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The Nullstellensatz for real coherent
analytic surfaces

Fabrizio Broglia and Federica Pieroni

Abstract

In this paper we prove Hilbert Nullstellensatz for real coherent
analytic surfaces and we give a precise description of the obstruction
to get it in general. Refering the first, we prove that the ideals of
global functions vanishing on analytic subsets are exactly the real
saturated ones. For R3 we prove that the real Nullstellensatz holds
for real saturated ideals if and only if no principal ideal generated
by a function whose zero set is a curve (indeed, a special function)
is real. This led us to compare the Nullstellensatz problem with the
Hilbert 17th one, also in its weaker form involving infinite sums of
squares, proving that they share in fact the same obstruction.

1. Introduction

If X is a real affine algebraic set and R(X) denotes its ring of regular
functions, it is well known that a prime ideal p ⊂ R(X) has a regular
point in its zero set if and only if its field k(p) of rational functions can be
ordered, that is, k(p) is a real field and p is a real ideal. Moreover, the real
algebraic Nullstellensatz states that real ideals are exactly the ideals of all
regular functions vanishing on algebraic sets. See for instance [9] and [18].

Analogous results were also proved for rings of real functions where the
usual techniques of real algebra apply. Namely, rings of Nash functions
and of real analytic function germs at points and compact sets (see [9], [6]
and [20]). The situation appears rather different when dealing with rings of
global analytic functions without any compactness assumptions.
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It remains true that prime ideals with regular points in their zero sets are
exactly the ideals vanishing on irreducible global analytic sets (see [5]) but
we do not have an algebraic characterization of such ideals and we cannot
expect this property to be always satisfied by any real ideal.

A first difference is the existence, already in O(R), of real prime ideals
with empty zero set. For instance, if A is an ultrafilter of subsets of N

containing all cofinite subsets, then the ideal a = {f ∈ O(R) | Z(f) ∈ A } is
a real prime ideal in O(R) with empty zero set (see [22] for a similar example
in the complex setting).

Another difference concerns the behaviour of sums of squares. Sums
of squares appear quite naturally and at the very beginning, for instance
already defining real ideals and the real radical.

Now unlike the algebraic case we can find positive semidefinite functions
which can be represented as a sum of infinitely many squares of analytic
functions and not as a finite sum (this phenomenon appears already in di-
mension 3 see [2, Example 5.16]). However, it is clear that if an infinite sum
of squares

∑∞
m=1 fm

2 of global analytic functions vanishes on an analytic set,
all the functions fm should vanish on it.

Thus, if we look for the class of ideals having the zero property, that is,
ideals containing all the functions that vanish on their zero sets, it seems to
be reasonable to consider a smaller class of real ideals, at least to remove
those real ideals whose zero set is empty and those real ideals, if they exist,
that contain infinite sum of squares without containing each addend.

Now, let (X, OX) be a real coherent analytic space and denote O(X) =
H0(X, OX) its ring of global analytic functions. For any ideal a ⊂ O(X) let
us denote by aOX , or shortly by aO when X can be omitted, the coherent
sheaf of ideals whose stalk at a point x ∈ X is aOX,x and consider

ã =
{
f ∈ O(X) | fx ∈ aOX,x for any x ∈ X

}
= H0(X, aOX).

Clearly

• a ⊂ ã

• a ⊂ b ⇒ ã ⊂ b̃

• ˜̃a = ã.

We say that the ideal ã is the saturation of a and that a is saturated if a = ã.
Saturated ideals were first introduced in the complex setting in [16]:

they are exactly ideals that are closed with respect to the natural structure
of O(X) as a Frechet space. In [13] the notion of saturated ideals was
extended to the real case even though their topological characterization does
not work so well anymore, see [14].
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First of all, notice that a saturated ideal has empty zero set if and only
if it is trivial. Moreover, we will see that for a primary ideal the property of
being saturated is equivalent to the property of having nonempty zero set
(see 2.1).

We recall here that an infinite sum of squares of analytic functions is a
series

∑
m≥1 f 2

m where all fm ∈ O(X) such that

(i) the fm’s have holomorphic extensions Fm’s all defined in the same
complexification of X, and

(ii) for every compact set L,
∑

m≥1 supL |Fm|2 < +∞.

The infinite sum
∑

m≥1 f 2
m defines well an analytic function on X (see

also [1, Definition 1.2]).
This notion leads to a new definition of real ideals that involves also

infinite sums of squares. We say that an ideal a ⊂ O(X) is ∞-real if for
each (possibly infinite) sum of squares of analytic functions

∑
m≥1 f 2

m in a,
we have that each fm ∈ a. Clearly, an ∞-real ideal is in particular a real
ideal and then a radical one.

The main property of saturated ideals is the existence of a primary de-
composition. Namely, every saturated ideal a ⊂ O(X) admits a locally
finite irredundant decomposition into primary saturated ideals: a =

⋂
i qi

where the primes
√

qi are pairwise distinct and uniquely determined by a

and Z(a) =
⋃

i Z(qi). Moreover, if a is a ∞-real (resp. real) ideal then any
qi is a ∞-real (resp. real) prime ideal, (see Section 2 for details).

