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Non-uniqueness
in a free boundary problem

Björn Bennewitz

Abstract

We show that a result of Lewis and Vogel on uniqueness in a
free boundary problem for the p-Laplace operator is sharp in two
dimensions.

1. Introduction

Denote points in Euclidean 2 space R
2 by x = (x1, x2). Let 〈·, ·〉 be the

standard inner product on R
2 and let |x| = 〈x, x〉1/2 be the Euclidean norm

of x. Set B(x, r) =
{
y ∈ R

2 : |x − y| < r
}

whenever x ∈ R
2 and r > 0.

Let dx denote Lebesgue measure on R
2 and define k dimensional Hausdorff

measure, in R
2, 0 < k ≤ 2, as follows: For fixed δ > 0 and E ⊂ R

2, let
L(δ) =

{
B(xi, ri)

}
be such that E ⊂ ⋃B(xi, ri) and 0 < ri < δ, i = 1, 2, . . .

Set
φk

δ(E) = inf
L(δ)

(∑
α(k)rk

i

)
where α(k) denotes the volume of the unit ball in R

k. Then

Hk(E) = lim
δ→0

φk
δ (E), 0 < k ≤ 2.

If O is open and 1 ≤ q ≤ ∞, let W 1,q(O) be the space of equivalence classes
of functions u with distributional gradient ∇u = (ux1, ux2), both of which
are q th power integrable on O. Let

‖u‖1,q = ‖u‖q + ‖∇u‖q

be the norm in W 1,q(O) where ‖ · ‖q denotes the usual Lebesgue q norm
in O. Let C∞

0 (O) be the space of infinitely differentiable functions with
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compact support in O and let W 1,q
0 (O) be the closure of C∞

0 (O) in the norm
of W 1,q(O). Let Ω be a domain (i. e. an open connected set) and suppose
that the boundary of Ω (denoted ∂Ω) is bounded and non empty. Let N be
a neighborhood of ∂Ω, p fixed, 1 < p <∞ and u a positive weak solution to
the p Laplace differential equation in Ω ∩N . That is u ∈W 1,p(Ω ∩N) and

(1.1)

∫
|∇u|p−2〈∇u,∇θ〉 dx = 0

whenever θ ∈W 1,p
0 (Ω∩N). Observe that if u is smooth and ∇u 
= 0 in Ω∩N ,

then ∇ · (|∇u|p−2∇u) ≡ 0 where ∇· denotes divergence. We assume that u
has zero boundary values on ∂Ω in the Sobolev sense. More specifically if
ζ ∈ C∞

0 (N), then uζ ∈ W 1,p
0 (Ω ∩ N). Extend u to N \ Ω by putting u ≡ 0

on N \ Ω. Then u ∈ W 1,p(N) and it follows from (1.1) as in [10] that there
exists a positive finite Borel measure µ on R

2 with support contained in ∂Ω
and the property that

(1.2)

∫
|∇u|p−2〈∇u,∇φ〉 dx = −

∫
φ dµ

whenever φ ∈ C∞
0 (N). We give a proof that µ exists provided u has a

continuous extension to N . It suffices to show

F (φ) = −
∫

N

〈|∇u|p−2∇u,∇φ〉 dx ≥ 0.

for φ ≥ 0. Then the existence follows from the Riesz representation theorem
and the basic estimates listed in section 2. To see this let φ =

(
(ε+max(u−

ε, 0))η − εη)ψ where ψ ∈ C∞
0

(
B(z, r)

)
and ψ = 1 on B(z, r/2) and supp ψ ⊂

B(z, r) for some z ∈ ∂Ω. Then supp φ ⊂ Ω so we get

0 =

∫
N

〈|∇u|p−2∇u,∇φ〉 dx(1.3)

=

∫
u≥ε

η
(
ε+ max(u− ε, 0)

)η−1|∇u|pψ dx

+

∫
N

(
(ε+ max(u− ε, 0))η − εη

)|∇u|p−2〈∇ψ,∇u〉 dx

Note that

η

∫
u≥ε

(
ε+ max(u− ε, 0)

)η−1|∇u|pψ dx ≥ 0

so

0 ≥
∫

N

(
(ε+ max(u− ε, 0))η − εη

)|∇u|p−2〈∇ψ,∇u〉 dx
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Suppose r is so small that u < 1 in B(z, r). Then∣∣(ε+ max(u− ε, 0))η − εη)|∇u|p−2〈∇ψ,∇u〉∣∣ ≤ ‖∇ψ‖∞|∇u|p−1.

Now |∇u| ∈ Lp−1(Ω) so we can use the dominated convergence theorem
to take the limits under the integral sign as ε and η go to zero and get
F (ψ) ≥ 0. We can use a partition of unity to reduce the problem to such
small r’s. Note that if ∂Ω is smooth enough then

(1.4) dµ = |∇u|p−1dHn−1

Let E be a compact set and G an open set containing E. For fixed p,
1 < p <∞ set

Kp(E,G) = inf
{∫

|∇θ|p dx
}

where the infimum is taken over all θ ∈ C∞
0 (G) with θ = 1 on E. Kp(E,G)

is called the p-capacity of E relative to G.
In [17] Lewis and Vogel consider the following free boundary problem.

