

) =
tσ(αi) and σ̃(xαi

) = x′σ(αi)
for every i = 1, 2, 3, 4. We choose xαi

to be the

generator vαi
∈ Lαi

as in (4.6) and also x′σ(αi)
= vσ(αi) ∈ Lσ(αi). The matrix

of σ̃ relative to the standard basis is block diagonal
(

A 0
0 D

)
where A is just

the 4 × 4 matrix of σ relative to the basis {αi}4
i=1 and D is a 48 × 48

matrix with only one nonzero element in each row and in each column.
Thus we have constructed an injective map W → F4 such that σ �→ σ̃ (see
the Appendix for more information). It is important to highlight that this
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is not a group homomorphism but only a map. In fact, there does not exist
a group monomorphism W → F4, as it is proved in [33, p. 717].

We shall denote by N the normalizer of T in F4. It is a standard result that
W ∼= N/T. It follows easily, by construction of σ̃, that σ̃ ∈ N for any σ ∈ W.
Thus the previous map W → F4 is actually a map W → N, and composing
with the universal epimorphism N → N/T we get an injective map W → N/T
such that σ �→ σ̃T (the equivalence class of σ̃ in the quotient group). Since
domain and codomain of this map share the same finite cardinal, the map is
a bijection. Even more: it can be proved that σ̃1σ2 is in the same equivalence
class that σ̃1σ̃2 (since σ̃1σ2σ̃

−1
2 σ̃−1

1 acts in h as σ1σ2σ2
−1σ1

−1 = id, so that
it belongs to T) which proves that the previous map W → N/T is a group
isomorphism. In particular

N = {σ̃t | σ ∈ W, t ∈ T}.

We can now revisit the action of the Weyl group W on the maximal
torus (F×)4 ∼= T from another viewpoint. Identifying W with N/T we can
define the action W × T → T given by σ · t := σ̃tσ̃−1 for σ ∈ W and t ∈ T.
Then the isomorphism β : (F×)4 → T given by β(X, Y, Z, U) = ΨXY ZU is
an isomorphism of W-groups in the sense that β(σ · t) = σ · β(t). Thus
σ · ΨXY ZU = ΨX′Y ′Z′U ′ as in (4.8). And since ΨXY ZU = t′xyzu for (4.5), a
simple computation proves that σ · t′xyzu = t′x′y′z′u′ where now

x′ = xb11yb12zb13ub14

y′ = xb21yb22zb23ub24

z′ = xb31yb32zb33ub34

u′ = xb41yb42zb43ub44

, with (bij) = mσm−1, m =

⎛⎜⎜⎝
0 0 0 1
−1 −1 −2 −1
1 2 2 1
0 0 −1 0

⎞⎟⎟⎠.(4.9)

The action of W on (F×)4 given by σ · (x, y, z, u) = (x′, y′, z′, u′) as above
is essential for our work, specially the study of fixed elements in the torus
under the action of certain elements of W. Denote

T
〈j〉 = {t ∈ T | σj · t = t}.

It is easily seen that this is a subgroup of T such that T
〈i〉 ∼= T

〈j〉 when σi

is conjugated to σj in W. The information given by these subgroups T
〈i〉

is needed for our purposes, so we are calculating them. For this, it suffices
to consider the representatives of conjugacy classes given in the table of
Proposition 3. We summarize all this information in the following table. In
it, T

〈j〉 is the subgroup of all t′xyzu ∈ T such that the element given satisfies
the displayed condition. We also write down the abstract group isomorphic
to T

〈j〉 in the right column.
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(4.10)

j Generic element of T
〈j〉 Membership condition Isomorphic to

1 (u2y, y, y, u) y2 = 1, u ∈ F× F× × Z2

2 (x, x, x, 1) x2 = 1 Z2

3 (u2y, y, u2, u) u4 = 1 = y2 Z4 × Z2

4 (x, x−1, 1, x−1) x ∈ F× F×

7 (u2y−3, y, y, u) u, y ∈ F× (F×)2

8 (x, x, x, x2) x ∈ F× F×

9 (1, u2/3, u2/3, u) u ∈ F× F×

10 (1, 1, 1, 1) {1}
14 (x, x, x, y) x2 = y2 = 1 Z2

2

15 (x, y, x2y, x2) x3 = y3 = 1 Z2
3

28 (x, x−1, z, x−1) x, z ∈ F× (F×)2

30 (1, 1, z, 1) z ∈ F× F×

42 (x, x, z, u) x2 = u2 = 1, z ∈ F× F× × Z2
2

55 (x, y, y, u) x, y, u ∈ F× (F×)3

56 (x, y, y, xy) x, y ∈ F× (F×)2

78 (1, 1, 1, 1) {1}
103 (x, y, y, u) y2 = 1, x, u ∈ F× (F×)2 × Z2

104 (x, y, y, xy) y2 = 1, x ∈ F× F× × Z2

105 (x, y, xy, u) x2 = y2 = 1, u ∈ F× F× × Z2
2

106 (x, y, xy, y) x2 = y2 = 1 Z2
2

110 (x, x, x, u) x2 = u2 = 1 Z2
2

114 (x, 1, z, 1) x, z ∈ F× (F×)2

142 (x, 1, z, u) x, z, u ∈ F× (F×)3

405 (x, y, z, u) x2 = y2 = z2 = u2 = 1 Z4
2

748 (x, y, z, u) x, y, z, u ∈ F× (F×)4

5. Quasitori in F4

Recall that a quasitorus is a commutative algebraic group whose identity
component is a torus [34, p. 105]. An algebraic linear group is a quasitorus
if and only if in some basis its elements can be expressed simultaneously
by diagonal matrices. Such groups are also called diagonalizable. Besides,
a quasitorus Q in an algebraic group G can be written as a disjoint union
Q = T∪Ta1∪· · ·∪Tak where T is a torus and {1G, a1, . . . , ak} a finite abelian
subgroup of G. We remark that, as a consequence of the algebraic version
of the Borel-Serre theorem (Theorem 6 in the Appendix), any quasitorus
in G normalizes some of the maximal tori of G. To see that, define Z as the
centralizer in G of T . Applying this theorem to H := {1G, a1, . . . , ak}, which
is contained in Z, there is some maximal torus T ′ of Z such that H ⊂ NZ(T ′)
(the normalizer of T ′ in Z). But T is contained in the center of Z and since
all its elements are semisimple, T is contained in the intersection of all
maximal tori of Z, hence in T ′. Thus T ⊂ T ′ ⊂ NZ(T ′) and since we had
H ⊂ NZ(T ′) ⊂ NG(T ′) then Q ⊂ NG(T ′). But actually T ′ is a maximal
torus in G, because if T ′′ is a maximal torus of G which contains T ′ ⊃ T ,
then T ′′ ⊂ Z and T ′′ = T ′.
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As any grading is given by a quasitorus, the above paragraph gives
the reason why our arguments are usually related to facts occurring inside
N = W T. As a consequence we have studied in detail the Weyl group and
its action on the torus T in the previous section.

Next we consider a class of quasitori which is relevant for our study.
Define for each j ∈ {1, . . . , 1152} and each t ∈ T the quasitorus A(j, t) as
the (closed) subgroup of F4 generated by T

〈j〉 and σ̃jt. This defines of course
a grading on f4 by the group X(A(j, t)) as in 2.1. But it suffices to consider
the gradings induced by the quasitori A(j, t) with j ∈ I (the set I defined
in (4.2)), taking into account that if σi and σj are conjugated in W, then
A(i, t) ∼= A(j, t′) for a suitable t′ ∈ T. We also have

Proposition 4. If for some j the group A(j, id) is toral then A(j, t) is toral
for any t ∈ T.

Proof. Let Z = CF4
(T〈j〉) and Z0 its unit component. Since A(j, id) is toral

there is some maximal torus T of F4 such that A(j, id) ⊂ T . Then T ⊂ Z but
from T

〈j〉 ⊂ T we also get T ⊂ Z. Of course T, T ⊂ Z0 and since t ∈ T and
σ̃j ∈ A(j, id) ⊂ T we have σ̃j , t ∈ Z0 hence σ̃jt ∈ Z0. But σ̃jt is a semisimple
element of Z0 and consequently there is some p ∈ Z0 such that pσ̃jtp

−1 ∈ T.
This jointly with the fact that pT〈j〉p−1 = T

〈j〉 imply that pA(j, t)p−1 ⊂ T. �
The same proof shows that A(j, t) is toral if and only if A(j, t′) is toral

for all t′ ∈ T. Now let us detect the indices which cause nontorality.

Proposition 5. For j ∈ I the group A(j, id) is nontoral if and only if
j = 3, 15, 105, 106 or 405.

Proof. Let us prove first that the five quasitori are nontoral. For A(15, id)
we have T

〈15〉 ∼= Z2
3 (see Table of Section 4.2). The grading induced by this

quasitorus is produced by the automorphisms {t′ω,ω,1,ω2 , t′1,ω,ω,1, σ̃15} where

ω is a primitive cubic root of 1. This is a Z3
3-grading and computing

the subalgebra of fixed elements by the three previous automorphisms we
find that this is null. This implies that the grading is nontoral since in
the toral case, this should be an algebra of rank four. For A(405, id) we
have T

〈405〉 ∼= Z4
2 and the associated grading agrees with the one produced

by {t′−1,1,1,1, t
′
1,−1,1,1, t

′
1,1,−1,1, t

′
1,1,1,−1, σ̃405}. This is a Z5

2-grading whose 0-
homogeneous component is again null, hence the grading is nontoral. For
A(3, id) we have T

〈3〉 ∼= Z4 ×Z2 and the induced grading is the produced by
{t′1,−1,−1,i, t

′
−1,−1,1,1, σ̃3} which is a Z2×Z2×Z8-grading (see Remarks 1 and 2

after this proof) whose 0-homogeneous component has dimension 1. Hence
A(3, id) is nontoral. The grading induced by A(106, id) is also nontoral since
T
〈106〉 ∼= Z2

2 and the grading is the one induced by {t′−1,1,−1,1, t
′
1,−1,−1,−1, σ̃106},
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which is a Z2
2 × Z6-grading whose 0-homogeneous component is one-dim-

ensional. The last grading is the induced by A(105, id). We have T
〈105〉 ∼=

F× × Z2
2, so A(105, id) = 〈T〈105〉, σ̃105〉 ∼= F× × Z3

2 which induces a grading
over X(F× × Z3

2)
∼= Z × Z3

2. The grading agrees with the one produced for
instance by {σ̃105, t

′
x,y,xy,1, t

′
1,1,1,2 | x2 = y2 = 1}, which can be implemented

in a computer. This is a Z3
2 × Z-grading whose 0-homogeneous component

is one-dimensional and so A(105, id) is nontoral. We include also a table
of homogeneous components dimensions for further reference. These types
can be computed with any linear algebra software allowing simultaneous
diagonalization.

Quasitorus Type
A(3, id) (19, 6, 7)
A(15, id) (0, 26)
A(105, id) (31, 0, 7)
A(106, id) (3, 14, 7)
A(405, id) (24, 0, 0, 7)

Let us prove now thatA(j, id) is toral in the rest of the cases. If T
〈j〉 = id then

A(j, id) is cyclic and then toral (this applies to the cases j = 10, 78). In case
T
〈j〉 is cyclic or T

〈j〉 ∼= F×, then A(j, id) has two factors and by Lemma 2 ([2,
Lemma 1.1.3, p. 5]) the grading is toral (this applies to j = 2, 4, 8, 9, 30).
Another trivial case is j = 748 since σ̃748 = id and T

〈748〉 = T. For
j = 1, 7, 14, 28, 42, 55, 56, 103, 104, 114 and 142, performing a simultaneous
diagonalization of the algebra relative to the set of automorphisms inducing
the grading, one finds that the zero homogeneous component of the corre-
sponding grading is an abelian four-dimensional algebra. Thus the grading
is toral. Finally, for j = 110 we have A(110, id) = 〈t′−1,−1,−1,1, t

′
1,1,1,−1, σ̃110〉,

which produces a Z2
2 × Z4-grading. In this case the zero homogeneous com-

ponent is a six-dimensional (reductive) algebra Le = 〈y1, . . . , y6〉 where

y1 = b3 − b10 + b27 + b34, y4 = −b4 + b22 + b28 + b46,
y2 = −b7 − b18 − b31 + b42, y5 = b13 − b23 − b37 + b47,
y3 = b16 − b20 − b40 + b44, y6 = b15 − b24 − b39 + b48,

which has rank 4 because {y1−y6, y2−y5, y3−y4} is contained in the center
of Le (there are only two types of six-dimensional reductive subalgebras,
a1 plus a three-dimensional center and 2a1, of ranks 4 and 2 respectively).
Hence the grading is toral. �
Remark 1. Notice that the order of σi does not necessarily coincide with
the order of σ̃i, but it is a divisor. This happens, for instance, for i = 3,
since σ3 has order 4 while σ̃3 has order 8. This is not because of a bad choice
of σ̃3, since all the possible extensions of σ3 have the same order, as the next
lemma shows.
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Lemma 1. Take j ∈ {1, . . . , 1152}, and m the order of σj ∈ W. Then the
following conditions are equivalent:

i) T
〈j〉 is finite,

ii) T
〈j〉 ⊂ {t′x,y,z,u | xm = ym = zm = um = 1},

iii) (σ̃jt)
m = σ̃m

j for any t ∈ T,

iv) All the elements in {f ∈ N | π(f) = σj} (where π : N → W is the
canonical projection) have the same order.

Proof. Take the element in T given by

sx,y,z,u := t′x,y,z,u(σ̃jt
′
x,y,z,uσ̃

−1
j )(σ̃2

j t
′
x,y,z,uσ̃

−2
j ) . . . (σ̃m−1

j t′x,y,z,uσ̃
1−m
j )

(product of elements in T). Since σm
j = id, we have σ̃m

j ∈ T and thus

σ̃jsx,y,z,uσ̃
−1
j = sx,y,z,u, that is, sx,y,z,u ∈ T

〈j〉. Besides it verifies that

(σ̃jt
′
x,y,z,u)

m = sx,y,z,uσ̃
m
j .