In this paper we mainly study the Nullstellensatz problem for a real
coherent analytic surface and for R3.

In the first case we prove the following:

Theorem 1.1. Let X be a real coherent analytic surface. Then, an ideal
a ⊂ O(X) has the zero property, i.e. I(Z(a)) = a, if and only if it is real
and saturated.

This result is a generalization of the real Nullstellensatz for 2-dimensional
analytic manifolds (see [10], [4], [7]) and settles some difficulties overlooked
in the normal case: we only assume the surface to be coherent.

Also the existence of a primary decomposition allows us to prove the
Nullstellensatz for real ideals, not necessarily prime.

In fact real ideals are usually represented as intersection of all real prime
ideals containing them, but in this representation real prime ideals with
empty zero set may cause some troubles: what we get using primary decom-
position is that a saturated real ideal can be written as intersection of real
prime ideals each one with not empty zero set.
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On the other hand, note that we cannot deduce a real Nullstellensatz for
a general ideal. The main point is that the real radical of a saturated ideal
needs not to be a saturated ideal, already in O(R), as the following example
shows.

Example 1.2. Let f, g ∈ O(R):

f(x) =
∏
n

(
1 − x

n2

)
and g(x) =

∏
n

(
1 − x

n2

)n

.

We have that Z(f) = Z(g) = {n2 | n ∈ N+}. Let a be the ideal generated
by g. Then a is a saturated ideal since it is of finite type ([13, Osservazione
1.6.5.c)]) and a =

⋂
n

(
1− x

n2

)n
O(R) is a primary decomposition of a. Now,

if the real Nullstellensatz held for O(R) there would exist an integer h ≥ 0,
a global analytic function t ∈ O(R) and a finite sum of squares s ∈ O(R)
such that fh + s = gt. If we compare orders at the point (h+1)2 we achieve
a contradiction. Indeed, the left hand side has order ≤ h while the right
hand side as order ≥ h + 1, which is impossible. This computation shows
that I(Z(g)) �= r

√
(g).

Roughly speaking, the problem which appears in the previous example,
and in general in the noncompact analytic case, is that the vanishing mul-
tiplicity of the function g can grow arbitrarily, while the integer h is fixed,
then some boundness conditions is needed. We refer the reader to [19] for
this kind of arguments.

For R3 the situation appears quite more complicated. Following [15] we
consider special irreducible functions. Roughly speaking, these are functions
having zero set of dimension 1 and irreducible holomorphic extension, see
Definition 4.1.

Sure, the ideal generated by a special irreducible function cannot have
regular points in its zero set, so we would expect it is not a real ideal but this
conjecture remains open. However, we prove that this is the only possible
obstruction to have a real Nullatellensatz for real saturated ideals. Namely,

Theorem 1.3. Every ∞-real (resp. real) saturated ideal in O(R3) has the
zero property if and only if no special irreducible function generates a ∞-real
(resp. real) ideal.

The main point is that any prime ideal for which the zero property fails,
turns out to be principal, see Theorem 4.3. In particular, this led us to
relate the real Nullstellensatz with the Hilbert 17th problem at least in R3.

We will say that a nonnegative function f : X → R is an infinite sum of
squares of meromorphic functions if there exists h ∈ O(X) with Z(h) ⊂ Z(f)
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such that h2f is an infinite sum of squares of analytic functions on X as
defined above.

Notice that the classical Hilbert 17th problem can be weakened to ask
whether any nonnegative analytic function can be written as a possibly
infinite sum of squares of meromorphic functions. This problem for R3

was studied recently and carefully in [15] where the author proves that this
Hilbert 17th problem holds for any nonnegative fuction if and only if it
holds for any nonnegative special irreducible function. So, in some sense, we
prove that these two classical problems have the same kind of obstruction
concerning special functions.

Finally we prove some results for higher dimension. Here we are not able
to reduce to principal ideals, and so we extend the notion of being special
from functions to ideals. A special ideal is a prime ideal p such that its
complexification p ⊗R C is also prime and its zero set Z(p) is contained in
the singular locus of Z(p ⊗R C), that is dimR Z(p) < dimC Z(p ⊗R C). Of
course the ideal generated by a special function is special.

Thus, in the spirit of Theorem 1.3, we prove that the real Nullstellensatz
holds for every real saturated ideal if and only if no special ideal is real.

2. Preliminaries on saturated ideals

In what follows, (X, OX) will denote a connected paracompact reduced real
coherent analytic space. We begin by a classical result concerning primary
ideals.

Lemma 2.1. Let q ⊂ O(X) be a primary ideal.

1. Suppose Z(q) �= ∅. Then, a function f ∈ O(X) is in q if and only if
its germ fx is in the stalk qOx, for some x ∈ Z(q).