Given F ⊂ R
n a compact convex set, a > 0, and 1 < p <∞, find a function

u defined on a domain D = D(a, p) ⊃ F with

∇ · (|∇u|p−2∇u) = 0 weakly in D \ F,(1.5a)

u(x) → 1 whenever x→ y ∈ F(1.5b)

and u(x) → 0 as x→ y ∈ ∂D,

µ = ap−1Hn−1 on ∂D.(1.5c)

They prove

Theorem A. Suppose Kp(F,G) > 0 for some open G ⊃ F and let D, u, p, a
be as in (1.5a), (1.5b) and let µ be the measure corresponding to u as in (1.2).
If µ satisfies (1.5c) and in addition there exists β, 0 < β < ∞ and r0 > 0,
for which

(1.6) µ[B(x, r)] ≤ βrn−1, 0 < r < r0

then u and D are uniquely determined.

Previously Henrot and Shahgholian had considered the classical version
of this problem that is the problem obtained by replacing (1.5c) by the
condition |∇u(x)| → a whenever x→ y ∈ ∂D. In [11] they proved

Theorem B. If Kp(F,G) > 0 for some open G ⊃ F then there exists a

unique û, D̂ = D̂(a, p) such that (1.5a), (1.5b) are satisfied and |∇u(x)| → a.
Moreover D̂ is convex with a smooth (C∞) boundary.
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In this paper we show that theorem A is sharp in two dimensions, namely

Theorem 1. Suppose n = 2 and Kp(F,G) > 0 for some open G ⊃ F . If
a > 0 and 1 < p <∞ there exists a bounded domain D which is not convex,
a p harmonic function u and a corresponding measure µ which satisfy (1.5)
but µ does not satisfy (1.6).

The proof uses the same method as the construction of pseudospheres
in [16] to construct a domain which satisfies (1.5) but is not convex and
thus is not the same as the domain in [11]. To outline this method let Ω
be a domain and let u be a function which satisfies (1.5a), (1.5b) with D
replaced by Ω and suppose a = 1. If p < 2 suppose that |∇u| > 1 on ∂Ω but
if p > 2 suppose |∇u| < 1 on ∂Ω. For a given small ε we add smooth bumps
to ∂Ω by “pushing out” or “pushing in” along certain surface elements of{
x ∈ ∂Ω : |∇u(x)| > 1 + ε

}
or
{
x ∈ ∂Ω : |∇u(x)| < 1 − ε

}
depending on

whether p > 2 or p < 2. In this way we obtain a new domain Ω′ ⊃ Ω if
p < 2 but Ω′ ⊂ Ω if p > 2 and we choose the bumps so that for ε ≤ t ≤ 1

H1(∂Ω′) ≥ H1(∂Ω) + η(t)H1
{
x : |∇u(x)| > 1 + t

}
(1.7)

if p < 2 but

H1(∂Ω′) ≥ H1(∂Ω) + η(t)H1
{
x : |∇u(x)| < 1 − t

}
(1.8)

if p > 2. Here η is a positive function on ]0,∞[. Let u′ be a function in Ω′

which satisfies (1.5a), (1.5b) with D replaced by Ω′. If p < 2 then Ω ⊂ Ω′

and it follows that u ≤ u′ in Ω and by the maximum principle |∇u′| > 1 on
∂Ω ∩ ∂Ω′. In section 3 we prove that |∇u′| > 1 on the bumps. If p > 2 we
get |∇u′| < 1 in the same way. In section 4 we will show that there exists
a certain elliptic partial differential equation for which u′ is a solution and
log |∇u′| is a supersolution if 1 < p < 2 and a subsolution if p > 2. Then we
use the divergence theorem as in [2] to prove that if 1 < p < 2 then

(1.9)

∫
∂Ω′

|∇u′|p−1 log |∇u′| dH1 ≤ C

and if p > 2 then

(1.10)

∫
∂Ω′

|∇u′|p−1 log |∇u′| dH1 ≥ C

where the constant C depends only on F . If 1 < p < 2 this allows us to
control the size of the set where |∇u′| is large so that by pushing out and
keeping |∇u′| > 1 we in fact keep |∇u′| close to 1 for the most part. Likewise
if p > 2 we are able to control the size of the set where |∇u′| is close to zero.
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Finally we use (1.7)-(1.10) and induction to construct D. We describe
the case p < 2 in detail, the case p > 2 is similar. Let D0 be a domain such
that u0 satisfies (1.5a) and (1.5b) with D replaced by D0 and let Ω = D0.
Modify Ω as above to get Ω′ = D1 and u′ = u1. If Dk has been constructed
for 0 ≤ k ≤ m we put εm = 2−mε0 and modify Dm to obtain Dm+1. Set
D =

⋃∞
0 Dk. The construction can be arranged so that D is not convex (see

Section 4) which shows that it is not the domain in [17]. To prove (1.5c) we
first note

C ≥
∫

dµk =

∫
∂Dk

|∇uk|p−1 dH1 ≥ H1(∂Dk)(1.11)

for k = 0, 1, . . . because µk(∂Dk) ≤ C for some C independent of k (see
Section 4). Second, for each δ > 0 we have

(1.12) lim
k→∞

H1
{
x ∈ ∂Dk : |∇uk(x)| > 1 + δ

}
= 0

since otherwise (1.7) and iteration would lead to a contradiction to (1.11).
Next from (1.9) and the fact that |∇uk| > 1 on ∂Dk we see that for M > 1
and k = 0, 1, . . .

logM

∫
{|∇uk|>M}

|∇uk|p−1 dH1 ≤
∫

∂Dk

|∇uk|p−1 log |∇uk| dH1 ≤ C<∞.(1.13)

We also show that as k → ∞
(1.14) H1|∂Dk

→ H1|∂D and µk → µ

weakly as measures on R
2 in section 4. Let φ ∈ C∞

0 (R2) and φ ≥ 0. Then
we get ∫

φ dµk =

∫
∂Dk

φ|∇uk|p−1 dH1 ≥
∫

∂Dk

φ dH1 .(1.15)

To obtain the reverse inequality let δ be a fixed small number and M be a
fixed large number and put

Ek ={x ∈ ∂Dk : 1 ≤ |∇uk(x)| ≤ 1 + δ}(1.16)

Fk ={x ∈ ∂Dk : 1 + δ < |∇uk(x)| ≤M}(1.17)

Lk ={x ∈ ∂Dk : |∇uk(x)| > M}(1.18)

for k = 0, 1, . . .. Then∫
φ dµk =

∫
∂Dk

φ|∇uk|p−1 dH1 =

∫
Ek

· · ·+
∫

Fk

· · ·+
∫

Lk

· · · = I1 + I2 + I3.