The implication ii) ⇒ i) is trivial. Now, if we assume iii), sx,y,z,u = id
for any x, y, z, u ∈ F×. But if t′x,y,z,u ∈ T

〈j〉, then (t′x,y,z,u)
m = sx,y,z,u, and so

tm = id for any t ∈ T
〈j〉, and we have ii).

Next suppose i). We have sx,y,z,u = t′f1(x,y,z,u),f2(x,y,z,u),f3(x,y,z,u),f4(x,y,z,u)

for some rational functions fi ∈ F (x, y, z, u). But the set {sx,y,z,u | x, y, z, u ∈
F×} ⊂ T

〈j〉 must be finite, so the fractions are constant sx,y,z,u = t′a,b,c,d, and,
since s1,1,1,1 = id, the identity sx,y,z,u = id holds for any x, y, z, u ∈ F×. This
gives iii).

From iii), we conclude that the orders of σ̃jt and σ̃j are the same, since
none of them can be less than m and (σ̃jt)

m = σ̃m
j , so we have iv).

Conversely, let c be such that mc is the order of σ̃jt
′
x,y,z,u for any x, y, z, u.

Thus id = (σ̃jt
′
x,y,z,u)

mc = (sx,y,z,uσ̃
m
j )c = sc

x,y,z,u, hence fi(x, y, z, u)
c = 1 and

so sx,y,z,u = id, which is equivalent to iii). �
Remark 2. Apparently the grading induced by the quasitorus A(3, id) =
〈{σ̃3, t

′
1,−1,−1,i, t

′
−1,−1,1,1}〉 is a Z8 × Z4 × Z2-grading, since 8, 4 and 2 are

respectively the orders of the generators. However, the right group generated
by the support is Z2

2 × Z8 because (σ̃3)
2t′1,−1,−1,i has order 2.

Returning to our quasitori A(j, t), the toral element t plays a secondary
role.

Proposition 6. If j ∈ {3, 15, 105, 106, 405}, the quasitorus A(j, t) is conju-
gated to A(j, t′) for any t, t′ ∈ T.
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Proof. Take
S

〈j〉 = {σ̃−1
j tσ̃jt

−1 | t ∈ T}.
Denoting σ̃j by σ, we have that (σ−1tσt−1)(σ−1sσs−1)=σ−1tsσt−1σ−1σs−1 =
σ−1tsσ(ts)−1, since σt−1σ−1 ∈ T and so it commutes with s. Thus S

〈j〉 is a
subgroup. Besides it has the property that A(j, id) is conjugated to A(j, s)
for any s ∈ S

〈j〉. Indeed, if s = σ−1tσt−1, then Ad(t)(T〈j〉) = T
〈j〉 and

Ad(t)(σ) = σs.
On the other hand, it is clear that A(j, s) = A(j, st) for any t ∈ T

〈j〉,
therefore

A(j, id) ∼= A(j, st)

for any s ∈ S
〈j〉, t ∈ T

〈j〉. Let us see that T
〈j〉

S
〈j〉 = T. First we observe that

the map
T/T〈j〉 → S

〈j〉

[t] �→ σ̃−1
j tσ̃jt

−1

is a group isomorphism. It is well defined and injective because t ∈ T
〈j〉 if

and only if σ̃−1
j tσ̃jt

−1 = id. In particular dim T = dim T
〈j〉+dim S

〈j〉 (see [31,
Proposition 2.26, p. 41]). And we have another isomorphism:

S
〈j〉/S〈j〉 ∩ T

〈j〉 → S
〈j〉

T
〈j〉/T〈j〉,

hence dim T
〈j〉 + dim S

〈j〉 = dim S
〈j〉

T
〈j〉 + dim S

〈j〉 ∩ T
〈j〉.

But S
〈j〉 ∩ T

〈j〉 is a finite group for any of our indices j. Indeed, for
j = 3, 15, 106, 405 the group T

〈j〉 is already finite, and for j = 105,

S
〈105〉 = {t′x,y,z,u | u2 = xyz}, T

〈105〉 = {t′x,y,z,u | x2 = y2 = 1, z = xy, u ∈ F×}

and
S

〈105〉 ∩ T
〈105〉 = {t′x,y,xy,uxy | x2 = y2 = u2 = 1} ∼= Z3

2.

Consequently dim T=dim T
〈j〉+dim S

〈j〉=dim S
〈j〉

T
〈j〉 and so T

〈j〉
S

〈j〉=T. �
Furthermore, S

〈j〉 ∩ T
〈j〉 is a finite group for all j ∈ I, so also for any

j ∈ {1, . . . 1152}, and thus A(j, t) ∼= A(j, t′) for all t, t′ ∈ T, although this
fact is unnecessary for our purposes.

As a consequence of this lemma, if T
〈j〉 is finite, then S

〈j〉 = T, and every
t ∈ T is in S

〈j〉, that is, there is s ∈ T such that t = σ̃−1
j s−1σ̃js. Thus we

have obtained the following technical result, which will be very useful in
some forthcoming proofs.

Corollary 2. If T
〈j〉 is finite, for any t ∈ T there is s ∈ T such that

sσ̃jts
−1 = σ̃j .
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The relevance of the quasitori A(j, t) is highlighted by the following re-
sult.

Proposition 7. Let F = {f1, . . . , fn, fn+1} be a nontoral commutative fam-
ily of semisimple elements in a connected algebraic group G such that the
subset {f1, . . . , fn} is toral. Fix a maximal torus T of G. Then, the subgroup
generated by F is conjugated to some subgroup of the form 〈t1, . . . , tn, σ〉
where ti ∈ T and σ ∈ NG(T ) is conjugated to fn+1.

Proof. Define Z as the centralizer of {f1, . . . , fn} in G and let T ′ be some
maximal torus in G containing {f1, . . . , fn}. The subgroup 〈F 〉 ⊂ Z is a
quasitorus of Z, hence is contained in the normalizer NZ(T ′′) of some maxi-
mal torus T ′′ in Z. Then T ′′ is also a maximal torus in G (since T ′ ⊂ Z) and
there is some p ∈ G such that T ′′ = pTp−1. On the other hand {f1, . . . , fn}
is contained in the center of Z, and since these are semisimple elements,
then they are contained in each maximal torus of Z. In particular fi ∈ T ′′

for i ∈ {1, . . . , n}, and fn+1 ∈ NZ(T ′′) ⊂ NG(T ′′). Thus, p−1〈F 〉p is gen-
erated by f ′

i = p−1fip for i = 1, . . . , n + 1, with f ′
i ∈ T for i ≤ n and

f ′
n+1 ∈ p−1

NG(T ′′)p = NG(T ). �
In this way we have proved that any nontoral grading has a coarsening

isomorphic to a grading induced by a subquasitorus of A(j, t) for some j ∈
{3, 15, 105, 106, 405}. Furthermore, by Proposition 6, the element t can be
taken to be the identity. We can even remove two more possibilities for j,
as the following corollary shows.

Corollary 3. Each of the subgroups A(3, id) and A(106, id) of F4 is conju-
gated to a subgroup of A(105, id).

Proof. We know that A(3, id) = 〈{t′−1,−1,1,1, t
′
1,−1,−1,i, σ̃3}〉 so that making

f1 = t′1,−1,−1,i, f2 = σ̃3 and f3 = t′−1,−1,1,1 we can apply the previous propo-
sition to F = {f1, f2, f3}. Of course {f1, f2} is toral by Lemma 2, while
A(3, id) is nontoral as proved in Proposition 5. Thus A(3, id) is conjugated
to a group of the form 〈t1, t2, σ〉 with t1, t2 ∈ T and σ ∈ N. Moreover σ
has order 2 since it is conjugated to t′−1,−1,1,1. We also know that σ = σ̃it
for some t ∈ T and i ∈ {1, . . . , 1152}. Since σ has order two, the same
can be said about σi. That is, A(3, id) is conjugated to some subgroup of
A(i, t) with σi of order two. Furthermore A(i, t) is nontoral so that, applying
Proposition 4, the quasitorus A(i, id) is nontoral. We can choose i ∈ I by
conjugating if necessary. Now Proposition 5 implies that i = 3, 15, 105, 106
or 405. We get, by Proposition 6, that the quasitorus A(3, id) is conjugated
to some subgroup of A(i, id). Since σ2

i = 1 the only possible values for i
are 105 and 405. If we had a copy of A(3, id) within A(405, id) then this
group (isomorphic to Z5

2) should contain an element of order 8.
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Consider now A(106, id) = 〈{t′−1,1,−1,1, t
′
1,−1,−1,−1, σ̃106}〉 and apply the

previous proposition to F = {f1, f2, f3} with f1 = σ̃106, f2 = t′−1,1,−1,1

and f3 = t′1,−1,−1,−1. As before A(106, id) is conjugated to a subgroup of
a nontoral A(i, id) with σi of order two. Again we can take i ∈ I so that
i = 105 or 405, but A(405, id) contains no order six element. �

Our objective in the next subsection is to show that in fact any nontoral
grading is isomorphic to one produced by a quasitorus contained in A(j, id)
for j = 15, 105, 405.

5.1. Fine gradings

Next we study the maximality of some of the previous quasitori. As a first
step, their maximality in N, the normalizer of the maximal torus T, is clear:

Proposition 8. Let A = A(j, id) for j ∈ {15, 105, 405}. Then A is its own
centralizer in N, that is, CN(A) = A.

Proof. To prove CN(A) ⊂ A take f ∈ CN(A). Since f ∈ N there is some
i ∈ {1, . . . , 1152} and some t ∈ T such that f = σ̃it. Consider first the
possibility j = 405. Of course f commutes with each element in T

〈405〉 ⊂ A
implying that σ̃i does the same. Consequently T

〈405〉 ⊂ T
〈i〉. According

to Table (4.10), this is possible only for i = 405 or i = 748 (take into
account that any T

〈i〉 is isomorphic to some in the table, that the unique
groups in the table which may contain a copy of Z4

2 are T
〈405〉 and T

〈748〉,
and that the orbits of σ405 and σ748 have cardinal one). So σ̃i (equal to σ̃405

or σ̃748) commutes with σ̃405, and since f = σ̃it also does, this forces the
commutativity of t and σ̃405 so that t ∈ T

〈405〉 and f = σ̃it ∈ A(405, id). Let
us consider now the case j = 15. From f = σ̃it and the fact that f commutes
with T

〈15〉 we get that σ̃i commutes with T
〈15〉. Therefore T

〈15〉 ⊂ T
〈i〉 and as

T
〈15〉 = 〈t′ω,1,ω2,ω2 , t′1,ω,ω,1〉, we conclude σi · t = t for both t = t′ω,1,ω2,ω2 and
t = t′1,ω,ω,1. But using (4.9) we see that the unique values of i satisfying the
above relations are 15, 748 and 1075. Hence either σi = σ15 or σi = σ1075 =
σ2

15 or σi = σ748 = σ3
15. In any case σ̃i commutes with σ̃15 (which is not

automatic from the commutativity of σi and σ15, but can be proved directly
for those indices or checking the equalities σ̃n

15 = σ̃15
n for n = 2, 3). Thus,

recalling that f commutes with σ̃15 we get that t commutes with σ̃15, that
is, t ∈ T

〈15〉 ⊂ A(15, id). Therefore f = σ̃it ∈ A(15, id). Finally, we must
investigate the case j = 105. Since f = σ̃it commutes with A(105, id) and
T
〈105〉 is generated by t′−1,1,−1,1, t

′
1,−1,−1,1 and t′1,1,1,u with u ∈ F×, we must

have that σ̃i commutes with any of the mentioned generators. So solving in i
the system σi · t = t for t ∈ {t−1,1,−1,1, t1,−1,−1,1, t1,1,1,u | u ∈ F×}, we get that
i ∈ {105, 748}. But σ̃105 and σ̃748 commute and consequently σ̃i commutes
with σ̃105. As before we get that t ∈ T

〈105〉, implying f ∈ A(105, id). �
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We must emphasize that if the centralizer (in N) of a subgroup agrees
with the subgroup itself, this does not imply that the centralizer of the group
in F4 agrees with the group. However this will be the case for some special
relevant subgroups in our work. For the next result we must recall from 2.1
that if we have a maximal abelian subgroup of semisimple elements in aut(L)
for a Lie algebra L, then the induced grading on L is fine.

Proposition 9. The gradings induced by A(j, id) for j = 15, 105, 405 are
fine.

Proof. Let A = A(j, id) and suppose that the induced grading is not fine.
Then there is some semisimple f ∈ CF4

(A) \ A such the grading induced
by A ∪ {f} is a proper refinement of the original grading (proper in the
sense that it is different from the given grading). Define Z = CF4

(T〈j〉).
Then the group 〈A ∪ {f}〉 is an abelian subgroup of Z and so is its closure
〈A ∪ {f}〉 in the Zarisky topology. But this is again a quasitorus, whence it
is contained in the normalizer of some maximal torus T of Z. In particular
〈A ∪ {f}〉 ⊂ NZ(T ) and by construction also T ⊂ Z so that there is some
p ∈ Z such that pTp−1 = T. Consequently pNF4

(T )p−1 = NF4
(T) = N. Thus

p〈A ∪ {f}〉p−1 ⊂ N and

pfp−1, pσ̃jp
−1 ∈ N ∩ CF4

(T〈j〉)

with ptp−1 = t for any t ∈ T
〈j〉.

For j = 105 we have N ∩ CF4
(T〈105〉) = T ∪ σ̃105T, taking into account the

previous proposition. Now we must analyze different possibilities:

• If pσ̃105p
−1 ∈ T, then pAp−1 ⊂ T and the grading induced by A would

be toral, which is a contradiction.