2. The primary ideal q is saturated if and only if Z(q) �= ∅.
Proof. 1. Since Z(q) �= ∅, the “only if” implication is clear. Let us con-
sider the “if” implication. Since fx ∈ qOx there exist g1, . . . , gs ∈ q and
a1,x, . . . , as,x ∈ Ox such that fx =

∑s
i=1 ai,xgi,x.

Then, the stalk at x of the coherent sheaf F =
(
(g1, . . . , gs)OX : f

)
co-

incides with Ox. This means that there exists a global section h ∈ H0(X, F)
with h(x) �= 0. Since

hf ∈ H0
(
X, (g1, . . . , gs)OX

)
= (g1, . . . , gs)O(X) ⊂ q

and no power of h is in q, because hk
x �∈ qOx ⊂ mx, we get f ∈ q.
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Note that a finitely generated ideal g = (g1, . . . , gs) is saturated: this is
an easy consequence of Cartan Theorem B, applied to the natural surjection
of coherent sheaves Os → gO.

2. The “only if” implication is clear and the “if” implication follows
from 1. Indeed, 1. ensures that

q = {f ∈ O(X) | fx ∈ qOx}
and [13, Lemma 1.4.2b)] proves that any ideal defined as the “saturation”
of a local ideal is saturated. �
Next result (cf. [5, Theorem 3.1]) follows straightforwardly from Lemma 2.1.

Theorem 2.2. Let q ⊂ O(X) be a primary saturated ideal. Assume that
there exists a point x ∈ Z(q) such that I(Z(qOx)) =

√
qOx. Then, I(Z(q)) =√

q and there exists an integer h(q) < +∞ such that
(√

q
)h(q) ⊂ q.

Proof. Take a point x ∈ Z(q) such that I(Z(qOx)) =
√

qOx. Then there is
a integer k ∈ N such that (

√
qOx)

k ⊂ qOx. For any f ∈ I(Z(q)), its germ fx

vanishes on Z(qOx), thus fk
x ∈ qOx and Lemma 2.1 ensures that fk ∈ q. �

Now we prove two slight improvements of Lemma 2.1 and Theorem 2.2
(Lemma 2.3 and Corollary 2.4 below) that will be useful in the sequel.

Lemma 2.3. Let q ⊂ O(X) be a saturated primary ideal and let x ∈ Z(q).
Then, a function f ∈ O(X) is in

√
q if and only if its germ fx belongs to an

associated prime of qOX,x.

Proof. The “only if” implication is clear. For the converse, consider a
primary decomposition for the ideal qOX,x, qOX,x = q1,x ∩ · · · ∩ qn,x. By
hypothesis we can assume that the germ fx is in

√
q1,x.

Now, if n = 1 and qOX,x = q1,x let us take ξx = 1, otherwise let us take
a germ ξx ∈ ⋂

i>1 qi,x \ q1,x. It exists since the decomposition is irreducible.
Thus, we have ξxf

k
x ∈ qOX,x for some integer k ∈ N. Hence, we get that ξx

is in the stalk at x of the sheaf F = (q : fk). Since ξx �∈ qOX,x, there exists
at least one global section, say g ∈ H0(X, F) such that g �∈ q. Since q is a
saturated ideal this means that gfk ∈ q and, being q primary, this implies
that a power of f is in q, as wanted. �

Corollary 2.4. Let q ⊂ O(X) be a saturated primary ideal and let x ∈ Z(q).
Assume that an associated prime px ⊂ Ox of qOX,x has the zero property,
meaning by this that I(Z(px)) = px. Then, I(Z(q)) =

√
q.

Proof. As before, consider a primary decomposition for the ideal qOX,x.
We can write qOX,x = q1,x ∩ · · · ∩ qn,x with

√
q1,x = px and I(Z(q1,x)) =

I(Z(px)) = px.
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Since the intersection is finite we get

I
(
Z(qOx)

)
=

n⋂
i=1

I
(
Z(qi,x)

) ⊂ I
(
Z(q1,x)

)
= px.

Hence, for any f ∈ I(Z(q)) we have that fx ∈ px and Lemma 2.3 applies. �
When dealing with general saturated ideals the main property is the

existence of a locally finite primary decomposition. Before doing that, we
need to introduce more terminology.

Let {ai}i∈I ⊂ O(X) be a family of ideals. We say that the family {ai}i∈I

is locally finite if the family of their zero sets {Z(ai)}i∈I is locally finite.
A decomposition a =

⋂
i∈I ai is said irreducible if for each K � I, a �=

∩i∈Kai.

Definition 2.5. A locally finite decomposition a =
⋂

i qi where the {qi}i∈I

are a family of saturated primary ideals is said a normal primary decomposi-
tion (shortly a primary decomposition) if it is irreducible and the associated
primes

√
qi are pairwise distinct.

As usual, a primary ideal qh ∈ {qi}i∈I is called an isolated primary
component if

√
qh is minimal among the primes {√qi}i∈I . Otherwise it is an

immersed primary component.
Next proposition concernes the existence of primary decompositions and

can be found in [13, Theorem 2.3.6].