It is clear that

|I1| ≤ (1 + δ)p−1

∫
∂Dk

φ dH1.
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Also from (1.12) we have

|I2| ≤Mp−1‖φ‖∞H1
{
x ∈ ∂Dk : 1 + δ < |∇uk|

}→ 0

as k → ∞. Using (1.13) we get

|I3| ≤ ‖φ‖∞
∫
|∇uk|>M

|∇uk|p−1 dH1 ≤ C

logM
‖φ‖∞

Letting k → ∞ we obtain from the above and (1.14)∫
∂D

φ dH1 ≤
∫
φ dµ ≤ (1 + δ)p−1

∫
∂D

φ dH1 +
C

logM
‖φ‖∞.

Finally letting δ → 0 and M → ∞ we obtain∫
φ dµ =

∫
∂D

φ dH1

which is what we wanted to prove. Finally the author would like to thank
J. Lewis for pointing out this problem and helpful discussions.

2. Basic estimates

A Jordan curve J is said to be a k quasicircle 0 < k < 1 if J = f(∂B(0, 1))
where f ∈W 1,2(R2) is a homeomorphism of R

2 and

(2.1) |fz̄| ≤ k|fz|, H2 a. e. in R
2.

Here we use complex notation, i =
√−1, z = x1 + ix2, 2fz̄ = fx1 + ifx2 ,

2fz = fx1 − ifx2 . We call J a quasicircle if J is a k quasicircle for some
0 < k < 1. Let w1, w2 be distinct points on the Jordan curve J and J1, J2

the arcs with endpoints w1, w2. Then J is said to satisfy the Ahlfors three
point condition if there exists an 1 ≤ M < ∞ such that for all w1, w2 ∈ J
we have

min{diamJ1, diamJ2} ≤ M |w1 − w2|.
A Jordan curve J is a quasicircle if and only if it satisfies the Ahlfors three
point condition. A domain Ω is said to be uniform provided there exists
M, 1 ≤ M < ∞ such that if w1, w2 ∈ Ω, then there is a rectifiable curve
γ : [0, 1] → Ω with γ(0) = w1, γ(1) = w2, and

(2.2a) H1(γ) ≤M |w1 − w2|
(2.2b) min{H1(γ([0, t])), H1(γ([t, 1]))} ≤Md(γ(t), ∂Ω)

where d(E,F ) denotes the distance between two non-empty sets E and F .
If 1 ≤ M̃ < ∞ and Ω is a domain a ball B(w, r) ⊂ Ω is said to be M̃
non-tangential if

M̃r > d(B(w, r), ∂Ω) > M̃−1r
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If w1, w2 ∈ Ω a Harnack chain from w1 to w2 in Ω is a sequence of M̃
non-tangential balls such that the first ball contains w1 the last ball contains
w2 and consecutive balls intersect. The conditions (2.2) are equivalent to

For any w ∈ ∂Ω, 0 < r ≤ diam Ω, there exists(2.3a)

a = ar(w) ∈ Ω such that M−1r < |a− r| < r and

d(a, ∂Ω) > M−1r

Given ε > 0, w1, w2 ∈ Ω, d(wj, ∂Ω) > ε and(2.3b)

|w1 − w2| < Cε, there is a Harnack chain from

w1 to w2 whose length depends on C but not on ε.

See [9] for references.
In the sequel c will denote a positive constant ≥ 1 (not necessarily the

same at each occurrence) which may depend only on p unless otherwise
stated. In general c(a1, . . . , an) denotes a positive constant ≥ 1 which may
only depend on p, a1, . . . , an, not necessarily the same at each occurrence.
We begin by stating some interior and boundary estimates for u a positive
weak solution to the p Laplacian in B(w, 4r)∩Ω with u = 0 on ∂Ω∩B(w, 4r)
when this set is nonempty. In this case we extend u to B(w, 4r) by putting
u = 0 on B(w, 4r)\Ω. Let maxB(z,s) u, minB(z,s) u be the essential supremum
and infimum of u on B(z, s) whenever B(z, s) ⊂ B(w, 4r).

Lemma 1. Let u be as above. Then

c−1rp−2

∫
B(w,r/2)

|∇u|p dx ≤ max
B(w,r)

up ≤ cr−2

∫
B(w,2r)

up dx.

If B(w, 2r) ⊂ Ω, then
max
B(w,r)

u ≤ c min
B(w,r)

u.