• If pfp−1 ∈ T and pσ̃105p
−1 = σ̃105t for some t ∈ T, it is clear that

pfp−1 ∈ T
〈105〉 (it commutes with σ̃105t) and pAp−1 ⊂ A(105, t). Hence

〈A∪{f}〉 ⊂ p−1A(105, t)p and it cannot produce a proper refinement.
This is another contradiction.

• Thus we have pfp−1 = σ̃105t1 and pσ̃105p
−1 = σ̃105t2 for some t1, t2 ∈ T.

Since both elements commute we get easily that t1t
−1
2 ∈ T

〈105〉. There-
fore pfp−1 ∈ pσ̃105p

−1
T
〈105〉 = pσ̃105T

〈105〉p−1 ⊂ pAp−1 implying f ∈ A,
a contradiction again.

The case j = 405 is proved analogously since N ∩ CF4
(T〈405〉) = T ∪ σ̃405T.

However for j = 15 we need some slight modifications since N∩ CF4
(T〈15〉) =

T ∪ σ̃15T ∪ (σ̃15)
2
T. Let us use the notation σ := σ̃15 for simplicity. Since

pfp−1, pσp−1 ∈ N ∩ CF4
(T〈15〉), we have several possibilities.
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• If pfp−1 or pσp−1 is of the form σt for some t ∈ T, applying Corol-
lary 2, there is some s ∈ T such that sσts−1 = σ. This implies that
T
〈15〉 ∪ {σ} ⊂ sp〈A ∪ {f}〉(sp)−1 ⊂ N and by Proposition 8 we have

CN(A(15, id)) = A(15, id) implying sp〈A∪{f}〉(sp)−1 = A(15, id) = A.
Thus the grading induced by sp〈A∪{f}〉(sp)−1, which is equivalent to
a proper refinement of the one induced by A, is also equivalent to A,
a contradiction.

• If pfp−1 or pσp−1 is of the form σ2t for some t ∈ T, applying again
Corollary 2, there is some s ∈ T such that sσ2ts−1 = σ2 = σ1075. This
implies that T

〈15〉∪{σ2} ⊂ sp〈A∪{f}〉(sp)−1 ⊂ N and since T
〈15〉∪{σ2}

generates A(15, id) = A(1075, id), we conclude as before.

• And if pfp−1 and pσp−1 are both in T, the grading is obviously toral. �
We finish this section with one of our main results. Before proceeding

with its precise statement and proof, we must realize that any quasitorus A
in an algebraic group G has a (not necessarily unique) maximal toral part,
a toral subgroup B which is not contained in another toral subgroup of A.
This is trivial if the quasitorus A has finite cardinal. Otherwise consider the
family F of all the toral subgroups of A. The elements in F are toral in
the sense that each of them is contained in some torus of G. To see that F
has maximal elements we consider a maximal subtorus T of A. For any
B ∈ F containing T (for instance, T verifies this) we have T ⊂ B0 (the unit
component of B) and B0 ⊂ A0 = T . Thus B0 = T and the quotient group
B/T is finite and its cardinal is bounded by that of A/T . Hence any B ∈ F
with T ⊂ B and such that B/T has maximal cardinal can be proved to be
a maximal element in F . Such subgroups are what we shall understand as
maximal toral subgroups of the quasitorus A.

Theorem 4. Let A ⊂ F4 be a quasitorus, then up to conjugacy, A falls in
one of the following cases:

• A ⊂ T (maximal torus).

• A ⊂ A(105, id).

• A ⊂ A(405, id).

• A = A(15, id).

Proof. The precise meaning of this theorem is that there is some φ ∈ F4

such that A′ := φAφ−1 is in some of the cases above. So we can replace
at any moment A with some of its conjugated subgroups in the group F4.
From the beginning we suppose that A is nontoral. Consider a maximal toral
subgroup B of A which may be supposed to be a subgroup of the maximal
torus T defined in Subsection 4.2. Define now the group Z := CF4

(B) which
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contains both A and T. Since A is a quasitorus of Z there is a maximal
torus T ⊂ Z such that A ⊂ NZ(T ) (see the first paragraph in Section 5).
But T, T ⊂ Z are maximal tori in Z so that there exists p ∈ Z such that
T = pTp−1. Thus pAp−1 ⊂ NZ(T) ⊂ NF4

(T) = N and since p centralizes B,
the subgroup B = pBp−1 is still a toral maximal subgroup of pAp−1. In
this way, replacing A by pAp−1 we can suppose that A ⊂ N with B ⊂ T,
B a maximal toral subgroup of A. Furthermore A = 〈B ∪ {f1, . . . fk}〉
with fi ∈ N so that each fi is of the form σ̃jt with j ∈ {1, . . . , 1152} and
t ∈ T. Moreover, for any σ̃jt ∈ A we have B ⊂ T

〈j〉 since any element in
B centralizes A and T and so it commutes with σ̃j . On the other hand,
〈B ∪ {σ̃jt}〉 being nontoral and contained in A(j, t) implies that σj is in the
orbit (under conjugation) of σ3, σ15, σ105, σ106 or σ405 (see Proposition 5).
Next we analyze the different possibilities arising.

• If some of the σj ’s is in the orbit of σ15 we can suppose that f1 = σ̃jt.
Then f1 is conjugated in N to σ̃15t

′ for some t′ ∈ T and without loss in
generality we can take f1 = σ̃15, by Corollary 2 (the element s ∈ T does
not change neither T nor B). Thus B ⊂ T

〈15〉 ∼= Z2
3. Since 〈B ∪ {f1}〉

is nontoral, then it has at least three generators (see Lemma 2 in
the Appendix). Consequently B has at least two generators, and this
implies B = T

〈15〉. So A(15, id) ⊂ A ⊂ N and applying Proposition 8,
we have CN(A(15, id)) = A(15, id), hence A = A(15, id).

• Some of the σj ’s is conjugated to σ106. As before f1 can be taken
to be f1 = σ̃106 and B ⊂ T

〈106〉 ∼= Z2
2. Since B must have at least

two generators we have B = T
〈106〉. Now, for any other fi = σ̃kt we

must have T
〈106〉 ⊂ T

〈k〉. The commutativity of f1 and fi implies that
of σ106 and σk. But a computation of the number of k’s satisfying both
conditions {

T
〈106〉 ⊂ T

〈k〉,

σ106σk = σkσ106,

reveals that there are only six possible values of k. Since σ106 has
order 6, obviously the six powers σn

106 with n ∈ {0, . . . , 5} satisfy the
conditions so that there is n ∈ N and t1 ∈ T with fi = σ̃106

nt1. But
t1 ∈ T

〈106〉 again by the commutativity of fi with f1, so fi ∈ A(106, id).
From here A = A(106, id) which up to conjugacy is a subgroup of
A(105, id) by Corollary 3.

• Suppose now that some of the σj ’s is in the orbit of σ3. So we
can suppose f1 = σ3 without loss of generality, and B ⊂ T

〈3〉 =
〈{t′−1,−1,1,1, t

′
−1,1,−1,i}〉, which is isomorphic to Z2 × Z4. But again by

Lemma 2, the subgroup B must have at least two generators since 〈B∪
{f1}〉 is nontoral. Whence either B=T

〈3〉 or B=〈{t′−1,−1,1,1, t
′
1,1,1,−1}〉.
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But this last possibility can not occur because then 〈B ∪ {f1}〉 =
〈{t′−1,−1,1,1, t

′
1,1,1,−1, σ̃3}〉 would be toral because σ̃3

4 = t1,1,1,−1, hence

〈B ∪ {f1}〉 would have two generators. So necessarily B = T
〈3〉 and

for any other fi = σ̃kt we must have T
〈3〉 ⊂ T

〈k〉 and σ3σk = σkσ3.
We obtain only four possible k’s satisfying the previous conditions.
Hence σk ∈ {σn

3 | n = 0, 1, 2, 3} and fi = σ̃n
3 t1 for some t1 ∈ T (in

fact t1 = t because σ̃n
3 = σ̃3

n). Then t1 ∈ T
〈3〉 and as in previous cases

A = A(3, id). But this is conjugated to a subgroup of A(105, id) by
Corollary 3.

• We may suppose now that each σj is in the orbit of either σ105 or σ405.
We prove next that either all the σj ’s are in the orbit of σ105 or σ405.
Otherwise, after re-ordering and applying Corollary 2 we can take
f1 = σ̃405 and f2 = σ̃105t for some t ∈ T. Thus B ⊂ T

〈105〉 ∩ T
〈405〉.

Moreover B � B̃ := 〈B ∪ {f1f2}〉 ⊂ A and B̃ ⊂ 〈(T〈105〉 ∩ T
〈405〉) ∪

{σ̃405σ̃105t}〉 ⊂ A(1048, t1) for some t1 ∈ T, taking into account that
σ405σ105 = σ1048. But A(1048, t1) is toral since σ1048 is in the orbit
of σ142 (see Propositions 4 and 5). This contradicts the maximal toral
nature of B within A.

• If all the σj ’s are in the orbit of σ405, since this orbit has cardinal one,
then we can take f1 = σ̃405 and any other fi of the form σ̃405t with
t ∈ T

〈405〉. So A ⊂ A(405, id).

• If all the σj ’s are in the orbit of σ105. The unique elements in this orbit
which commute with σ105 are σ105, σ403, σ429 and σ1011. So we can take
f1 = σ̃105t1 and any other fi of the form σ̃kt2 for some t1, t2 ∈ T and
k ∈ {105, 403, 429, 1011}. Then B ⊂ B̃ := 〈B ∪ {f1fi}〉 ⊂ A and
depending on the values of k we have:

– For k = 403, since σ105σ403 = σ1050, we have f1fi = σ̃105t1σ̃403t2 =
σ̃1050t for some t ∈ T. So B̃ ⊂ A(1050, t) which is toral because
σ1050 is in the orbit of σ103 (see again Propositions 4 and 5). This
contradicts the maximality of B among the toral subgroups of A.

– For k = 429 we have σ105σ429 = σ1009 so that B � B̃ ⊂ A(1009, t)
for some t ∈ T. This is toral since σ1009 is conjugated to σ103

in W. Again a contradiction.

– For k = 1011 we have σ105σ1011 = σ427 and B � B̃ ⊂ A(427, t),
for t ∈ T. This is again toral because σ427 is in the orbit of σ103.

These contradictions lead us to the conclusion that k = 105 necessarily.
So fi is of the form σ̃105t2 and the commutativity of f1 and fi implies
that t1t

−1
2 ∈ T

〈105〉. Hence fi ∈ f1T
〈105〉 (for any other i) implying

A ⊂ A(105, t1). Thus, after conjugation A is a subgroup of A(105, id)
by Proposition 6. �
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Corollary 4. Up to equivalence the unique fine gradings on f4 are: (1) the
Cartan grading, (2) the induced by A(105, id), (3) the induced by A(405, id),
and (4) the induced by A(15, id).

We summarize the information about these gradings in the following
table

Quasitorus Universal grading group Type

T Z4 (48, 0, 0, 1)
A(15, id) Z3

3 (0, 26)
A(105, id) Z3

2 × Z (31, 0, 7)
A(405, id) Z5

2 (24, 0, 0, 7)

Fine gradings on f4

Let us observe that the groups given in the table above are the universal
grading groups. Because for any of the quasitorus Q in the table, we have
proved in Proposition 9 that Q is its own centralizer in F4, that is, Q is a
MAD, and according to Subsection 2.1, X(Q) is the universal group of the
related grading.

Remark 3. The four fine gradings on f4 are also fine when considered
as Lie gradings (as in [37]) instead of being considered as group gradings.
This observation is pertinent because the question about the existence of a
grading group is still on the table.

On the other hand, we observe that every homogeneous element in the
Cartan grading is either semisimple or nilpotent (according to its member-
ship to the zero component) and that all the homogeneous elements in the
three remaining fine gradings are semisimple, as a consequence of the nullity
of their zero components ([34, Corollary after Th. 3.4]). This happens not
only in f4.

Proposition 10. In a fine grading on a simple Lie algebra, every homoge-
neous element is either semisimple or nilpotent.

Proof. If L = ⊕g∈GLg is a fine grading, the group Q of the automorphisms
of L for which all the homogeneous components are eigensubspaces is just
the MAD which produces the grading.

First of all, if x ∈ Lg then x is uniquely represented as x = xs + xn,
where xs and xn are respectively semisimple and nilpotent homogeneous el-
ements in Lg verifying [xs, xn] = 0 [34, Th. 3.3]. Thus, either every element
in Lg is semisimple or there is a nilpotent element x ∈ Lg. Let us see that in
this case every element in Lg is nilpotent. According to [34, Th. 3.4], there
is a semisimple element h ∈ Le and a nilpotent element y ∈ L−g such that
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[h, x] = 2x, [h, y] = −2y and [x, y] = h. Notice then that exp ad(h) ∈ aut(L)
is an automorphism which leaves invariant all the homogeneous components.
Moreover, exp ad(h) commutes with every f ∈ Q, because if v is a homo-
geneous element with f(v) = αv, then (exp ad(h))f(v) = αexp ad(h)(v) =
f(exp ad(h)(v)) since exp ad(h)(v) belongs to the same homogeneous com-
ponent. By maximality, exp ad(h) ∈ Q. Since exp ad(h)(x) = e2x, there are
some automorphisms f1, . . . , fs ∈ Q and scalars α1, . . . , αs ∈ F× such that
Lg = {v ∈ L | f1(v) = α1v, . . . , fs(v) = αsv, exp ad(h)(v) = e2v}. Therefore
g ∈ G is an element of infinite order, and, by [34, Prop. 3.5], all the elements
in Lg are nilpotent. �

More information on homogeneous semisimple and nilpotent elements
of gradings on semisimple Lie algebras can be found in [41]. Notice the
following interesting consequence for fine gradings.

Corollary 5. In a fine grading on a simple Lie algebra, the zero homoge-
neous component is an abelian subalgebra whose dimension coincides with
the Betti number of the universal grading group.

Proof. The subalgebra Le (the zero component) is reductive, hence, if
Le �= 0, it contains (nonzero) semisimple elements, and applying the previous
proposition, every element in Le is semisimple. So that Le is toral and
abelian.