Proposition 2.6. Any saturated ideal a ⊂ O(X) admits a normal primary
decomposition, a =

⋂
i qi, such that all qi are saturated and Z(a) = ∪iZ(qi).

As it happens in noetherian rings some properties of uniqueness for the
primary decomposition hold (Proposition 2.8). We recall for the sake of the
reader [13, Lemma 2.2.10].

Lemma 2.7. Let {qi}i∈I ⊂ O(X) be a locally finite family of saturated pri-
mary ideals and let p ⊂ O(X) be a prime saturated ideal such that

⋂
i qi ⊂ p.

Then there exists i ∈ I such that qi ⊂ p.

Proof. By Lemma 2.1 we have to prove that there exists i ∈ I such that
the germ at x of each f ∈ qi, fx, is in pOx.

Since the qi’s, and then their intersection
⋂

i qi, are saturated ideals, we
have the following:

H0

(
X,

(⋂
i

qi

)
O

)
=

⋂
i

qi =
⋂
i

H0(X, qiO) = H0

(
X,

⋂
i

(qiO)

)
.
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Then, for a point x ∈ Z(p), we get(⋂
i

qi

)
Ox =

⋂
i

(qiOx) =
⋂
i∈K

(qiOx)

for some finite set K ⊂ I. Note that such a K exists since the family {qi}i

is locally finite.
Now, proceeding by contradiction, we assume that, for each i ∈ K we

can find fi ∈ qi such that fi,x �∈ pOx, that is, fi �∈ p. Since
∏

i∈K fi,x ∈
(
⋂

i qi)Ox ⊂ pOx, we have that
∏

i∈K fi ∈ p by Lemma 2.1, contradiction.�
Proposition 2.8. Let a =

⋂
i qi be a primary decomposition for a saturated

ideal a ⊂ O(X). Then, the prime ideals pi =
√

qi and the isolated primary
components are uniquely determined by a, that is, they do not depend on the
decomposition.

Proof. Fix i ∈ I, since the decomposition is irreducible, there exists hi ∈⋂
j �=i qj \qi and then

√
(a : hi) = pi. Notice that

√
(a : hi) is saturated since

its zero set is nonempty. Now, let h ∈ H0(X, OX) be such that
√

(a : h) is
prime and saturated. We have that⋂

i|h �∈qi

qi ⊂ (a : h) ⊂
√

(a : h).

By Lemma 2.7, there exists i with h �∈ qi such that qi ⊂
√

(a : h). On the

other hand,
√

(a : h) ⊂ √
qi since h �∈ qi, hence,

√
(a : h) =

√
qi.

This proves that the saturated prime ideals {pi}i∈I are exactly the sat-
urated prime ideals in {√(a : h) | h ∈ O(X)}. Now, let qi be a isolated pri-
mary component. We consider the multiplicative set S = O(X) \ pi. Since
any ideal pj, j �= i, intersects S, the ideal qi coincides with the contraction
to O(X) of the ideal S−1(a) ⊂ S−1(O(X)). Indeed,

S−1(a)c =
{
f ∈ O(X) | f

1
∈ S−1(a)

}
.

Take f ∈ S−1(a)c. Then there exists s ∈ S such that sf ∈ a for the general
definition of S−1. In particular, sf ∈ qi with s �∈ √

qi. Hence, f ∈ qi.
Finally, to check that qi ⊂ S−1(a)c, note that for any s ∈ ∩j �=iqj \ pi

(which exists by Lemma 2.7 and qi being isolated) we have sqi ⊂ a.
Hence, qi is determined by the fact that pi is minimal among the associ-

ated primes and qi = S−1(a)c. �
Note that, unlike what happens in the complex case, a primary decom-

position for a saturated ideal a does not give necessarily a geometric descrip-
tion of its zero set Z(a). Firstly because in dimension > 2 there are primary
ideals with reducible zero set, for instance

(
(x2 − y2)2 + z2

) ⊂ O(R3).
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On the other hand because, already in dimension 2, there are distinct
prime ideals with the same zero set. For instance (x2 + y2) and (x2 + 2y2)
in the ring O(R2).

Proposition 2.9. Let a ⊂ O(X) be a saturated ideal and let a =
⋂

i qi be a
primary decomposition. Then,

1. If a is an ∞-real (resp. real or radical) ideal, then every qi is an
∞-real prime (resp. real prime or prime) ideal. In particolar, the
decomposition is unique.

2. If every qi has the zero property then the same holds for a.

Proof. We first prove that if a is a radical ideal (whence if a is ∞-real, or
real) then for every i we can find hi ∈ O(X) such that hi ∈

⋂
j �=i qj \ √qi.

Indeed, assume by contradiction that
⋂

j �=i qj ⊂ √
qi, then the following

inclusions hold: ⋂
j �=i

qj ⊂
⋂
j �=i

qj ∩
√

qi ⊂
√⋂

j

qj =
√

a = a.