Proof. The first display in Lemma 1 is a standard subsolution estimate
while the second display is a standard weak Harnack estimate for positive
weak solutions to nonlinear partial differential equations of p Laplacian type
(see [20]). �

Lemma 2. Let u be as in Lemma 1. Then u has a representative in
W 1,p

(
B(w, 4r)∩ Ω

)
with Hölder continuous partial derivatives in B(w, 4r)∩

Ω. That is for some σ = σ(p) ∈]0, 1[ we have

c−1
∣∣∇u(w1) −∇u(w2)

∣∣ ≤ (|w1 − w2|/s
)σ

max
B(z,s)

|∇u|
≤ cs−1

(|w1 − w2|/s
)σ

max
B(z,2s)

u

whenever w1, w2 ∈ B(z, s) and B(z, 4s) ⊂ B(w, 4r) ∩ Ω.
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Proof. The proof of Lemma 2 can be found in [4], [14] or [21] and in fact is
true when B(w, 4r)∩ Ω ⊂ R

n. In R
2 the best Hölder exponent in Lemma 2

is known when p > 2 while for 1 < p ≤ 2 a solution has continuous second
partials (see [12]). �

A mapping h : B(w, 4r)∩ Ω → R
2 is said to be quasiregular in B(w, 4r)∩

Ω if h ∈ W 1,2
(
B(w, 4r) ∩ Ω

)
and (2.1) holds with f replaced by h in

B(w, 4r) ∩ Ω. From a factorization theorem for quasiregular mappings it
follows that h = τ ◦ f where f is quasiconformal in R

2 and τ is an analytic
function on f

(
B(w, 4r) ∩ Ω

)
.

Lemma 3. If u is as in Lemma 1 and z = x1 + ix2 then uz is quasiregular
in B(w, 4r)∩ Ω for some 0 < k < 1 (depending only on p) and consequently
∇u has only isolated zeros in B(w, 4r) ∩ Ω.

Proof. For a proof of quasiregularity see [1], [15]. Since the zeros of an
analytic function are isolated it follows from the factorization theorem that
the zeros of ∇u are isolated. �

Lemma 4. If B(w, 4r) ⊂ Ω, ∇u 
= 0 in B(w, 4r) and maxB(w,2r) |∇u| ≤
λmaxB(w,r) |∇u| then

max
B(w,2r)

|∇u| ≤ c(λ) min
B(w,r)

|∇u|

Proof. Note that v = log |∇u| is a weak solution in B(w, 4r) to the diver-
gence form partial differential equation (see [19])

2∑
i,j=1

∂

∂xi
(Aij(x)vxj

) = 0

where the (Aij) are bounded and uniformly elliptic (with constants depend-
ing only on p). Using Harnacks inequality for positive solutions to partial
differential equations of this type (see [20]) applied to maxB(w,2r) v − v in
B(w, r) we obtain the lemma. �

Lemma 5. Let u be as in Lemma 1 and w ∈ ∂Ω. If p > 2 there exists
α = α(p) ∈]0, 1[ such that u has a Hölder α continuous representative in
B(w, r) (also denoted u). Moreover if x, y ∈ B(w, r) then∣∣u(x) − u(y)

∣∣ ≤ c
(|x− y|/r)α max

B(w,2r)
u.

If 1 < p ≤ 2 and Ω is simply connected, then this inequality is also valid
when 1 < p ≤ 2 with α = α(p).
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Proof. For p > 2, Lemma 5 is a consequence of Lemma 1 and Morreys
inequality (see [6]). If 1 < p ≤ 2 and Ω is simply connected we deduce from
the interior estimates in Lemma 2 that it suffices to consider only the case
when y ∈ B(w, r) ∩ ∂Ω. We then show for some θ = θ(p, k), 0 < θ < 1 that

max
B(z,ρ/4)

u ≤ θ max
B(z,ρ/2)

u whenever 0 < ρ < r and z ∈ ∂Ω ∩B(w, r).(2.4)

This inequality can then be iterated to get Lemma 5 for x, y as above. To
prove (2.4) we use the fact that B(z, ρ/4) ∩ ∂Ω and B(z, ρ/4) have compa-
rable p capacities (see [10]) and estimates for subsolutions to elliptic partial
differential equations of p Laplacian type (see [8], [15]). �

Lemma 6. Let u,Ω, w be as in Lemma 5. Assume also that Ω is a uniform
domain. Then there exist c = c(M) and ĉ = ĉ(M) with

max
B(w,r/ĉ)

u ≤ cu(ar/ĉ(w))

where M is as in (2.2) and ar(w) is as in (2.3). Hence

|u(x) − u(y)| ≤ c(|x− y|/r)αu(ar/ĉ(w))

for x, y ∈ B(w, r/2ĉ).

Proof. The first display in Lemma 6 follows from Harnacks principle in
Lemma 1, Hölder continuity of u in Lemma 5 and the fact that Ω is a uni-
form domain and a general argument which can be found in [3]. The second
display follows from the first display and Lemma 5 �

To proceed we consider the following scenario. Let Ω be a domain such
that ∂Ω is C4. Let w ∈ ∂Ω and let u be a positive p harmonic function in
Ω ∩ B(w, 2r) and assume that Ω ∩ B(w, 2r) has only one component. We
further assume that ∇u 
= 0 in Ω ∩B(w, r). We have

Lemma 7. Let u be as above. If x ∈ Ω ∩ B(w, r) there exists a c ≥ 1
depending only on k and p such that

c−1d(x, ∂Ω)−1u(x) ≤ |∇u(x)| ≤ cd(x, ∂Ω)−1u(x)

where d(x, ∂Ω) denotes the distance from x to ∂Ω

Proof. Choose y ∈ B(x, d(x, ∂Ω)) with u(y) = u(x)/2. Apply the mean
value theorem of calculus to u restricted to the line segment with endpoints
x, y. From this and Lemma 6 it follows that there exists a constant c ≥ 4
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and z such that y ∈ B(x, (1 − c−1)d(x, ∂Ω)) and z is on the line segment
between x and y and

u(x)/2 = |u(x) − u(y)| ≤ |∇u(z)||x− y|.
Using this inequality and Lemma 2 we see for some positive c̃ that if t1 =
(1 − c−1)d(x, ∂Ω), t2 = (1 − (2c)−1)d(x, ∂Ω) then

c̃−1u(x)/d(x, ∂Ω) ≤ max
B(x,t1)

|∇u| ≤ max
B(x,t2)

|∇u| ≤ c̃u(x)/d(x, ∂Ω).(2.5)