If Q is the MAD-group inducing the grading, then X(Q) is the univer-
sal grading group and its Betti number is the dimension of Q, that is,
the dimension of the maximal torus contained in Q. Note that the torus
T = exp ad(Le) preserves the grading, so that it commutes with Q and, by
maximality, T ⊂ Q. But T must be a maximal torus inside Q, because
if T ⊂ T ′ = exp ad(M) ⊂ Q then M would be a subalgebra invariant by
the whole Q. Therefore it would be contained in Le and thus Le = M and
T = T ′. Consequently dimLe = dimT = dimQ. �

5.2. Nontoral gradings

Up to the moment we have described the fine gradings on f4. If we want to
find all the nontoral ones, it suffices to describe all the nontoral coarsenings
of the fine ones. For this, we must find all the (nontoral) subquasitori Q of
the tori producing fine gradings up to conjugacy.

Consider first the fine grading provided by A(105, id) = 〈T〈105〉 ∪{σ̃105}〉.
Let us use the following notations g1 := t′−1,1,−1,1, g2 := t′1,−1,−1,1, g3 := σ̃105

and g4 := t′1,1,1,−1. Since the number of generators of the group H = X(Q)
must be at least three, we know that H , as a quotient of Z3

2 ×Z, falls under
one of the following possibilities: either H ∼= Z3

2 × Zm, or H ∼= Z2
2 × Z2m,
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or H ∼= Z2
2 × Z. Let us analyze first the case H ∼= Z3

2. In this case the
quasitorus Q providing the coarsening has three order-two generators ϕi

with i = 1, 2, 3. Thus ϕi = gni
1 g

mi
2 gli

3 g
si
4 and (ϕ1, ϕ2, ϕ3) = (g1, g2, g3, g4) ·M

where M is the 3 × 3 integer matrix⎛⎜⎝n1 n2 n3

m1 m2 m3

l1 l2 l3
s1 s2 s3

⎞⎟⎠ .

We are using here the action of Mk×l(Z) on any power group Gk given
by Gk ×Mk×l(Z) → Gl such that (g1, . . . , gk) · (nij) := (g′1, . . . , g

′
l) where

g′i =
∏

j g
nji

j . Now, there are two actions that we can use to simplify the
matrix M without changing the quasitorus Q (in the worst case Q changes
to some of its conjugated). First we can act on the columns of the matrix
by elementary operations (exchanging columns or adding one column to
another). All this can be made modulo two. This reduces the possible
matrices M to a few, but there is a second action on the matrix coming from
conjugacy of elements in F4. Consider the subgroup G of F4 fixing A(105, id)
by conjugation, that is, f ∈ G if and only if fA(105, id)f−1 = A(105, id).
The appendix contains relevant information on certain elements in G. By
passing from Q to fQf−1 ⊂ A(105, id), the matrix M transforms into a new
matrixM ′. We are proving that the joint action by elementary operations on
the columns together with the action of G by conjugation, either moves M
to the matrix ⎛⎜⎝1 0 0

0 1 0
0 0 1
0 0 0

⎞⎟⎠ ,

or the induced grading is toral. First we observe that if this grading is non-
toral there must be some nonzero entry in the first two rows of M . Second,
σ̃468 ∈ G acts on M permuting its first two rows (it permutes g1 and g2 fixing
gi for i = 3, 4). So we can suppose that the first row in M is (1 0 0) (af-
ter operations on columns). Hence the first two rows are

(
1 0 0
0 1 0

)
,
(

1 0 0
0 0 0

)
or

(
1 0 0
1 0 0

)
, also after operations on columns. However σ̃94 ∈ G acting on

the second matrix produces the third one. The grading induced by the
third matrix is 〈g1g2g

n1
3 g

n2
4 , g

m1
3 gm2

4 , gl1
3 g

l2
4 〉 where the couples (m1, m2) and

(l1, l2) are linearly independent in the vector space Z2
2 (otherwise the grading

has two generators and so is toral). Thus (n1, n2) is a linear combination of
them and the grading can be written as 〈g1g2f

kgh, f, g〉 where f, g ∈ 〈g3, g4〉.
But 〈g1g2f

kgh, f, g〉 = 〈g1g2, f, g〉 hence we have the (agreeing) possibilities
〈g1g2, g3, g4〉 = 〈g1g2, g3g4, g3〉 = 〈g1g2, g3g4, g4〉. So in this case we must only
worry about the grading 〈g1g2, g3, g4〉, which can be proved to be toral (seen
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as a grading on the Albert algebra, this comes from a necessarily toral Z2 ×
Z2-grading on the octonions refined with the Z2-grading on H3(F ), see Sub-
section 3.1, but alternatively we next prove that is conjugated to 〈g1, g2, g4〉).
The first matrix above produces the grading 〈g1g

n1
3 g

n2
4 , g2g

m1
3 gm2

4 , gl1
3 g

l2
4 〉. But

σ̃485 permutes g1 and g2 while σ̃485g3σ̃485
−1 = g3g4 and σ̃485g4σ̃485

−1 = g4, so
we can suppose l1 =1, l2 = 0 or l1 = 0, l2 = 1. This reduces the possibilities
to 〈g1g

n2
4 , g2g

m2
4 , g3〉 or 〈g1g

n1
3 , g2g

m1
3 , g4〉. The four different possibilities for

the first case are 〈g1, g2, g3〉, 〈g1g4, g2, g3〉, 〈g1, g2g4, g3〉, 〈g1g4, g2g4, g3〉, but
conjugating by σ̃103 ∈ G, the first and second gradings turn out to be iso-
morphic, so as the third and the fourth ones; while conjugation by σ̃468 ∈ G
proves the isomorphism between the second and the third gradings. On the
other hand the four possibilities for 〈g1g

n1
3 , g2g

m1
3 , g4〉 are 〈g1, g2, g4〉 (which is

obviously toral), 〈g1g3, g2, g4〉, 〈g1, g2g3, g4〉 and 〈g1g3, g2g3, g4〉. But conjuga-
tion by σ̃468 makes evident the isomorphism between the second and the third
gradings while 〈g1g3, g2g3, g4〉 = 〈g1g2, g2g3, g4〉 = 〈g1g2, g1g3, g4〉 and conju-
gation by σ̃491 ∈ G proves that this is isomorphic to 〈g1g3, g2, g4〉. Now it is
possible to show that there exists an element ψ ∈ G such that ψgiψ

−1 = gi

for i = 1, 4 while ψg2ψ
−1 = g3 and ψg3ψ

−1 = g2 (the element ψ can be taken
of order 4). So ψ〈g1g3, g2, g4〉ψ−1 = 〈g1g2, g3, g4〉, whose torality has been
previously stated. Moreover, 〈g1g2, g3, g4〉 is conjugated to 〈g1, g3, g4〉 by σ̃94

and this is conjugated to 〈g1, g2, g4〉 by ψ. This last one is obviously toral.
Summarizing the results in this paragraph we have:

Proposition 11. If Q ⊂ A(105, id) is a quasitorus with X(Q) ∼= Z3
2 then it

is conjugated to 〈g1, g2, g3〉 if Q is nontoral, and to 〈g1, g2, g4〉 if it is toral.
Moreover the conjugating element can be taken to fix the subgroup A(105, id).
The Z3

2-grading induced by 〈g1, g2, g3〉 is of type (0, 0, 1, 0, 0, 0, 7).

Proof. We have proved in the previous paragraph that Q is conjugated to
either 〈g1, g2, g3〉 or 〈g1, g2, g4〉. Obviously 〈g1, g2, g4〉 is toral. On the other
hand, the grading induced by 〈g1, g2, g3〉 is nontoral, of type (0, 0, 7, 0, 0, 1) in
the Albert algebra and of type (0, 0, 1, 0, 0, 0, 7) in f4. Its nontoral character
is obvious noticing that the dimension of its 0-homogeneous component in f4

is 3. �

Proposition 12. If Q ⊂ A(105, id) is a nontoral quasitorus such that
X(Q) ∼= Z3

2 × Zm, with m > 1, then up to conjugacy there is v ∈ F× a
primitive m-root of the unit such that Q = 〈g1, g2, g3, t

′
1,1,1,v〉.

Proof. The quasitorus Q = 〈φi〉4i=1 is generated by φ1, φ2, φ3 order-two
elements in F4 and φ4 an order-m element in F4. We can apply the previous
proposition to Q′ := 〈φ1, φ2, φ3〉. So we can assume (by conjugating) that
either (1) Q′ = 〈g1, g2, g3〉, or (2) Q′ = 〈g1, g2, g4〉, with φ4 = gn

1 g
k
2g

l
3t

′
1,1,1,u for
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some n, k, l ∈ {0, 1} and some u ∈ F×. From φm
4 = id, it follows that lm is

even (either l or m) and t′(−1)n,(−1)k ,(−1)n+k,u has order m, in particular um =1.

In case (1),

Q = 〈g1, g2, g3, g
n
1 g

k
2g

l
3t

′
1,1,1,u〉 = 〈g1, g2, g3, t

′
1,1,1,u〉, but t′1,1,1,u /∈ Q′,

so if u had order m′ (divisor of m), X(Q) would be isomorphic to Z3
2 × Zm′ .

Hence u is a primitive m-root of the unit.
In case (2),

Q = 〈g1, g2, g4, g
n
1 g

k
2g

l
3t

′
1,1,1,u〉 = 〈g1, g2, t

′
1,1,1,−1, g

l
3t

′
1,1,1,u〉.

Since Q is nontoral, l = 1. Hence m = 2m′ must be even, with um′ ∈ {±1}.
If um′

= −1, (g3t
′
1,1,1,u)

m′
would be t′1,1,1,−1 if m′ is even, and g3t

′
1,1,1,−1 if

m′ is odd. In the first case Q = 〈g1, g2, g3t
′
1,1,1,u〉, a contradiction with

the number of generators of X(Q). In the other case, g3 ∈ Q, hence Q =
〈g1, g2, t

′
1,1,1,−1, g3, t

′
1,1,1,u〉 = 〈g1, g2, g3, t

′
1,1,1,u〉 and so X(Q) would be a sub-

group of Z3
2 ×Zm′ , a contradiction. Thus um′

= 1 and (g3t
′
1,1,1,u)

m′
would be

t′1,1,1,1 = id if m′ is even, and g3 if m′ is odd. In the first case again X(G)
would be a subgroup of Z3

2×Zm′ . So that we have the case m′ odd, in which
g3 ∈ Q. In this way Q = 〈g1, g2, t

′
1,1,1,−1, g3, t

′
1,1,1,u〉 = 〈g1, g2, g3, t

′
1,1,1,−u〉,

since (t′1,1,1,−u)
m′

= t′1,1,1,−1. But now v = −u is the required primitive
m-root of the unit.

Notice that the obtained quasitori Q = 〈g1, g2, g3, t
′
1,1,1,v〉 are obviously

nontoral because they contain 〈g1, g2, g3〉. �
The induced gradings by the previous quasitori depend on m. For m = 2

we are talking about a Z4
2-grading of type (1, 8, 0, 0, 7), for m = 3 it is a

Z3
2 × Z3-grading of type (3, 14, 7), for m = 4 it is a Z3

2 × Z4-grading of type
(17, 7, 7), but for m ≥ 5 all the gradings are equivalent to the one produced
by A(105, id), since they are all of type (31, 0, 7). In general two gradings
having the same type are not necessarily equivalent, but of course they are
equivalent if the quasitorus producing one of the gradings is contained in
the other one, since the homogeneous components of the former are pieces
of the homogeneous components of the latter.

Remark 4. If Q′ ⊂ Q are quasitori whose induced gradings are of the same
type, then these gradings are equivalent.

To continue the study of nontoral gradings coming from subquasitori
of A(105, id) we must analyze those quasitori Q ⊂ A(105, id) with X(Q) ∼=
Z2

2×Zm, where m must be even (otherwise Q would have two generators and
the grading would be toral). Moreover m must be a multiple of 4, because
we have already studied the cases m = 2 in Proposition 11 and m = 2m′

with m′ odd in Proposition 12.
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Proposition 13. If Q ⊂ A(105, id) is a nontoral quasitorus such that
X(Q) ∼= Z2

2 × Z4m with m ≥ 1, then up to conjugacy there is v ∈ F× a
primitive 4m-root of the unit such that Q = 〈g1, g2, g3t

′
1,1,1,v〉.

Proof. Suppose that {φ1, φ2, φ3} is a set of generators of Q with φ1 and φ2

of order two and φ3 of order 2k = 4m. Then φk
3 is an order-two element and

we can suppose (by conjugating if necessary) that the subgroup 〈φ1, φ2, φ
k
3〉

is either 〈g1, g2, g3〉 or 〈g1, g2, g4〉, according to Proposition 11. Besides, φ3 =
gn

1 g
m
2 g

l
3t

′
1,1,1,u for some n,m, l ∈ {0, 1} and u ∈ F×. As k is even, φk

3 =
t′1,1,1,uk . Since φk

3 has exactly order two, uk = −1 and φk
3 = g4.

But 〈φ1, φ2, φ
k
3〉 = 〈g1, g2, g3〉 is not possible, since g4 /∈ 〈g1, g2, g3〉, so

necessarily 〈φ1, φ2, φ
k
3〉 = 〈g1, g2, g4〉. Thus

Q = 〈φ1, φ2, φ
k
3, φ3〉 = 〈g1, g2, g4, g

l
3t

′
1,1,1,u〉

and l = 1 since Q is nontoral. But (g3t
′
1,1,1,u)

k = g4 so that Q agrees with
the group 〈g1, g2, g3t

′
1,1,1,u〉, where u has order 2k = 4m. �

Notice that in this case all the Z3
2-coarsenings of the gradings are toral. In

spite of that, these gradings are nontoral, because the dimension of the zero
homogeneous component is 3 in case m = 1 and 1 in the remaining cases. If
m = 1, we obtain a Z2

2 ×Z4-grading of type (0, 8, 2, 0, 6), if m = 2 we have a
Z2

2 ×Z8-grading of type (19, 6, 7), but for m ≥ 3 we obtain gradings of type
(31, 0, 7), so equivalent to the fine Z3

2 × Z-grading, again by the previous
remark.