Then, a =
⋂

j �=i qj and this is impossible, the decomposition being irre-
ducible.

We prove now that if a is a radical ideal then every qi has to be prime.
It is enough to prove that every qi is also radical. Fix i and assume that
fn ∈ qi for some n ∈ N. We have to prove that f ∈ qi. Now, hif

n ∈ a and a
fortiori (hif)n ∈ a. But a is a radical ideal, hence we get hif ∈ a and then
hif ∈ qi. Since qi is a primary ideal and hi �∈ √

qi we get that f ∈ qi, as
wanted.

Now we assume that a is also ∞-real (resp. real). Fix i and assume that∑
m f 2

m ∈ qi. Take hi ∈ O(X) as above, then h2
i (

∑
m f 2

m) =
∑

m(hifm)2 ∈ a.
In particular each hifm ∈ a ⊂ qi and then, arguing as above, we get that
fm ∈ qi for each m.

The uniqueness follows from 2.8.
The second assertion of the statement is a consequence of 2.6: I

(
Z(a)

)
=⋂

i I
(
Z(qi)

)
=

⋂
i qi = a. �

3. A Nullstellensatz for real coherent surfaces

The aim of this Section is to prove Theorem 1.1. The proof will be obtained
as a consequence of two results that do not need any hypothesis on the
dimension.

The first one, Theorem 3.2, considers primary ideals with zero set of
codimension one. In some sense, such ideals behave especially well because
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sums of squares are not deeply involved and 2.4 applies. The second one,
Theorem 3.5, concerns saturated ideals with compact zero set.

Lemma 3.1. Let a ⊂ On be an ideal, then

• ht(a) ≤ n − dim Z(a) or equivalently dim
(
On/a

) ≥ dim Z(a)

• if a is a prime ideal and ht(a) = n − dim Z(a), then I
(
Z(a)

)
= a.

Proof. The real Nullstellensatz for the regular ring On gives us a bijective
correspondence beetwen analytic set germs of codimension p and real prime
ideals of height p, cf. for instance [6, VIII.2.1].

Then, the first assertion follows from the fact that a ⊂ I
(
Z(a)

)
and then

ht(a) ≤ ht
(
I
(
Z(a)

))
= n − dim Z(a).

For the second assertion, if a were a prime ideal strictly contained in
I
(
Z(a)

)
, then we would achieve a contradiction since we would have ht(a) <

ht
(
I
(
Z(a)

))
= min{ ht(p) | p is a prime ideal containing I

(
Z(a)

)}. �

Theorem 3.2. Let X ⊂ RN be a real coherent analytic space and let q ⊂
O(X) be a saturated primary ideal with zero set of codimension 1 in X.
Then, I

(
Z(q)

)
=

√
q. In particular,

√
q is a real prime ideal.

Proof. We set n = dim X. Fix a point x ∈ Z(q) such that dim Z(qOX,x) =
n−1. Such a point exists by hypothesis. Consider a primary decomposition
for qOX,x. We can write

qOX,x =
⋂

k∈Kx

qk,x ∩
⋂

s∈Sx

qs,x

where dim Z(qk,x) = n − 1 for any k ∈ Kx and dim Z(qs,x) < n − 1 for any
s ∈ Sx.

By hypothesis Kx �= ∅ and for any k ∈ Kx the ideal
√

qk,x is prime with
zero set of codimension 1. Fix k ∈ Kx; since X is coherent we have

OX,x = ORN ,x/I(X)

and we can choose a prime ideal p ⊂ ORN ,x such that

I(Xx) ⊂ p ⊂ ORN ,x and p/I(Xx) =
√

qk,x.

By 2.4 we must prove that p (equivalently
√

qk,x) is a real ideal.
Let Xx = X1 ∪ · · · ∪Xk be a decomposition into irreducible components

for the set germ of Xx at x. Then, I(Xx) = I(X1)∩ · · · ∩ I(Xk) is a primary
decomposition for the real ideal I(Xx). In particular, p contains the ideal of
an irreducible component, say I(X1) ⊂ p, because p contains I(Xx).
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Now,

n = dim Xx = max{dim Xi | i = 1, . . . , k}
N − n = ht(I(Xx)) = min{ht(I(Xi)) | i = 1, . . . , k}.

In particular,
ht(p) ≥ ht(I(X1)) ≥ N − n.

On the other hand, by 3.1 we have ht(p) ≤ N − (n − 1). Then we must
consider two cases: either ht(p) = N − (n − 1) or ht(p) = N − n.

In the first case, 3.1 ensures that p has the zero property. In the second
case, we have ht(I(X1)) = N − n and then I(X1) = p because they are
prime ideals and have the same height. In both cases the ideal p is real, as
we wanted. �

As an immediate corollary of 2.9 and 3.2 we get:

Corollary 3.3. If a is a radical ideal whose normal primary decomposition
a =

⋂
qi is such that Z(qi) has codimension 1 for all i, then a has the zero

property. In particular, a is also a real ideal.