From (2.5) and Lemma 4 we conclude that Lemma 7 is valid for u at x. �
Let θ be a function whose graph is after a rotation and translation Ω ∩

B(w, r/2) and suppose that the C4-norm of θ is bounded by c/r. The
condition (3.1) stated in the next section is clearly sufficient. At each point
x ∈ ∂Ω∩B(w, r/2) we can find a tangential ball B(z, ρ) ⊂ Ω∩B(w, r) with
x ∈ ∂B(z, ρ) and radius ρ > 0 depending only on λ and r. Let v be the p
harmonic function which is zero on ∂B(z, ρ) and inf∂B(z,ρ/2) u on ∂B(z, ρ/2).
Then v ≤ u in the annulus B(z, ρ) \B(z, ρ/2). Therefore

|∇u(t)| ≥ c−1u(t)d(t, ∂Ω)−1 ≥ c−1v(t)d(t, ∂Ω)−1 ≥ c−1 inf
∂B(z,ρ/2)

u/ρ

for t in the annulus where we used the fact that v(x) = A|x− z| p−2
p−1 +B to

compute ∇v. Then by Harnack’s inequality we get a lower bound in terms
of maxB(w,r) u. We can argue in the same way to get an upper bound so that
we have

(2.6) c−1 max
B(w,r)

u/r ≤ |∇u|(t) ≤ c max
B(w,r)

u/r

for t in B(w, r/2) ∩ Ω and thus u ∈W 1,2(B(w, r/2)).
Let ũ(x) = u(rx+ w)/r. Then ũ is a solution to the p Laplace equation

in B(0, 2) ∩ Ω̃ where Ω̃ = {x ∈ R
2 : rx+ w ∈ Ω}. Let Φ be a differentiable

mapping from B(0, 2) to B(0, 2) such that 0 is mapped to 0 and ] − 1, 1[
is mapped to ∂Ω̃ ∩ B(0, 2) and {(x, y) ∈ B(0, 2) : y > 0} is mapped to
B(0, 2)∩ Ω̃. Define v = ũ◦Φ in {(x, y) ∈ B(0, 2) : y > 0} and let v(x, y) = 0
in {(x, y) ∈ B(0, 2) : y < 0}. Then v satisfies an equation of the form

(2.7) ∇ · (〈A∇v,∇v〉p/2−1A∇v) = 0

in B(0, 2)+ = B(0, 2) ∩ {(x, y) ∈ B(0, 2) : y > 0} where A = [Aij] is a
symmetric matrix whose coefficients are in C1. From our work above it
follows that

(2.8) c−1 max
B(0,2)

v ≤ |∇v|(x) ≤ c max
B(0,2)

v
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for x ∈ B(0, 1)+ where the constant may depend on Φ. If we let A(x, ξ) =
〈Aξ, ξ〉p/2−1Aξ then we have

(|ξ| + |η|)p−2|ξ − η|2 ≤ c〈A(x, ξ) − A(x, η), ξ − η〉
and

(2.9) |∇xA(x, η)| ≤ c|η|p−1

where ∇x denotes the gradient with respect to the x variable.

Lemma 8. Let v be as above. Then v has weak derivatives of second order
and vx1 ∈W 1,2(B(0, 1/2)) and we have

∫
B(z,ρ/2)

2∑
i=1

|vxjxi
|2 dx ≤ c

ρ2

∫
B(z,ρ)

|vxj
− a|2 dx+ cρ2(max

B(0,1)
v)2

if B(z, ρ) ⊂ B(0, 1/2)+ = {(x1, x2) ∈ B(0, 1/2) : x2 > 0} and a ∈ R. In
addition we have∫

B(z,ρ/2)

2∑
i=1

|vx1xi
|2 dx ≤ c

ρ2

∫
B(z,ρ)

|vx1|2 dx+ cρ2(max
B(0,1)

v)2

for any z ∈ B(0, 1/2) and ρ ≤ 1/4

Proof. Let

Dh
kv(x) =

v(x+ hek) − v(x)

h
where ek denotes the k-th unit vector. Let ζ be a smooth function such that
ζ = 1 on B(z, ρ/2), supp ζ ⊂ B(z, ρ) and |∇ζ | ≤ c/ρ for some constant
c. Since v ∈ W 1,2(B(0, 1)+) and v = 0 on {(x1, x2) : x2 = 0} the function
φ = D−h

k

(
ζ2(Dh

kv − a)
)

belongs to W 1,2
0

(
B(0, 1)+

)
if B(z, ρ) ⊂ B(0, 1/2)+

and if a = 0 and k = 1 we have φ ∈ W 1,2
0

(
B(0, 1)+

)
for any z ∈ B(0, 1/2)

and ρ ≤ 1/4. This function is therefore an admissible test function. We
obtain

0 =

∫ 〈
A(x,∇v),∇(D−h

k (ζ2(Dh
kv − a))

)〉
dx

=

∫ 〈
Dh

kA(x,∇v),∇(ζ2(Dh
kv − a)