Finally we analyze the case X(Q) = Z2
2×Z. The quasitorus Qmust be the

direct product of a one-dimensional subtorus P of A(105, id) times 〈φ1, φ2〉,
with φi two elements of order two. But necessarily P = {t′1,1,1,u | u ∈ F×}
(it is the unique nontrivial subtorus of A(105, id)). Changing the generators
if necessary (to remove g4), we can write (φ1, φ2) = (g3, g2, g1)M where
M is a 3 × 2 matrix with entries in Z2. The first row is nonzero because
otherwise the grading would be toral, and performing column operations we
can suppose that it is (1 0). Besides there must be some 1 in each column. As
σ̃468 interchanges the second and third row, by doing column operations, the
first two rows in M can be taken to be

(
1 0
0 1

)
. Thus either Q = P 〈g3g1, g2〉,

or Q = P 〈g3, g1g2〉, or Q = P 〈g3g1, g2g1〉. By applying the element σ̃491 to
the third one, we obtain P 〈g1g2g3g4, g2g4〉 = P 〈g1g3, g2g4〉 = P 〈g1g3, g2〉, the
first quasitorus. This one is conjugated to the second one by means of ψ (see
Appendix). Besides we can replace g1g2 by g1 by using σ̃94. Summarizing
these facts we have:

Proposition 14. If Q ⊂ A(105, id) is nontoral and X(Q) ∼= Z2
2 × Z then Q

is conjugated to 〈g1, g3, t
′
111u | u ∈ F×〉.
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Notice that the induced grading on f4 is of type (31, 0, 7), so it is again
equivalent to the one produced by the whole A(105, id).

The following step is to examine the proper subquasitori of A(15, id).
However all of them are toral since A(15, id) is isomorphic to Z3

3 hence any
proper subquasitorus has a system of generators of cardinal ≤ 2 (Lemma 2).

Thus, to finish our classification of subquasitori of the maximal quasitori,
we must analyze A(405, id). This group is isomorphic to Z5

2. Indeed we have
A(405, id) = 〈T〈405〉 ∪ {σ̃405}〉 where T

〈405〉 = {t′xyzu | x2 = y2 = z2 =u2 =1} ∼=
Z4

2 and σ := σ̃405 is an order two element. Consider a subquasitorus Q ⊂
A(405, id) with three order-two generators. If Q is nontoral, then σt ∈ Q for
some order-two t ∈ T. But applying Corollary 2 we can conjugate Q to some
new quasitorus Q′ with σ ∈ Q′. Thus we can suppose from the beginning
that σ ∈ Q, and by elementary operations we can take Q = 〈σ, t1, t2〉 where
ti ∈ T are order-two elements.

It is known that there are two conjugacy classes of elements of order 2
in F4, related to the diagrams obtained by removing the nodes marked with
the number 2 in the affine Dynkin diagram [29, Ch. 8]. The first automor-
phism, related to the marked diagram:

�� ×

fixes a subalgebra of type b4, of dimension 36, and the second one, related
to the marked diagram:

��×

fixes a subalgebra of type c3 ⊕ a1, of dimension 24. But if two elements in a
maximal torus are conjugated, they are conjugated inside the normalizer of
the maximal torus. This means that the Weyl group acts on T

〈405〉 produc-
ing two orbits, apart of the trivial one, characterized by the fact that the
dimensions of their fixed parts (the number of 1’s in the list (4.4)) are 36
and 24, respectively. This could have been checked by a computer calcula-
tion of the action of W on the set of order-two elements in T. In the first
orbit there are three elements, t′1,1,1,−1, t

′
−1,−1,−1,−1 and t′−1,−1,−1,1, and in the

second orbit the remaining 12 elements. Thus we can move the element t1
in Q, since not only σ405 = −id clearly commutes with any element in W,
but σσ̃j = σ̃jσ for any j ∈ {1, . . . 1152}. Therefore the possibilities for Q are
(1) Q = 〈σ, t′−1,1,1,1,−〉 and (2) Q = 〈σ, t′1,1,1,−1,−〉, as t′−1,1,1,1 and t′1,1,1,−1

are representatives of the two orbits. In the first case, the third element can
be computed by considering the subgroup of W fixing t′−1,1,1,1 and the orbits
it produces on the set of order-two elements different from t′−1,1,1,1. Indeed,
that subgroup produces three orbits such that any order-two element differ-
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ent from t′−1,1,1,1 is conjugated to either t′1,−1,1,1, or t′1,1,1,−1 or t′1,−1,−1,−1 by
an element in W fixing t′−1,1,1,1. As a consequence the possibilities for Q are
〈σ, t′−1,1,1,1, t

′
1,−1,1,1〉, 〈σ, t′−1,1,1,1, t

′
1,1,1,−1〉 and 〈σ, t′−1,1,1,1, t

′
1,−1,−1,−1〉. But the

second and third of these are conjugated and toral (σ̃69 relates both of them),
hence the unique nontoral Q is, up to conjugacy, Q = 〈σ, t′−1,1,1,1, t

′
1,−1,1,1〉.

In the case (2), we can take the third element t2 also in the orbit of t′1,1,1,−1

and so Q = 〈σ, t′1,1,1,−1, t
′
−1,−1,−1,1〉, which produces a toral grading again.

It is obviously not conjugated to the previous toral one, because the num-
ber of order-two elements in a determined orbit is preserved by conjugation
(besides the zero homogeneous components have different dimensions).

Proposition 15. The unique proper subquasitorus of A(405, id) of order 8
(up to conjugacy) are:

• 〈σ̃405, t
′
−1,1,1,1, t

′
1,−1,1,1〉, inducing a nontoral Z3

2-grading of type (0, 0, 1,
0, 0, 0, 7).

• 〈σ̃405, t
′
−1,1,1,1, t

′
1,1,1,−1〉, which is toral.

• 〈σ̃405, t
′
1,1,1,−1, t

′
−1,−1,−1,1〉, which is also toral.

The gradings induced by the last two quasitori are not isomorphic.

To finish this subsection we should now describe the nontoral subqua-
sitori Q of A(405, id) isomorphic to Z4

2. For this we take any subqua-
sitori Q′ of Q of cardinal 8, that is, isomorphic to Z3

2 and apply the pre-
vious study to it. Thus we should study the possible refinements of the
quasitori given in Proposition 15 which give nontoral gradings. The tech-
niques already used in the previous paragraph give that any such quasitori is
conjugated to 〈σ, t′−1,1,1,1, t

′
1,−1,1,1, t

′
1,1,1,−1〉, which gives a Z4

2-grading of type
(1, 8, 0, 0, 7). The agreement with the type of the Z4

2-quasitorus contained
in A(105, id) suggests that they could be conjugated and the corresponding
gradings isomorphic. Indeed, up to conjugacy there is only one abelian non-
toral subgroup of F4 isomorphic to Z3

2 and only one to Z4
2 (see for instance

[40, Prop. 3.2]). For completeness and selfcontainedness we prove this fact
in our context.

Proposition 16. Any nontoral proper subquasitorus of A(405, id) is conju-
gated to a subquasitorus of A(105, id).

Proof. Notice that for f1 = t′−1,1,−1,1, f2 = t′1,−1,−1,1 and f3 = t′1,1,1,−1, both

σ̃105 and σ̃405 commute with the subgroup T
〈105〉 ∩ T

〈405〉 = 〈f1, f2, f3〉 ∼= Z3
2.

In fact both gradings induced by 〈f1, f2, f3, σ̃105〉 and 〈f1, f2, f3, σ̃405〉 are
nontoral. The key fact is that 〈f1, f2, f3, σ̃105σ̃405〉 is toral (since the fixed
part is a four-dimensional abelian subalgebra), so we can apply Proposition 7
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to F = {fi}5
i=1, for f4 = σ̃105σ̃405 and f5 = σ̃105. The group 〈F 〉 is obviously

nontoral since it is isomorphic to Z5
2. As in the proof of Proposition 7,

there is p ∈ F4 such that pfip
−1 ∈ T for i = 1, . . . , 4 and pf5p

−1 ∈ N,
that is, there are j ∈ {1, . . . , 1152} and t ∈ T such that pf5p

−1 = σ̃jt. As
Z4

2
∼= 〈pfip

−1 | i = 1 . . . 4〉 ⊂ T
〈j〉, we have either j = 405 or j = 748. But if

we had this last possibility, the grading 〈pfip
−1 | i = 1 . . . 5〉 would be toral.

Hence pf5p
−1 = σ̃405t. Moreover p can be taken such that pf5p

−1 = σ̃405, by
Corollary 2, so that p〈F 〉p−1 ⊂ A(405, id).

Thus, the unique (up to conjugation) nontoral subquasitorus ofA(105, id)
isomorphic to Z4

2, which is 〈f1, f2, f3, f5〉 according to Proposition 12, is
conjugated by means of p to a subquasitorus of A(405, id), and consequently,
the same can be said about the Z3

2-nontoral quasitorus 〈f1, f2, f5〉. This
finishes the proof because there are only two nontoral proper subquasitori
of A(405, id), by Proposition 15 and the subsequent paragraph. �

Summarizing the previous propositions, we have proved the following
theorem, which describes all the nontoral quasitori of F4.

Theorem 5. Any nontoral subquasitorus of F4 is conjugated to some of the
following:

I) A(15, id) = 〈σ̃15, t
′
ω,ω,1,ω2 , t′1,ω,ω,1〉 ∼= Z3

3, where ω is a primitive cubic
root of 1.

II) A(105, id) = 〈{σ̃105, t
′
−1,1,−1,1, t

′
1,−1,−1,1}∪ {t′111u}u∈F×〉 ∼= F××Z3

2, and
its nontoral (proper) coarsenings which up to conjugacy are:

II.1) 〈σ̃105, t
′
−1,1,−1,1, t

′
1,−1,−1,1〉 ∼= Z3

2.

II.2) 〈σ̃105, t
′
−1,1,−1,1, t

′
1,−1,−1,1, t

′
1,1,1,−1〉 ∼= Z4

2.

II.3) 〈σ̃105, t
′
−1,1,−1,1, t

′
1,−1,−1,1, t

′
1,1,1,ρ〉 ∼= Z3

2 × Zm, where m > 2 and
ρ ∈ F× of order m.

II.4) 〈t′−1,1,−1,1, t
′
1,−1,−1,1, σ̃105t

′
1,1,1,ρ〉 ∼= Z2

2 × Z4m, where ρ ∈ F× is of
order 4m.

II.5) 〈{σ̃105, t
′
−1,1,−1,1} ∪ {t′111u}u∈F×〉 ∼= F× × Z2

2.

III) A(405, id) = 〈σ̃405, t
′
−1,1,1,1, t

′
1,−1,1,1, t

′
1,1,−1,1, t

′
1,1,1,−1〉 ∼= Z5

2. Its nontoral
proper subquasitori are conjugated to the ones in II.1) and II.2).

Therefore, the following table gives all the nontoral gradings on f4 up
to equivalence. We have avoided overlapping of cases produced by the in-
finite families of quasitori arising in the theorem (computed after Proposi-
tions 12, 13 and 14). We give the quasitori, the universal grading groups
and the types:
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Grading Group Type
I Z3

3 (0, 26) Fine
II Z3

2 × Z (31, 0, 7) Fine
II.1 Z3

2 (0, 0, 1, 0, 0, 0, 7)
II.2 Z4

2 (1, 8, 0, 0, 7)
II.3.1 Z3

2 × Z3 (3, 14, 7)
II.3.2 Z3

2 × Z4 (17, 7, 7)
II.4.1 Z2

2 × Z4 (0, 8, 2, 0, 6)
II.4.2 Z2

2 × Z8 (19, 6, 7)
III Z5

2 (24, 0, 0, 7) Fine

Remark 5. We should notice that there are 9 different equivalence classes
of nontoral gradings on f4. But there are only 8 different ones on the Albert
algebra J . The device for translating gradings from J to f4 (and conversely)
has this deficiency. However it works well when applied to fine gradings, be-
cause MAD’s are preserved by the adjoint map. This explains the agreement
in the number of fine gradings (up to equivalence).

Remark 6. Theorem 4 states that every quasitorus in F4 is contained in
some A(j, id). Thus every nontoral grading is induced by a set of automor-
phisms formed by one element in the extension of the Weyl group together
with several elements in T. This result is also true in the context of nontoral
gradings on g2. But it is false when applied to other simple Lie algebras, for
instance d4 = o(8, F ) (see [14]). Then, an alternative approach in the study
of nontoral gradings is to find “the first steps”, that is, the minimal non-
toral quasitori instead of the maximal ones. Independently of the simple Lie
algebra under study, they are contained in some A(j, id) and any nontoral
grading can be obtained by refining one of the gradings produced by them.
In the case of f4, we have found three nontoral minimal quasitori, namely, I,
II.1 and II.4.1 in Theorem 5, which provide Z3

3, Z3
2 and Z2

2 × Z4-gradings
respectively.

6. Gradings on the Albert algebra revisited

In this section we prove Theorem 3. We start by considering the qua-
sitorus Q inducing a nontoral grading on the Albert algebra J . The key
tool here is the previously mentioned fact that the automorphism group
F4 = aut(J) and the automorphism group F4 = aut(f4) are isomorphic via
the map Ad: F4 → F4 such that Ad(f)d := fdf−1 for any f ∈ F4 and d ∈ f4

([27]). Then we can apply Theorem 5 to have an immediate view (up to
conjugacy) of the quasitory Q. So we study the different possibilities I)-III)
provided by Theorem 5 and collect them in the following table
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Grading Group Type
I Z3

3 (27) Fine
II Z3

2 × Z (25, 1) Fine
II.1 Z3

2 (0, 0, 7, 0, 0, 1)
II.2 Z4

2 (7, 8, 0, 1)
II.3.1 Z3

2 × Z3 (21, 3)
II.3.2 Z3

2 × Z4 (23, 2)
II.4 Z2

2 × Z4 (6, 9, 1)
III Z5

2 (24, 0, 1) Fine

It is remarkable the fact that all the quasitori in case II.4 of Theorem 5
induce the same grading on J up to equivalence (by Remark 4). This was not
the case in f4 where these quasitori produced two nonequivalent gradings.
This is the reason why we only have eight equivalence classes of nontoral
gradings on J while in f4 we have detected nine.