Remark 3.4. (a) Notice that a primary ideal q ⊂ O(X) verifying the hy-
pothesis of 3.2 has irreducible zero set Z(q) since I

(
Z(q)

)
is a prime ideal.

(b) If X is a real analytic manifold with H1(X, Z/2Z) = 0 then an
ideal q verifying the hypothesis of 3.2 is principal. Indeed, I

(
Z(q)

)
is a

principal ideal, being the ideal of a hypersurface, and this implies that q is
also principal (see 4.2 below).

(c) Theorem 3.2 was already known for a real prime ideal p in a real
analytic manifold X, see [4] and Theorem 4.7, Remark 4.8 below.

Proposition 3.5. Let X ⊂ Rn be a real coherent analytic set and let a ⊂
O(X) be a saturated ideal with compact zero set. Then, I(Z(a)) = r

√
a.

Proof. This fact is proved in [6] for a finitely generated ideal with compact
zero set. Thus, it is enough to prove that a saturated ideal with compact zero
set is always finitely generated. Indeed, take x ∈ Z(a). Since aO is a coherent
sheaf, there exist sx,1, . . . , sx,p(x) ∈ H0(X, aO) = a and a neighbourhood
U(x) of x such that aOy = (sx,1, . . . , sx,p(x))Oy for any y ∈ U(x). Now, since⋃

x∈Z(a)
U(x) is an open covering for Z(a) and Z(a) is compact we can take

a finite subcovering, U(x1), . . . , U(xn). We have that

aOy =

{
(sxi,1, . . . , sxi,p(xi))Oy if x ∈ U(xi)

Ox if x /∈ Z(a)

By [12], there exists a finite number of global sections s1, . . . , st ∈ a =
H0(X, aO) that generate the stalk at each point. Hence, a is generated by
s1, . . . , st as wanted. �
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Proof of Theorem 1.1. By 2.9 we can assume a to be a real saturated
prime ideal. Being dim X = 2, either dim Z(a) = 1 or dim Z(a) = 0, unless
a is trivial. In the first case Theorem 3.2 applies. In the second case remark
that the zero set of a primary saturated ideal is a connected set; hence Z(a)
is a point and Theorem 3.5 applies. �

4. Nullstellensatz and Hilbert 17th problem for R3

The aim of this section is to prove Theorem 1.3. As a consequence we will
compare the Nullstellensatz problem with the Hilbert 17th one. As remarked
in the Introduction, we will see that these two classical problems have the
same kind of obstruction concerning irreducible special functions.

To give a precise definition we need to recall the classical construction
of the (complex) irreducible factors of a global analytic function f ∈ O(R3)
(see for instance [15, Section 2]).

Let f be an analytic function in O(R3). There exist:

• An open invariant Stein neighbourhood U of R3 in C3 such that R3 is
a deformation retract of U;

• A holomorphic extension F of f to U;

• Holomorphic functions Hj : U → C, j ∈ J , such that {Sj =H−1
j (0)R3}j

are the (complex) irreducible components of the germ F−1(0)R3 and Hj

generates the ideal of H−1
j (0). Furthermore, if Sj is invariant (by con-

jugation) we may assume that Hj is also invariant, hence hj = Hj |R3

defines a real analytic function. Otherwise, there exists an index
j′ �= j such that Sj and Sj′ are conjugated and we may assume that

Hj′(z) = Hj ◦ σ(z), hence hjj′ = HjHj′|R3 defines a real analytic func-
tion which is a sum of two squares.

Now, the holomorphic function germs Hj,R3 are uniquely determined by
f = F |R3. Thus, we will say that {Hj,R3} are the (complex) irreducible
factors of f .

Definition 4.1. (a) We say that Hj,R3 is a special factor of f if it is invariant
by conjugation, the dimension of the real analytic set H−1

j (0) ∩ R3 is 1 and
Hj divides F with odd multiplicity.

(b) If f has only one irreducible factor and it is special, we say that f is
a special analytic function.

Remark that an analytic function f ∈ O(R3) is said to be irreducible if it
cannot be written as the product of two analytic functions with nonempty
zero set; [4, Lemma 4.5] ensures that any irreducible function generates a
prime ideal.
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If f is irreducible, then either f has one irreducible factor that is invariant
by conjugation, or f has two irreducible factors which are conjugated. In
the first case F is irreducible, in the second one F is reducible and f , up to
a unit, is a sum of two squares.

The main result in [15] states that every nonnegative function f : R3 → R

is an infinite sum of squares of meromorphic functions if and only if this is
true for every nonnegative special irreducible function. The author also
considers analogous properties involving only finite sums of squares but the
problem is quite more delicate and only partial results are proved, see for
instance [15, Theorem 1.6].

In the spirit of these results we will prove Theorem 1.3. First of all,
we reduce to consider principal ideals (Theorem 4.3), then principal ideals
generated by special functions (Proposition 4.4).

Lemma 4.2. Let q ⊂ O(Rn) be a primary saturated ideal. Then, q is a
principal ideal if and only if

√
q is a principal ideal.