)〉
dx

=

∫ 〈
A(x+ hek,∇v(x+ hek)) −A(x+ hek,∇v(x))

h
,∇(ζ2(Dh

kv − a)
)〉
dx

+

∫ 〈
A(x+ hek,∇v(x)) −A(x,∇v(x))

h
,∇(ζ2(Dh

kv − a)
)〉

dx = I + II
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The first of these integrals is∫ 〈
A(x+ hek,∇v(x+ hek)) −A(x+ hek,∇v(x))

h
, ζ2Dh

k∇v
〉
dx

+

∫ 〈
A(x+ hek,∇v(x+ hek)) − A(x+ hek,∇v(x))

h
, 2ζ∇ζ(Dh

kv − a)

〉
dx

The first term in this expression can be bounded below by

c−1

∫ (
|∇v(x+ hek)| + |∇v(x)|

)p−2

ζ2|Dh
k∇v|2 dx

and the second term can be bounded above by∫ (|∇v(x+ hek)| + |∇v(x)|)p−2|Dh
k∇v||∇ζ ||2ζ(Dh

kv − a)| dx

≤ ε

∫ (|∇v(x+ hek)| + |∇v(x)|)p−2|Dh
k∇v|2ζ2 dx

+
c

ε

∫ (|∇v(x+ hek)| + |∇v(x)|)p−2|∇ζ |2|Dh
kv − a|2 dx

by Youngs inequality. As for II we get

II ≤ c

∫
|∇v|p−1ζ2|Dh

k∇v| dx+ c

∫
|∇v|p−1|ζ ||∇ζ ||Dh

kv − a| dx

≤ ε

∫
|∇v|p−2ζ2|Dh

k∇v|2dx+
c

ε

∫
|∇v|pζ2dx+

c

ρ2

∫
|∇v|p−2|Dh

kv − a|2dx.

Choosing ε small enough and using (2.8) to estimate |∇v|p−2 we get∫
B(z,ρ/2)

|Dh
k∇v|2 dx ≤ c

ρ2

∫
B(z,ρ)

|vxk
− a|2 dx+ ρ2(max

B(0,1)
v)2.

We conclude that (Dh
kv)ζ ∈W 1,2

0 (B(z, ρ)) with a norm independent of h. It
now follows from a weak compactness argument that vxk

ζ ∈ W 1,2
0 (B(z, ρ))

and ∫
B(z,ρ/2)

2∑
i=1

|vxkxi
|2 dx ≤ c

ρ2

∫
B(z,ρ)

|vxk
− a|2 dx+ ρ2(max

B(0,1)
v)2.

This is what we wanted to prove. �
Recall that if ψ ∈W 1,2(B(z, ρ)) and ψB(z,ρ) = 1

|B(z,ρ)|
∫

B(z,ρ)
ψ dx then

|ψ(x) − ψB(z,ρ)| ≤ C

∫
B(z,ρ)

|∇ψ(y)|
|x− y| dy
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Let ψ(x) = vx1(x) and 1/4 > ρ. It follows if x ∈ B(0, 1/4)

|ψ(x) − ψB(z,ρ)| ≤
∫

B(z,ρ)

|∇ψ(y)|
|x− y| dy

=

∫
B(x,δ)

|∇ψ(y)|
|x− y| dy +

∫
B(z,ρ)\B(x,δ)

|∇ψ(y)|
|x− y| dy

and by Hölders inequality

∫
B(z,2ρ)\B(x,δ)

|∇ψ(y)|
|x− y| dy(2.10)

≤ c

(∫
B(z,2ρ)

|∇ψ(y)|q dy
)1/q (∫

B(z,2ρ)\B(x,δ)

1

|x− y| q
q−1

dy

) q−1
q

≤ c‖∇ψ‖qδ
(q−2)/q

and for the other integral we have the estimate

∫
B(x,δ)

|∇ψ(y)|
|x− y| dy ≤

∞∑
n=0

2

(
2k

δ

)∫
{2−(k+1)δ≤|x−y|≤2−kδ}

|∇ψ(y)| dy(2.11)

≤ 2

∞∑
k=0

δ

2k
M(|∇ψ|) ≤ 2δM(|∇ψ|)

Here M(f) denotes the maximal function of f . We conclude

|ψ(x) − ψB(z,ρ)| ≤ 2δM(|∇ψ|) + δ(q−2)/q‖∇ψ‖q

and if we choose

δ =

( ‖∇ψ‖q

2M(|∇ψ|)
)q/2

we get

|ψ(x) − ψB(z,ρ)|2 ≤ cM(|∇ψ|)2−q‖∇ψ‖q
q

Integrating and applying Hölder’s inequality yields for 1 < q < 3
2

‖ψ(x) − ψB(z,ρ)‖2
2 ≤ ρ

(∫
B(z,2ρ)

M(|∇ψ|)4−2q dx

)1/2

‖∇ψ‖q
q(2.12)

≤ ρ

(∫
B(z,2ρ)

|∇ψ|4−2q dx

)1/2

‖∇ψ‖q
q
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If B(z, ρ) ⊂ B(0, 1/2)+ Lemma 8 and (2.12) yield with ψ = vx1, ψB(z,ρ) = a

∫
B(z,ρ/2)

∑
i

|vx1xi
|2 dx

(2.13)

≤ c

ρ

(∫
B(z,ρ)

(∑
i,j

|vxjxi
|
)4−2q

dx

)1/2∫
B(z,ρ)

(∑
i,j

|vxjxi
|
)q

dx+ cρ2(max
B(0,1)

v)2

If B(z, ρ) ∩B(0, 1/2)− 
= ∅ then we take x = (x1, x2) ∈ B(z, ρ) ∩B(0, 1/2)+

and let x∗ = (x1,−x2). Note that if x, y ∈ B(0, 1)+ then |x− y| ≤ |x∗ − y|.
Since ψ = 0 in B(0, 1)− we get

|ψB(z,ρ)| ≤
∫

B(z,ρ)

|∇ψ(y)|
|x∗ − y| dy ≤ c

∫
B(z,ρ)

|∇ψ(y)|
|x− y| dy

since ψ(x∗) = 0. This allows us to get rid of ψB(z,ρ) in our work above and
we see that (2.13) holds in this case as well.