Now, any nontoral grading on J must be equivalent to any of these, and
these are nonequivalent. But the gradings (3.7), (3.8), (3.9), (3.10), (3.11),
(3.1), (3.12) and (3.13) described in Theorem 3 are nonequivalent since their
types are different:

Grading Type
(3.7) (25,1)
(3.8) (7,8,0,1)
(3.9) (21,3)

Grading Type
(3.10) (23,2)
(3.11) (24,0,1)
(3.1) (0,0,7,0,0,1)

Grading Type
(3.12) (6,9,1)
(3.13) (27)

and so they give a complete system of pairwise nonequivalent nontoral grad-
ings on the Albert algebra.

Remark 7. There is only one equivalence class of group gradings on J
with every nonzero component spanned by an invertible element, namely
the Z3 ×Z3 ×Z3-grading (19). Thus J is a Jordan Λ-torus, according to [5,
Remark 9.2.1]. Although Jordan tori have been classified in [42], Theorem 3
provides an alternative proof of the uniqueness.

7. Description of the nontoral gradings on f4

In this section we would like to give a more detailed description of the
fine gradings on f4. This description is going to be twofold. On the one
hand by using any software allowing simultaneous diagonalization we can
get the homogeneous spaces of the grading under consideration in terms of
the basis introduced in 4.1. We include this description for its possible use
in applications requiring explicit computations. For instance, the subject
of gradings is closely related to that of graded contractions [32]. In the
setting of graded contractions, new Lie algebras are obtained by modifying
the commuting relations preserving the grading.
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But on the other hand we would like to highlight the fact that the whole
algebraic group stuff used in this work has been needed to prove that we have
captured all the gradings. However this is not necessary at all to describe
these gradings. This can be made in an independent way and this is why
in this section we are giving natural descriptions of all the fine gradings. Of
course the term natural is used here in a subjective manner meaning that the
mere description of the gradings (which follows) needs no computer methods
neither involves the Weyl group or maximal tori. Thus any mathematician
could check the gradings ignoring such tools.

7.1. Z3
3-grading on f4

This grading has been previously referenced in the literature though mostly
in geometry rather than in algebra. Geometers have studied elementary p-
groups with different purposes other than the study of gradings. The fine Z3

3-
grading appears for instance in [19, THEOREM11.13] from the viewpoint
of compact Lie groups but [3, 8.1] gives results showing how to translate
the arguments to the algebraic groups setting. On the other hand this Z3

3-
grading has been studied from the viewpoint of Jordan groups (see [34,
p. 127]). It was Alekseevskij, in [4, Table 1], who classified Jordan subgroups
in the exceptional case.

The description of the gradings in terms of root vectors can be obtained
instantaneously by performing a simultaneous diagonalization of f4 relative
to the set of automorphisms {σ̃15, t

′
ω,ω,1,ω2, t′1,ω,ω,1}. Thus we obtain the fol-

lowing fine Z3
3-grading of type (0, 26) on L = f4:

L000 = 0,
L001 = 〈b17 + b32 + b33,−b22 + b34 + b42〉,
L002 = 〈b8 + b9 + b41, b10 + b18 + b46〉,
L010 = 〈b1 + b2 + b29, b4 − b23 + b48〉,
L011 = 〈−b19 + b30 + b38,−b20 + b31 + b39〉,
L012 = 〈b3 + b13 + b40, b11 − b12 + b45〉,
L020 = 〈b5 + b25 + b26,−b24 − b28 + b47〉,
L021 = 〈−b21 − b35 + b36, b16 − b27 + b37〉,
L022 = 〈−b6 − b14 + b43, b7 − b15 + b44〉,
L100 = 〈tα1 + (2 + ω)tα2 + 2tα3 , ((−1 − ω)tα1) + (−1 − 2ω)tα2 + 2tα4〉,
L101 = 〈ωb17 + ω2b32 + b33,−ω2b22 + ωb34 + b42〉,
L102 = 〈ωb8 + ω2b9 + b41, ω

2b10 + ωb18 + b46〉,
L110 = 〈ωb1 + ω2b2 + b29, ωb4 − ω2b23 + b48〉,
L111 = 〈−ω2b19 + ωb30 + b38,−ωb20 + ω2b31 + b39〉,
L112 = 〈ω2b3 + ωb13 + b40, ωb11 − ω2b12 + b45〉,
L120 = 〈ωb5 + ω2b25 + b26,−ωb24 − ω2b28 + b47〉,
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L121 = 〈−ωb21 − ω2b35 + b36, ω
2b16 − ωb27 + b37〉,

L122 = 〈−ω2b6 − ωb14 + b43, ωb7 − ω2b15 + b44〉,
L200 = 〈tα1 + (2 + ω2)tα2 + 2tα3 , (−1 − ω2)tα1 + (−1 − 2ω2)tα2 + 2tα4〉,
L201 = 〈ω2b17 + ωb32 + b33,−ωb22 + ω2b34 + b42〉,
L202 = 〈ω2b8 + ωb9 + b41, ωb10 + ω2b18 + b46〉,
L210 = 〈ω2b1 + ωb2 + b29, ω

2b4 − ωb23 + b48〉,
L211 = 〈−ωb19 + ω2b30 + b38,−ω2b20 + ωb31 + b39〉,
L212 = 〈ωb3 + ω2b13 + b40, ω

2b11 − ωb12 + b45〉,
L220 = 〈ω2b5 + ωb25 + b26,−ω2b24 − ωb28 + b47〉,
L221 = 〈−ω2b21 − ωb35 + b36, ωb16 − ω2b27 + b37〉,
L222 = 〈−ωb6 − ω2b14 + b43, ω

2b7 − ωb15 + b44〉.

The easiest way to visualize this grading intrinsically, that is, with no
reference to a particular basis or computer methods, may be considering Lie
algebra models based upon Z3-gradings. Perhaps the most natural place
where to look at the automorphisms inducing the grading is the Lie alge-
bra e6. Adams gave a construction of this algebra from three copies of a2

([1, p. 85]). This model has been widely spread for its nice 3-symmetry. Once
the automorphisms have been given in e6 we could hopefully restrict them
to f4. Given a three-dimensional F -vector space X in which a nonzero alter-
nating trilinear map det : X ×X ×X → F has been fixed, we can identify
the exterior product with the dual space by means of the map X ∧X ≈→ X∗

such that x ∧ y �→ det(x, y,−) ∈ hom(X,F ). And in a dual way we can
identify X∗ ∧X∗ with X through det∗, the dual map of det. Consider three
tridimensional vector spaces Xi (i = 1, 2, 3), and define:

L = sl(X1) ⊕ sl(X2) ⊕ sl(X3) ⊕ X1 ⊗X2 ⊗X3 ⊕ X∗
1 ⊗X∗

2 ⊗X∗
3 ,

endowed with a Lie algebra structure with the product

(7.1)

[⊗fi,⊗xi] = 1
2

∑
k=1,2,3

i�=j �=k
fi(xi)fj(xj)

(
fk(−)xk − 1

3
fk(xk)idXk

)
[⊗xi,⊗yi] = ⊗(xi ∧ yi)
[⊗fi,⊗gi] = ⊗(fi ∧ gi)

for any xi, yi ∈ Xi, fi, gi ∈ X∗
i , with the wedge products as above, and where

the actions of the Lie subalgebra
∑

sl(Xi) onX1⊗X2⊗X3 and X∗
1⊗X∗

2 ⊗X∗
3

are the natural ones (the i-th simple ideal acts on the i-th slot). The Lie
algebra L is isomorphic to e6.

Following Hesselink ([24]), we say that a grading is special if and only
if its 0-homogeneous component is zero. We can observe that e6 admits a
special Z3

3-grading with the nonzero homogeneous components of the same
dimension (78/26 = 3). Since L = L0̄ ⊕ L1̄ ⊕ L2̄ is a Z3-grading for L0̄ =
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sl(X1)⊕sl(X2)⊕sl(X3), L1̄ = X1⊗X2⊗X3 and L2̄ = X∗
1 ⊗X∗

2 ⊗X∗
3 , take φ1

the automorphism which induces the grading, that is, φ1|Lī
= ωiidLī

where

ω = e
2πI
3 is a primitive cubic root of the unit.

In order to provide the other automorphisms, take into account the fol-
lowing observation. If ρi : Xi → Xi, i = 1, 2, 3, are linear maps preserving
det : X3

i → F (that is, det(xi, yi, zi) = det(ρi(xi), ρi(yi), ρi(zi)), or equiva-
lently, det ρi = 1), the linear map ρ1 ⊗ ρ2 ⊗ ρ3 : L1̄ → L1̄ can be uniquely
extended to an automorphism of L such that its restriction to sl(Vi) ⊂ L0̄ is
the conjugation map g �→ ρigρ

−1
i .

Next fix basis {u0, u1, u2} of X1, {v0, v1, v2} of X2, and {w0, w1, w2} of X3

with det(u0, u1, u2) = det(v0, v1, v2) = det(w0, w1, w2) = 1. Consider now φ2

the unique automorphism of e6 extending the map

ui ⊗ vj ⊗ wk �→ ui+1 ⊗ vj+1 ⊗ wk+1

(indices module 3). This is of course an order three semisimple automor-
phism commuting with φ1. Finally let φ3 be the unique automorphism of e6

extending the map

ui ⊗ vj ⊗ wk �→ ωiui ⊗ ωjvj ⊗ ωkwk = ωi+j+kui ⊗ vj ⊗ wk.

This is also semisimple and commutes with φ1 and φ2. Thus the set {φi}3
i=1

induces a Z3
3-grading on e6. A computation of its 0-homogeneous component

will suffice to prove that this grading is nontoral. A first calculation reveals
that the subalgebra of elements fixed by φ1 and φ2 is the linear span of{

u1 ⊗ u∗2 + u2 ⊗ u∗3 + u3 ⊗ u∗1, u1 ⊗ u∗3 + u2 ⊗ u∗1 + u3 ⊗ u∗2,
v1 ⊗ v∗2 + v2 ⊗ v∗3 + v3 ⊗ v∗1, v1 ⊗ v∗3 + v2 ⊗ v∗1 + v3 ⊗ v∗2 ,
w1 ⊗ w∗

2 + w2 ⊗ w∗
3 + w3 ⊗ w∗

1, w1 ⊗ w∗
3 + w2 ⊗ w∗

1 + w3 ⊗ w∗
2

}
,

where we have taken u∗i = ui+1 ∧ui+2, v
∗
i = vi+1 ∧ vi+2 and w∗

i = wi+1 ∧wi+2

the dual basis of X∗
1 , X∗

2 and X∗
3 respectively. While the corresponding fixed

subalgebra for φ1 and φ3 is the linear span of{
u1 ⊗ u∗1 − u2 ⊗ u∗2, u1 ⊗ u∗1 − u3 ⊗ u∗3,
v1 ⊗ v∗1 − v2 ⊗ v∗2, v1 ⊗ v∗1 − v3 ⊗ v∗3,
w1 ⊗ w∗

1 − w2 ⊗ w∗
2, w1 ⊗ w∗

1 − w3 ⊗ w∗
3

}
,

again a six-dimensional abelian subalgebra. The intersection of both Car-
tan subalgebras is obviously zero and therefore our grading is special and
nontoral. Similar computations prove that the rest of the homogeneous
components are three-dimensional. The grading produced by any of the
automorphisms φi is of type (24, 27), since they are in the same conjugacy
class. The grading produced by any of the three couples {φi, φj} has one
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six-dimensional component and eight nine-dimensional ones. The grading
induced by the three automorphisms together is of type (0, 0, 26). Now we
must go down to see this grading in f4.

To a certain extent, the nice 3-symmetry described in e6 is inherited
by f4. Indeed graphically speaking, f4 arises by folding e6. More precisely,
taking X2 = X3 we can consider on e6 the unique automorphism τ : e6 → e6

extension of u ⊗ v ⊗ w �→ u ⊗ w ⊗ v. This is an order two automorphism
commuting with the previous φi for i = 1, 2, 3. The subalgebra of elements
fixed by τ is

sl(X1) ⊕ sl(X2) ⊕ X1 ⊗ Sym2(X2) ⊕ X∗
1 ⊗ Sym2(X∗

2 ),

where SymnXi denotes the symmetric powers (as in [17, p. 473]). This is a
simple Lie algebra of dimension 52, hence f4. Furthermore, denoting also
by φi : f4 → f4 the restriction of the corresponding automorphisms of e6

to fix τ , the set {φi}3
i=1 is also a set of commuting semisimple order three

automorphisms of f4 with no fixed points other than 0. So it induces a
special nontoral Z3

3-grading on f4 with all its homogeneous components of
the same dimension (52/26 = 2), of type (0, 26).