Proof. For the “if” implication, assume that
√

q is a principal ideal gener-
ated by f ∈ O(Rn), then it is easy to see that q is generated by fk where
k = min{m ∈ N | fm ∈ q}. Note moreover that f has to be irreducible.

Now we prove the “only if” implication. Assume that q is generated by
f ∈ O(Rn). By [11], there exists h ∈ O(Rn) such that (hx)Ox =

√
(fx)Ox

for each point x ∈ Rn.
We claim that

√
q = (h). On the one hand, if g ∈ √

q =
√

(f), then the

germ gx is in
√

(fx)Ox = (hx) for each x ∈ Rn and then g ∈ (h).
On the other hand, we must prove that h ∈ √

q. Take a point y ∈ Z(q),

since (hx) =
√

(fx)Ox for each x ∈ Rn, we can find an integer m such
that hm

y ∈ (fy) = qOy. Being q a saturated primary ideal, 2.1 ensures that
hm ∈ q, as we wanted. �

Theorem 4.3. Let q ⊂ O(R3) be a saturated primary ideal such that
dim Z(q) = 1. Then, I

(
Z(q)

)
=

√
q if and only if q is not a principal

ideal.

Proof. We first prove the “only if” implication. We proceed by way of
contradiction. Assume that q is a principal ideal, then

√
q = I

(
Z(q)

)
is also

a principal ideal. We achieve a contradiction showing that the ideal of a
curve in R3 cannot be principal.

Indeed, if x∈Z(q) then I
(
Z(q)

)
Ox =I

(
Z(qOx)

)
since curves are coherent.

Now, if I
(
Z(q)

)
is a principal ideal, I

(
Z(q)

)
Ox is also a principal ideal

and, being Ox a unique factorization domain, this implies that its height is 1,
while the height of the ideal I

(
Z(qOx)

)
should be 2 since Z(q) is connected

and hence pure dimensional.
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Let us prove the “if” implication. For any x ∈ Z(q) consider a primary
decomposition for the ideal qOx ⊂ Ox. We can write

qOx =
⋂

k∈Kx

qk,x ∩
⋂

j∈Jx

qj,x ∩
⋂

s∈Sx

qs,x

where the sets Kx, Jx, Sx are finite, possibly empty, and satisfy the folllowing
properties:

(1) If k ∈ Kx, then dim Z(qk,x) = 1 and ht(qk,x) = 2
(2) If j ∈ Jx, then dim Z(qj,x) = 1 and ht(qj,x) = 1
(3) If s ∈ Sx, then Z(qs,x) = {x}. In this case ht(qs,x) can be 1, 2 or

also 3.

Every qk,x is a primary ideal of height 2 whose zero set has codimension
2, hence by 3.1

I(Z(qk,x)) = I(Z(
√

qk,x)) =
√

qk,x.

Then, by 2.4, we are reduced to prove that there exists a point x ∈ Z(q)
where Kx �= ∅.

We claim that Sx is empty. Otherwise, assume that there exists s ∈ Sx

and consider the sheaf of ideals defined by

Fy =

{
qs,x if y = x
Oy if y �= x.

Then, there are global sections η1, . . . , ηs ∈ O(R3) that generate the stalk at
each point, that is

qs,x = (η1, . . . , ηs)x and Z(η2
1 + · · ·+ η2

s) = {x}.

On the one hand η = η2
1 + · · ·+ η2

s is in
√

q, because of 2.3; on the other
hand, no power of η can be in q since Z(η) = {x}, a contradiction.

Thus, at each point x ∈ Z(q) we can write

qOx =
⋂
k

qk,x ∩
⋂
j

qj,x = q1,x ∩ q2,x.

Now we prove that there exists a point x ∈ Z(q) where qOx �= q2,x. In-
deed, every qj,x is a primary ideal of height one in a unique factorization

domain, Ox, hence it is principal, namely qj,x = (ξ
r(x)
j,x )Ox where ξj,x ∈ Ox is

an irreducible germ. Thus, if Jx �= ∅ the ideal q2,x is a principal ideal, say
q2,x = (ξx). If qOx = q2,x for any x ∈ Z(q), then q is locally principal and,
because H1(R3, Z/2Z) = 0, q is a principal ideal, contradiction. �
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Proposition 4.4. Let f ∈ O(R3) be such that dim Z(f) = 1 and the prin-
cipal saturated ideal (f)O(R3) is primary. Then, up to a unit, either f
coincides with hs for some special irreducible function h ∈ O(R3) and some
integer s ≥ 1, or f coincides with a finite sum of squares.

Proof. Let h ∈ O(R3) be such that
√

(f)O(R3) = (h)O(R3). Such an h
exists by 4.2 and has to be irreducible since it generates a prime ideal. Then,
as in the proof of 4.2, we get that (f) = (hs) for s = min{n ∈ N | hn ∈ (f)}.
This means that f and hs coincide up to a unit.