Lemma 9. Let u be defined as above Lemma 7 and v be defined as above

Lemma 8. Then v ∈ C4(B(0, 1/4)
+
) and we have

(2.14) |D2v|(x) ≤ c max
B(0,1)

v

for x in B(0, 1/4)+. For the function u we have u ∈ C4(Ω ∩ B(w, r/8)) and

|∇u|(x) ≤ c

r
max
B(w,r)

u(2.15)

|D2u|(x) ≤ c

r2
max
B(w,r)

u(2.16)

for x ∈ B(w, r/8) ∩ Ω.

Proof. It follows from lemma 8 that v is a strong solution of (2.7). Writing
the equation in nondivergence form we obtain

|vx2x2|2 ≤ c

(
2∑

i=1

|vx1xi
|
)2

+ c(max
B(0,1)

v)2
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Let g =
∑ |vxixj

|. We obtain

−
∫

B(z,ρ)

g2 dx ≤ −
∫

B(z,2ρ)

gq dx

(
−
∫

B(z,2ρ)

g4−2q dx

)1/2

+ ρ2(max
B(0,1)

v)2

(2.17)

≤ ε

(
−
∫

B(z,2ρ)

gq dx

)2/q

+ C

(
−
∫

B(z,2ρ)

g4−2q dx

)1/(2−q)

+ ρ2(max
B(0,1)

v)2

≤ ε−
∫

B(z,2ρ)

g2 dx+ C

(
−
∫

B(z,2ρ)

g4−2q dx

)1/(2−q)

+ ρ2(max
B(0,1)

v)2

where we first used Youngs inequality and then Jensens inequality. In a ball
B(x, 2t) ⊂ B(0, 1) we define

f(y) =
δ(y)

2t
g(y)

where δ(y) is the distance from y to ∂B(x, 2t) and note

2f(y) ≥ g(y) for y ∈ B(x, t) and f(y) ≤ g(y) for y ∈ B(x, 2t)(2.18)

If z ∈ B(x, 2t) then

−
∫

B(z,δ(z)/2)

f 2(y) dy ≤
(

2

δ(z)

)2 ∫
B(z,δ(z)/2)

(
δ(y)

2t

)2

g2(y) dy(2.19)

≤ 4

t2

∫
B(x,2t)

g2(y) dy = λ2
0

Let µ2
0 = λ2

0 + 2t2(maxB(0,1) v)
2, take λ ≥ λ0, let µ2 = λ2 + 2t2(maxB(0,1) v)

2

and F (µ) = {z ∈ B(x, 2t) : f(z) > µ}. Then it follows from differentiation
theory that for almost every z ∈ F (µ) there exists ρ > 0 such that

−
∫

B(z,ρ)

f 2 dx > µ2

If z ∈ F (µ) and ρ is sufficiently small it follows from (2.19) that we can
select ρ such that 10ρ < δ(z)/2 and

−
∫

B(z,10ρ)

f 2 dx < µ2(2.20)

−
∫

B(z,ρ)

f 2 dx > µ2(2.21)
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Then we obtain∫
B(z,2ρ)

g2 dy ≤
∫

B(z,10ρ)

g2 dy ≤ (10ρ)2

(
2t

δ(z)

)2

−
∫

B(z,10ρ)

f 2(y) dy(2.22)

≤ (10ρ)2

(
2t

δ(z)

)2

−
∫

B(z,ρ)

f 2 dy ≤ c

∫
B(z,ρ)

g2 dy.

Along with (2.17) this gives the estimate

−
∫

B(z,ρ)

g2 dx ≤ C

(
−
∫

B(z,2ρ)

g4−2q dx

)1/(2−q)

+ 2t2(max
B(0,1)

v)2(2.23)

Since 10ρ < δ(z)/2 we have δ(z)/4 < δ(y)/2 < δ(z) for all y ∈ B(z, 2ρ).
Therefore

−
∫

B(z,ρ)

f 2 dx ≤ C

(
−
∫

B(z,2ρ)

f 4−2q dx

)1/(2−q)

+ 2t2(max
B(0,1)

v)2

From (2.21) it now follows

(2.24) λ4−2q ≤ C −
∫

B(z,2ρ)

f 4−2q dx

so

−
∫

B(z,10ρ)

f 2 dx ≤ µ2 = λ2 + 2t2(max
B(0,1)

v)2(2.25)

≤ Cλ2q−2

(
−
∫

B(z,2ρ)

f 4−2q dx

)
+ 2t2(max

B(0,1)
v)2

Let E(µ) = {y ∈ B(x, 2t) : f(y) < µ} and note

(2.26)

∫
E(δµ)∩B(z,2ρ)

f 4−2q dx ≤ (δµ)4−2qm(B(z, 2ρ))

where m denotes two dimensional Lebesgue measure. By a well known cover-
ing theorem we can find a sequence of balls {B(zi, ρi)} such that (2.21), (2.20)
and (2.25) hold and

m(F (µ) \
⋃
i

B(zi, 10ρi)) = 0(2.27)

B(zi, 2ρi) ∩ B(zj , 2ρj) = ∅ i 
= j(2.28)
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Now we have∫
F (µ)

f 2 dx ≤
∑

i

∫
B(zi,10ρi)

f 2 dx(2.29)

≤ λ2q−2

(∑
i

∫
B(zi,2ρi)

f 4−2q dx

)
+ 2t2(max

B(0,1)
v)2

≤ Cλ2q−2

(∫
F (δµ)

f 4−2q dx

)
+ 2t2(max

B(0,1)
v)2.