7.2. Z5
2-grading on f4

The group of automorphisms inducing this grading is also an elementary
p-group so that it is described in Griess work [19, Th. 7.3, p. 277]. Moreover,
the grading is pure (that is, there is some homogeneous component which
contains a Cartan subalgebra), therefore it also appears in Hesselink’s pa-
per [24, Table 1, p. 146]. As before an instantaneous computer calculation
provides its type, (24, 0, 0, 7), as well as the description of its homogeneous
components in terms of the fixed basis:

L0,0,0,0,0 = 0,
L0,0,0,0,1 = 〈b2 + b26〉,
L0,0,0,1,0 = 〈b41 − b17〉,
L0,0,0,1,1 = 〈b43 − b19〉,
L0,0,1,0,0 = 〈b38 − b14〉,
L0,0,1,0,1 = 〈b35 − b11〉,
L0,0,1,1,0 = 〈b3 + b27, b34 − b10, b39 − b15, b48 − b24〉,
L0,0,1,1,1 = 〈b30 − b6〉,
L0,1,0,0,0 = 〈b1 + b25〉,
L0,1,0,0,1 = 〈b5 + b29〉,
L0,1,0,1,0 = 〈b28 − b4, b40 − b16, b44 − b20, b22 + b46〉,
L0,1,0,1,1 = 〈b45 − b21〉,
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L0,1,1,0,0 = 〈b7 + b31, b37 − b13, b42 − b18, b47 − b23〉,
L0,1,1,0,1 = 〈b32 − b8〉,
L0,1,1,1,0 = 〈b36 − b12〉,
L0,1,1,1,1 = 〈b33 − b9〉,
L1,0,0,0,0 = 〈tα1 , tα2 , tα3 , tα4〉,
L1,0,0,0,1 = 〈b26 − b2〉,
L1,0,0,1,0 = 〈b17 + b41〉,
L1,0,0,1,1 = 〈b19 + b43〉,
L1,0,1,0,0 = 〈b14 + b38〉,
L1,0,1,0,1 = 〈b11 + b35〉,
L1,0,1,1,0 = 〈b27 − b3, b10 + b34, b15 + b39, b24 + b48〉,
L1,0,1,1,1 = 〈b6 + b30〉,
L1,1,0,0,0 = 〈b25 − b1〉,
L1,1,0,0,1 = 〈b29 − b5〉,
L1,1,0,1,0 = 〈b4 + b28, b16 + b40, b20 + b44, b46 − b22〉,
L1,1,0,1,1 = 〈b21 + b45〉,
L1,1,1,0,0 = 〈b31 − b7, b13 + b37, b18 + b42, b23 + b47〉,
L1,1,1,0,1 = 〈b8 + b32〉,
L1,1,1,1,0 = 〈b12 + b36〉,
L1,1,1,1,1 = 〈b9 + b33〉.

But any of the standard models of f4 would also do for describing the grading
in a basis-free manner. One of the best known models is that of Schafer ([39,
p. 112]) as derivations of the Albert algebra. Starting from the nontoral Z3

2-
grading on the Cayley algebra C = ⊕g∈Z

3
2
Cg we obtained the Z5

2-grading on
the Albert algebra J given by

Je,0,0 =< E1, E2, E3 >, Jg,0,0 = 0 (g �= e),

Jg,0,1 = C
(1)
g , Jg,1,1 = C

(2)
g , Jg,1,0 = C

(3)
g ,

with g, e = (0, 0, 0) ∈ Z3
2. Obviously the grading induced in L = Der(J) =

[RJ , RJ ] has as homogeneous components La = {d ∈ Der(J) | d(Jb) ⊂
Ja+b ∀b ∈ Z5

2}, therefore Le,0,0 = 0 and

Lg,0,1 = {[Rx(1) , RE2−E3] | x ∈ Cg}
Lg,1,1 = {[Rx(2) , RE3−E1] | x ∈ Cg}
Lg,1,0 = {[Rx(3) , RE1−E2] | x ∈ Cg} ∀g ∈ Z3

2

Lg,0,0 = {DU | U ∈ Ng} ⊕ {Drx | x ∈ (C0)g} ⊕ {Dlx | x ∈ (C0)g} ∀e �= g ∈ Z3
2

where

• Ng = {d ∈ Der(C) | d(Cb) ⊂ Cg+b ∀b ∈ Z3
2} are the components of

the grading induced on g2, all of them two-dimensional and Cartan
subalgebras, except for Ne = 0,
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• rx and lx are the right and left multiplication operators on C,

• if U ∈ o(C, n), DU ∈ Der(J) is the derivation given by

Ei �→ 0, x(1) �→ U(x̄)
(1)
, x(2) �→ U ′(x)(2)

, x(3) �→ U ′′(x)(3)
,

where U ′ and U ′′ are the elements in o(C, n) given by the local triality
principle [39, p. 88], that is, U(xy) = U ′(x)y+ xU ′′(y) for all x, y ∈ C.

Then clearly h4 = 7 (dimLg,0,0 = 2 + 1 + 1 = 4), also h1 = 8 · 3 = 24 and
the grading is of type (24, 0, 0, 7).

Anyway, we think that there is a more intuitive way of looking at this
grading, as well as at the gradings obtained by crossing gradings on the
Cayley algebra C with gradings on H3(F ). Recall from Subsection 3.3 that
if H ≡ H3(F ) = {x ∈ M3(F ) | x = xt} and K ≡ K3(F ) = {x ∈ M3(F ) |
x = −xt}, we could write

J = H ⊕K ⊗ C0.

Since f4 = Der(J), there must exist some model of f4 in these terms. In fact
we can see f4 as

L = Der(C) ⊕K ⊕H0 ⊗ C0

identifying the Lie algebra K (subalgebra of M3(F )−) to Der(H3(F )) in
the known Tits unified construction for the Lie exceptional algebras (for
instance, see [39, p. 122]).

Consider a G1-grading on the Jordan algebra H = ⊕g∈G1Hg. This grad-
ing will come from a grading on M3(F ) so that the Lie algebra K will also
have an induced grading. Take now the Z3

2-grading on the Cayley algebra
C = ⊕g∈G2=Z

3
2
Cg and the induced grading Der(C) = ⊕g∈G2Ng. All this

material induces a G1 ×G2-grading on J and also on L given by

Jg1,e = Hg1, Jg1,g2 = Kg1 ⊗ (C0)g2 ,
Lg1,e = Kg1 , Le,g2 = Ng2 ⊕ (H0)e ⊗ (C0)g2, Lg1,g2 = (H0)g1 ⊗ (C0)g2.

In the case of the Z5
2-grading we have G1 = Z2

2, with the gradings on H
and K given by

H0,0 = 〈E1, E2, E3〉 H0,1 = 〈e12 + e21〉 H1,1 = 〈e23 + e32〉 H1,0 = 〈e13 + e31〉
K0,0 = 0 K0,1 = 〈e12 − e21〉 K1,1 = 〈e23 − e32〉 K1,0 = 〈e13 − e31〉

and dim(C0)g = 1, dimNg = 2 for all g ∈ Z3
2 \ {(0, 0, 0)}. Therefore

dim Je,e = dimHe = 3 dim Le,e = 0
dim Je,g2 = 0 dim Le,g2 = dim(Ng2 + (H0)e ⊗ (C0)g2) = 4
dim Jg1,e = dim Hg1 = 1 dim Lg1,e = dim Kg1 = 1
dim Jg1,g2 = dimKg1 ⊗ (C0)g2 = 1 dim Lg1,g2 = dim(H0)g1 ⊗ (C0)g2 = 1

and so the grading is of type (24, 0, 1) on J , and (24, 0, 0, 7) on L = f4, as
we knew from previous sections.
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7.3. Z3
2 × Z-grading of f4

By contrast with previous cases, as long as we know this grading does not
appear in the mathematical literature. Again a simple computer aided cal-
culation reveals that the fine Z3

2 × Z-grading of type (31, 0, 7) is

L0,0,0,−2 = 0, L0,0,0,−1 = 〈b2 + b9〉,
L0,0,0,0 = 〈tα2 + 2tα3 + tα4〉, L0,0,0,1 = 〈b33 − b26〉,
L0,0,0,2 = 0, L0,0,1,−2 = 〈b22 + b28〉,
L0,0,1,−1 = 〈b35 − b21〉, L0,0,1,1 = 〈b45 − b11〉,
L0,0,1,2 = 〈b46 − b4〉, L0,1,0,−2 = 〈b15 − b10〉,
L0,1,0,−1 = 〈b6 − b5〉, L0,1,0,1 = 〈b29 + b30〉,
L0,1,0,2 = 〈b39 − b34〉, L0,1,1,−2 = 〈b23 + b31〉,
L0,1,1,−1 = 〈b19 + b32〉, L0,1,1,1 = 〈b8 + b43〉,
L0,1,1,2 = 〈b47 − b7〉, L1,0,0,−2 = 〈b12〉,
L1,0,0,−1 = 〈b9 − b2〉, L1,0,0,1 = 〈b26 + b33〉,
L1,0,0,2 = 〈b36〉, L1,0,1,−2 = 〈b28 − b22〉,
L1,0,1,−1 = 〈b21 + b35〉, L1,0,1,1 = 〈b11 + b45〉,
L1,0,1,2 = 〈b4 + b46〉, L1,1,0,−2 = 〈b10 + b15〉,
L1,1,0,−1 = 〈b5 + b6〉, L1,1,0,1 = 〈b30 − b29〉,
L1,1,0,2 = 〈b34 + b39〉, L1,1,1,−2 = 〈b31 − b23〉,
L1,1,1,−1 = 〈b32 − b19〉, L1,1,1,1 = 〈b43 − b8〉,
L1,1,1,2 = 〈b7 + b47〉, L1,0,0,0 = 〈tα2 ,

tα1

2
+ tα3 , tα4〉,

L0,0,1,0 = 〈b38 − b14, b40 − b16, b44 − b20〉,
L0,1,0,0 = 〈b1 + b25, b3 + b27, b48 − b24〉,
L0,1,1,0 = 〈b37 − b13, b41 − b17, b42 − b18〉,
L1,0,1,0 = 〈b14 + b38, b16 + b40, b20 + b44〉,
L1,1,0,0 = 〈b25 − b1, b27 − b3, b24 + b48〉,
L1,1,1,0 = 〈b13 + b37, b17 + b41, b18 + b42〉.

But we can detect this grading without reference to explicit computations
using again the model f4 = L = Der(C) ⊕ K ⊕ H0 ⊗ C0. We can write
the Z-grading on H given in (3.2), jointly with the induced one in K by
its extension to M3(F ), in the following equivalent form (using a suitable
involution x �→ pxtp−1 instead of the transposition):

H2 = 〈e23〉, K2 = 0,
H1 = 〈e13 + e21〉, K1 = 〈e13 − e21〉,
He = 〈E1, E2 + E3〉, Ke = 〈E2 − E3〉,
H−1 = 〈e12 + e31〉, K−1 = 〈e12 − e31〉,
H−2 = 〈e32〉, K−2 = 0.
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Thus, by crossing it with the Z3
2-grading on C we obtain

dim J2,e = dimH2 = 1 dimL2,e = 0
dim J1,e = dimH1 = 1 dimL1,e = dimK1 = 1
dim Je,e = dimHe = 2 dimLe,e = dimKe = 1
dim J2,g = 0 dimL2,g = dimH2 ⊗ (C0)g = 1
dim J1,g = dimK1 ⊗ (C0)g = 1 dimL1,g = dimH1 ⊗ (C0)g = 1
dim Je,g = dimKe ⊗ (C0)g = 1 dimLe,g = dimNg ⊕ (H0)e ⊗ (C0)g = 3

and the same dimensions of the homogeneous components with opposite
indices. So the grading is of type (25, 1) on J and (31, 0, 7) on f4.

7.4. The remaining nontoral gradings

Any of the detected gradings on f4 can be obtained by projections given by
epimorphisms from the universal grading groups corresponding to the fine
gradings. However, it is worth to point out that all of them can also be de-
scribed by using different models of the algebra. More precisely, consider a
G-grading on a simple Lie algebra L without outer automorphisms (equiva-
lently, without automorphisms of the Dynkin diagram). Then G is a product
of cyclic groups Gi, each of which produces certain cyclic Gi-grading. The
zero component of most of these Gi-gradings is a direct sum of Lie subalge-
bras of type either sl(V ) or so(V ). As modules for the zero component, the
remaining components are isomorphic to either tensor of natural modules
or spin ones, respectively (see [12] for more details). In the first case, it
is possible to describe the G-grading in a similar way that just illustrated
with the Z3

3-grading on f4. We now give some sketches of how this basis-free
method works for the other gradings found in f4, for instance the Z2

2 × Z4

and Z2
2 × Z8-gradings.

Let V and W be F -vector spaces of dimensions 2 and 4 respectively.
According to [12], f4 can be seen in the way

L = sl(V ) ⊕ sl(W ) ⊕ V ⊗W ⊕ Sym2V ⊗
2∧
W ⊕ V ⊗

3∧
W

and its product given in a way similar to (7.1).
One of the advantages of this model is that given linear maps ϕ : V → V

and ϕ̃ : W → W such that the first one preserves det :
∧2 V → F and the

second preserves det :
∧4W → F , the map ϕ⊗ ϕ̃ : V ⊗W → V ⊗W can be

uniquely extended to an automorphism of the algebra L ∼= f4, in such a way
that the restriction of this automorphism to sl(V ) is the map g �→ ϕgϕ−1,
and to sl(W ) is the map g �→ ϕ̃gϕ̃−1. Now, denote by

L0̄ = sl(V )⊕ sl(W ), L1̄ = V ⊗W, L2̄ = Sym2V ⊗
2∧
W, L3̄ = V ⊗

3∧
W.
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As L = L0̄ ⊕ L1̄ ⊕ L2̄ ⊕ L3̄ is a Z4-grading, take φ1 the automorphism
which gives the grading, that is, φ1|Lī

= I iidLī
where I is a primitive fourth

root of the unit. Let us fix {u0, u1} a basis of V with det(u0, u1) = 1, and
{w0, w1, w2, w3} a basis of W with det(w0, w1, w2, w3) = 1. Take ϕ2 : V →
V, u0 �→ Iu0, u1 �→ −Iu1 and ϕ̃2 : W → W,w0 �→ w0, w1 �→ w1, w2 �→
−w2, w3 �→ −w3. Define φ2 ∈ F4 as the extension of ϕ2 ⊗ ϕ̃2. Take now
ϕ3 : V → V, u0 �→ u1, u1 �→ −u0 and ϕ̃3 : W → W,w0 �→ w2, w1 �→ w3, w2 �→
w0, w3 �→ w1. Define then φ3 ∈ F4 as the extension of ϕ3 ⊗ ϕ̃3. Take
finally E a primitive eighth root of the unit, and define ϕ̃4 : W → W by
ϕ̃4(w0) = E5w2, ϕ̃4(w1) = E3w3, ϕ̃4(w2) = E5w0, ϕ̃4(w3) = E3w1. Consider
φ4 ∈ F4 the extension of ϕ3 ⊗ ϕ̃4. The set {φi}4

i=1 is a commutative set of
semisimple automorphisms and one can see with some easy though boring
hand computations that the grading induced by {φ1, φ2, φ3} is a Z2

2 × Z4-
grading of type (0, 8, 2, 0, 6), the grading produced by {φ1, φ2, φ4} is a Z2

2 ×
Z8-grading of type (19, 6, 7) and the grading produced by {φ1, φ2, φ3, φ4} is
a Z3

2 × Z8-grading of type (31, 0, 7), equivalent to the fine Z3
2 × Z-grading.