Now, if h has only one complex irreducible factor that is invariant by
conjugation, then h is special since dim Z(h) = 1, otherwise, up to the sign,
h should be a sum of two squares. Then, up to a unit, either f coincides
with a power of a special irreducible function or f coincides with a finite
sum of squares. �

Lemma 4.5. Let f : R3 → R be an infinite (resp. finite) sum of squares of
meromorphic functions. Then, the ideal (f)O(R3) is not ∞-real (resp. real).

Proof. By hypothesis there exist h0, h1, · · · ∈ O(R3) (resp. h0, h1, . . . , hN ∈
O(R3)) such that Z(h0) ⊂ Z(f) and h2

0f =
∑

n≥1 hn
2. Let k ≥ 0 be the

maximum integer such that fk divides each hi. Hence, we can write

h′
0
2
f 2k+1 = f 2k

∑
n≥1

h′
n

2
.(4.1)

and dividing the equation by f 2k we get

h′
0
2
f =

∑
n≥1

h′
n

2
.(4.2)

If (f) is an ∞-real (resp. real) ideal, then f has to divide h′
n for all n ≥ 1,

and f does not divide h′
0. Then, f 2 divides the right hand side of the

equation, hence f divides h′
0
2, and since (f) is ∞-real (real), f divides h′

0,
contradiction. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The “only if” implication is clear: a special
irreducible function can not generate an ideal wirh the zero property since
the ideal of a curve in R3 is not a principal ideal. Let us consider the other
implication. Let a ⊂ O(R3) be a ∞-real (resp. real) saturated ideal, hence
it admits a decomposition a =

⋂
i qi as a locally finite intersection of ∞-real

(resp. real) prime saturated ideals.
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We have to prove that I
(
Z(qi)

)
= qi. for each i. If dim Z(qi) = 1, we

are left to prove that qi cannot be principal, by 4.3. Now, qi being a real
ideal, it cannot be generated by a finite sum of squares. Then, by 4.4, it is
generated by a power of a special irreducible function. Moreover, since qi is
prime, it is generated by a special irreducible function. Then, it cannot be
a ∞-real (resp. real) ideal by hypothesis, contradiction.

If dim Z(qi) = 0 or 2, it follows from 3.2 and 3.5 that I(Z(qi)) = qi.
Hence, I(Z(a)) =

⋂
I(Z(qi)) =

⋂
qi = a. �

Remark 4.6. In particular, 4.5 and 1.3 ensure that a positive answer to the
Hilbert 17th problem on R3 would imply a solution for the Nullstellensatz
problem for ∞-real saturated ideals too.

We end this Section describing some results for higher dimension.
Let X ⊂ Rn be a real analytic manifold and let (X̃, OX̃) be a complex-

ification of X. Let a ⊂ O(X) be an ideal. Then, a ⊗R C ⊂ H0(X, OX̃) is
an ideal that defines the germ of a complex analytic set, Z(a ⊗R C), at X.
Such analytic set can be defined as follows. The germ Z(a⊗R C)x at a point
x ∈ X is the germ of the variety determined by the local ideal aOX,x ⊗R C.
Since the sheaf aOX is coherent these germs fit together to give the germ
Z(a ⊗R C) at X. The following result is proved in [4, Theorem 3.5].

Theorem 4.7. Let p ⊂ O(X) be a real prime ideal. Assume that there exists
a point x ∈ X such that dimR(Z(p), x) = dimC(Z(p ⊗R C), x). Then p has
the zero property.

Remark 4.8. As remarked in 3.4(c), Proposition 3.2 for a real prime ideal p
of an analytic manifold X follows straightforwardly from this result.

In what follows, an ideal a ⊂ O(X) is called a special ideal if it is a prime
ideal such that a ⊗R C is prime and

dimR(Z(a), x) < dimC(Z(a ⊗R C), x)

for any x ∈ Z(a).

Remark 4.9. Note that the notion of special ideal appears as a natural
generalization of the notion of special function. In particular any special
irreducible function f ∈ O(R3) generates a special ideal (f)O(R3) ⊂ O(R3).

In the spirit of Theorem 1.3 we have the following result:

Theorem 4.10. Any ∞−real (resp. real) saturated ideal in O(X) has the
zero property if and only if no special ideal is ∞−real (resp. real).
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Proof. For the “only if” part, note that if a saturated ideal a has the zero
property, then the sheaf aO defines the so called “well reduced structure” on
Z(a), see [17] and [3], and, in particular dimR

(
Z(a), x

)
= dimC

(
Z(a⊗RC), x

)
for all x /∈ Y where dim Y < dim Z(a).

For the “if” part, let a be a ∞−real (resp. real) saturated ideal and let
a =

⋂
pi be the decomposition of a into ∞−real (resp. real) saturated prime

ideals. Since no pi can be special, 4.7 implies that I(Z(pi)) = pi. Hence, as
usual, I(Z(a)) =

⋂
I(Z(pi)) =

⋂
ai = a, and we are done. �
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