We display their homogeneous components.

The Z2
2 × Z4-grading induced by {φ1, φ2, φ3} is:

L0̄ =

⎧⎪⎪⎨⎪⎪⎩
L1,1,1 = diag(a, a)W dim 3
L1,1,−1 = diag(1,−1)V ⊕ diag(b,−b)W dim 5
L1,−1,1 = antidiag(1,−1)V ⊕ antidiag(b, b)W dim 5
L1,−1,−1 = antidiag(1, 1)V ⊕ antidiag(b,−b)W dim 5

with a ∈ sl(2) and b ∈ gl(2),

L1̄ =

⎧⎪⎪⎨⎪⎪⎩
LI,I,I = 〈u0 ⊗ w0 − Iu1 ⊗ w2, u0 ⊗ w1 − Iu1 ⊗ w3〉 dim 2
LI,I,−I = 〈u0 ⊗ w0 + Iu1 ⊗ w2, u0 ⊗ w1 + Iu1 ⊗ w3〉 dim 2
LI,−I,I = 〈u0 ⊗ w2 − Iu1 ⊗ w0, u0 ⊗ w3 − Iu1 ⊗ w1〉 dim 2
LI,−I,−I = 〈u0 ⊗ w2 + Iu1 ⊗ w0, u0 ⊗ w3 + Iu1 ⊗ w1〉 dim 2

L2̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1,1,1 = 〈(u0 · u0 + u1 · u1) ⊗ (w0 ∧ w3 − w1 ∧ w2),
(u0 · u0 − u1 · u1)⊗〈w0 ∧ w3 + w1 ∧ w2, w0 ∧ w2, w1 ∧ w3〉,
u0 · u1 ⊗ (w0 ∧ w1 − w2 ∧ w3)〉 dim5

L−1,1,−1 =〈(u0 · u0 + u1 · u1)⊗(w0 ∧ w3 + w1 ∧ w2, w0 ∧ w2, w1 ∧ w3),
(u0 · u0 − u1 · u1) ⊗ (w0 ∧ w3 − w1 ∧ w2),
u0 · u1 ⊗ (w0 ∧ w1 + w2 ∧ w3)〉 dim5

L−1,−1,1 = 〈(u0 · u0 + u1 · u1) ⊗ (w0 ∧ w1 + w2 ∧ w3),
(u0 · u0 − u1 · u1) ⊗ (w0 ∧ w1 − w2 ∧ w3),
u0 · u1 ⊗ 〈w0 ∧ w3 + w1 ∧ w2, , w0 ∧ w2, w1 ∧ w3〉〉 dim5

L−1,−1,−1= 〈(u0 · u0 + u1 · u1) ⊗ (w0 ∧ w1 − w2 ∧ w3),
(u0 · u0 − u1 · u1) ⊗ (w0 ∧ w1 + w2 ∧ w3),
u0 · u1 ⊗ (w0 ∧ w3 − w1 ∧ w2)〉 dim3
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and L3̄ dual to L1̄, hence h5 = 6, h3 = 2 and h6 = 8, as we wondered.
The notation antidiag(x1, . . . , xn) stands for the n× n matrix (aij) with all
entries zero except for ai,n−i+1 = xi. The subindices in Lijk indicate that φ1,
φ2, φ3 act with eigenvalues i, j, k respectively. Notice that, although φi has
order 4 for i = 1, 2, 3, φ1φ2 and φ1φ3 have order 2.

The Z2
2 × Z8-grading induced by {φ1, φ4, φ2} is:

L0̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1,1,1 = 〈diag(1,−1, 1,−1)〉W dim 1

L1,1,−1 =

〈(
0 1
−1 0

)〉
V

⊕
〈

antidiag

((
a 0
0 b

)
,

(
a 0
0 b

))〉
W

dim 3

L1,I,1 =

〈
diag

((
0 a
b 0

)
,

(
0 a
−b 0

))〉
W

dim 2

L1,I,−1 =

〈
antidiag

((
0 a
b 0

)
,

(
0 a
−b 0

))〉
W

dim 2

L1,−1,1 =

〈(
1 0
0 −1

)〉
V

⊕
〈

diag

((
a 0
0 b

)
,

(
−a 0
0 −b

))〉
W

dim 3

L1,−1,−1=

〈(
0 1
1 0

)〉
V

⊕
〈

antidiag

((
a 0
0 b

)
,

(
−a 0
0 −b

))〉
W

dim 3

L1,−I,1 =

〈
diag

((
0 a
b 0

)
,

(
0 −a
b 0

))〉
W

dim 2

L1,−I,−1=

〈
antidiag

((
0 a
b 0

)
,

(
0 −a
b 0

))〉
W

dim 2

with a, b ∈ F ,

L1̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LI,E7,I = 〈u0 ⊗ w0 − Iu1 ⊗ w2〉 dim 1

LI,E7,−I = 〈u0 ⊗ w2 − Iu1 ⊗ w0〉 dim 1

LI,E3,I = 〈u0 ⊗ w0 + Iu1 ⊗ w2〉 dim 1

LI,E3,−I = 〈u0 ⊗ w2 + Iu1 ⊗ w0〉 dim 1

LI,E5,I = 〈u0 ⊗ w1 − Iu1 ⊗ w3〉 dim 1

LI,E5,−I = 〈u0 ⊗ w3 − Iu1 ⊗ w1〉 dim 1

LI,E,I = 〈u0 ⊗ w1 + Iu1 ⊗ w3〉 dim 1

LI,E,−I = 〈u0 ⊗ w3 + Iu1 ⊗ w1〉 dim 1
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L2̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1,1,1 = 〈(u0 · u0 + u1 · u1) ⊗ (w0 ∧ w3 − w1 ∧ w2),
u0 · u1 ⊗ (w0 ∧ w1 − w2 ∧ w3),
(u0 · u0 − u1 · u1) ⊗ (w0 ∧ w3 + w1 ∧ w2)〉 dim 3

L−1,1,−1 = 〈(u0 · u0 + u1 · u1) ⊗ (w0 ∧ w1 + w2 ∧ w3),
u0 · u1 ⊗ (w0 ∧ w3 + w1 ∧ w2),
(u0 · u0 − u1 · u1) ⊗ (w0 ∧ w1 − w2 ∧ w3)〉 dim 3

L−1,I,1 = 〈(u0 · u0 + u1 · u1) ⊗ (w1 ∧ w3),
(u0 · u0 − u1 · u1) ⊗ (w0 ∧ w2)〉 dim 2

L−1,I,−1 = 〈u0 · u1 ⊗ w0 ∧ w2〉 dim 1
L−1,−1,1 = 〈(u0 · u0 + u1 · u1) ⊗ (w0 ∧ w3 + w1 ∧ w2),

u0 · u1 ⊗ (w0 ∧ w1 + w2 ∧ w3),
(u0 · u0 − u1 · u1) ⊗ (w0 ∧ w3 − w1 ∧ w2)〉 dim 3

L−1,−1,−1 = 〈(u0 · u0 + u1 · u1) ⊗ (w0 ∧ w1 − w2 ∧ w3),
u0 · u1 ⊗ (w0 ∧ w3 − w1 ∧ w2),
(u0 · u0 − u1 · u1) ⊗ (w0 ∧ w1 + w2 ∧ w3)〉 dim 3

L−1,−I,1 = 〈(u0 · u0 + u1 · u1) ⊗ (w0 ∧ w2),
(u0 · u0 − u1 · u1) ⊗ (w1 ∧ w3)〉 dim 2

L−1,−I,−1 = 〈u0 · u1 ⊗ w1 ∧ w3〉 dim 1

and L3̄ dual to L1̄, hence h3 = 7, h2 = 6 and h1 = 19, and so this is the
grading we are looking for.

Along these lines all the gradings can be located by using models of f4.

Appendix

Some results which play a fundamental role in our work are included here.
Their references may not be so easily accessible and so we state the results
(without proof) for the seek of selfcontainedness. So for instance the well
known Borel-Serre theorem for Lie groups has a version for algebraic groups
which is owed to V. P. Platonov in the following terms:

Theorem 6. ([38, Theorem 3.15, p. 92]) A supersoluble subgroup of semi-
simple elements of an algebraic group G is contained in the normalizer of a
maximal torus.

Here we must recall that a group is called supersolvable (or supersoluble)
if it has an invariant normal series whose factors are all cyclic. Any finitely
generated abelian group is supersolvable.

Another result that we are applying from the beginning is related to
the number of generators of the quasitorus inducing a grading on f4. By
abuse of notation we speak of the number of generators of a quasitorus Q
instead of the number of generators of the related finitely generated abelian
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group X(Q). When this number is at most 2 we can say for sure that
the grading is toral. A first approach to this is the fact that every cyclic
grading on f4 is toral. Indeed, a grading is cyclic if it is induced by a
diagonalizable automorphism f of F4. This is a semisimple element and
since F4 is a connected algebraic group, f is in a maximal torus of F4 [10,
Theorem11.10, p. 151]. It is possible to strengthen the previous result to
the case in which the grading group has two generators (stated, for instance,
in [2, Lemma 1.1.3, p. 5]).

Lemma 2. Every subquasitorus Q of F4 such that X(Q) has two generators
is toral.

Proof. It is known ([18, Th 3.5.6, p. 93]) that if G is a connected reductive
group whose derived subgroup is simply connected, then the centralizer of
every semisimple element in G is connected. Let Q = 〈f1, f2〉 be a (closed)
abelian subgroup of semisimple elements in F4. As any semisimple element
belongs to a torus, we replace f1 by t1 ∈ T by conjugation. Now take
Z = CF4

(t1), which is a connected group. Applying [13, Theorem 1, p. 94]
for n = 1 we finish the proof. But without using this fact, we can go on
considering that the element f2 ∈ Z must be in some maximal torus of Z,
say T . But t1 is in the center of Z and hence in all the maximal tori of Z.
We have finished since 〈t1, f2〉 ⊂ T , implying Q ⊂ T . �

Next we describe the action by conjugation of some elements in F4 on the
automorphisms g1 := t′−1,1,−1,1, g2 := t′1,−1,−1,1, g3 := σ̃105 and g4 := t′1,1,1,−1.

Element f fg1f
−1 fg2f

−1 fg3f
−1

σ̃94 g1g2 g2g4 g3

σ̃103 g1g4 g2 g3

σ̃468 g2 g1 g3

σ̃485 g2 g1 g3g4

σ̃491 g1g2 g1g4 g3g4

ψ g1 g3 g2

Moreover ft′1,1,1,uf
−1 = t′1,1,1,u for any u ∈ F× and f in the first column on

the left of the table. We have used this information to find the nontoral
subquasitori of A(105, id) in Subsection 5.2.

Note that the indexing of the elements in the Weyl group that we have
used from Proposition 3, makes it difficult to see which are these elements
for a reader without a computer. In order to help to understand what is
going on, we try to describe the representatives as product of generators.
Some representatives of the seven order-two orbits are

{±σα1 ,±σα4 ,−1, σα1σα4 , (σα2σα3)
2}
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To be more precise, the reflections related to the 12 long positive roots
form exactly the orbit of σ55 (and σα1 could be chosen as a representative),
the reflections related to the 12 short positive roots form exactly the orbit
of σ142 (being σα4 a representative). By composing two simple reflections,
we get a new orbit of order-two elements, that of σ28, a representative for
instance is σα1σα4 (or the product of any pair of commuting simple reflec-
tions). No new order-two orbits appear when considering products of three
simple reflections, but the elements in the σ103-orbit are compositions of
four generators (a representative is (σα2σα3)

2). It is known that −1 = σ405

belongs to the Weyl group, it could be realized as −1 = (σα1σα2σα3σα4)
6.

Again all the −σα, for a long root α, are just the members of the orbit of σ42,
and all the −σα, for a short root α, exhaust the orbit of σ105.

And regarding the representatives of the remaining orbits, we will deal
only with those providing non-toral gradings. The order-six element σ106 is
in the orbit of −σα3σα4 . The order-four element σ3 is in the orbit of −σα2σα3 .
Finally the order-three element σ15 is in the orbit of (σα1σα2σα3σα4)

4.

We described in Subsection 4.2 the way in which any σ ∈ W could be
extended to σ̃ ∈ aut(f4). However our choice of extensions is not exactly
that, for computational reasons. This collection can be downloaded from
http://agt2.cie.uma.es/f4bis.zip. In fact, such extension of σ ∈ W dif-
fers from σ̃ by an order two element in T, which is not relevant for our proof.

Thanks.

We would like to thank Professors Alberto Elduque Palomo for his sugges-
tions on models of exceptional Lie algebras, and Antonio Viruel Arbáizar
for his help with the geometric references and also with some results on Lie
groups whose transcription to our setting has been relevant for the work.
We would like also to thank the referee for accepting the job of refereeing
this work.
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phisms of fine gradings of sl(n, C) associated with the generalized Pauli
matrices. J. Math. Phys. 43 (2002), no. 2, 1083–1094.

[21] Havl̈ıc̆ek, M., Patera, J. and Pelantová, E.: On Lie gradings II.
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