Let M be a large number and put

f̃ = min{f,M}(2.30)

F̃ (µ) = {z ∈ B(x, 2t) : f̃(z) > µ}(2.31)

Then it follows that∫
F̃ (µ)

f̃ 2 dx ≤ Cλ2q−2

(∫
F̃ (δµ)

f̃ 4−2q dx

)
+ 2t2(max

B(0,1)
v)2(2.32)

Now we get with integration by parts and Fubini’s theorem

∫
F̃ (µ0)

f̃ 2+γ dx = γ

∫
F̃ (µ0)

f̃ 2

∫ f̃

0

µγ−1 dµ dx = γ

∫ ∞

µ0

µγ−1

∫
F̃ (µ)

f̃ 2 dx dµ

(2.33)

≤ γ

∫ ∞

µ0

µγ+2q−3

(∫
F̃ (δµ)

f̃ 4−2q dx

)
+ 2t2(max

B(0,1)
v)2 dµ

=
(4 − 2q)γδ4−2q

γ + 2q − 2

∫ ∞

µ0

µ1+γm(F̃ (δµ)) dµ

+
γ

γ + 2q − 2
µγ+2q−2

0

(∫
F̃ (δµ0)

f̃ 4−2q dx

)
+ 2t2(max

B(0,1)
v)2

By choosing δ small enough this gives∫
F̃ (µ0)

f̃ 2+γ dx ≤ Cµγ+2q−2
0

(∫
B(x,2t)

f̃ 4−2q dx

)
+ t2(max

B(0,1)
v)2(2.34)

By the monotone convergence theorem we see that this inequality holds for f
and by (2.18), (2.19) and Jensen’s inequality that

(
−
∫

B(x,t)

g2+γ dx

)1/(2+γ)

≤ C

(
−
∫

B(x,2t)

g2 dx

)1/2

+ c(max
B(0,1)

v)2(2.35)
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This implies that v ∈ W 2,2+γ(B(0, 1/4)+) and from Morrey’s inequality we

see that v ∈ C1,α(B(0, 1/4)
+
) and the C1,α norm of v is bounded by the

W 2,2+γ norm of v. If we write (2.7) in nondivergence form we obtain an
equation ∑

i,j

aij(x,∇v)vxixj
+ b(x,∇v) = 0.

Since the matrix A in (2.7) is smooth and the function v ∈ C1,α(B(0, 1/4)
+
)

it follows that aij ∈ Cα(B(0, 1/4)
+
). Also (2.8) gives us that the equation

is strictly elliptic. Then lemma 9 follows from boundary Schauder estimates
(see [18, chapter 6]). �

3. Preliminary reductions

Assume Ω is a bounded domain of class C4. This means that for each y ∈ ∂Ω
there exists s > 0 such that B(y, s)∩∂Ω is a part of the graph of a four times
continuously differentiable function defined on a line in R

2 and B(y, s) ∩ Ω
lies above the graph. We use compactness and a standard covering argument
to obtain y1, . . . , yN ∈ ∂Ω such that

∂Ω ⊂
N⋃

i=1

B(yi, 100r) and B(yi, 10r) ∩ B(yj, 10r) = ∅, i 
= j

If r is sufficiently small and y = yi then it follows from the implicit function
theorem that there exists a function θ = θ(·, y) four times continuously
differentiable on R with θ(0) = 0 and θx(0) = 0 such that after a rotation of
the axes, if necessary:

∂Ω ∩B(y, 1000r1/2) ⊂ {(x1 + y1, θ(x1) + y2) : x1 ∈ R
}

Ω ∩B(y, 1000r1/2) ⊂ {(x1 + y1, x2) : x2 − y2 > θ(x1), x1 ∈ R
}

Let

K1 = max
y∈{yi}N

1

(
max

x∈∂Ω∩B(y,100r1/2)

4∑
k=1

|θ(k)(·, y)|
)

and for 0 < ε < σ0 ≤ 10−3 choose r0 > 0 so small that for 0 < r ≤ r0

(3.1) K1r
1/2 ≤ 10−3r1/4 ≤ 10−9ε4

which is possible since K1 < +∞ by compactness of ∂Ω. Let u be a function
satisfying (1.5a)–(1.5b) with D replaced by Ω and assume that u ∈ C4(Ω)
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and |∇u| > 1 on ∂Ω. Let

K2 = max
y∈{yi}N

1

(
max

x∈Ω̄∩B(y,100r1/2)

∑
|∂αu(x)|

)

where α = (α1, α2) is a multiindex and 0 ≤ |α| ≤ 4. Choose r0 even smaller
so that if 0 < r ≤ r0 then

(3.2) K2r
1/2 ≤ 10−3r1/4 ≤ 10−9ε4

Let l be the largest nonnegative integer such that 2−lσ0 > ε and let σk =
2−kσ0 for k = 0, 1, . . .. Put

(3.3) Ek =
{
x ∈ ∂Ω : 1 + σk < |∇u(x)| ≤ 1 + σk−1

}
,

for 1 ≤ k ≤ l + 1 and

(3.4) E0 =
{
x ∈ ∂Ω : |∇u(x)| > 1 + σ0

}
Let ψ ≥ 0 be a C∞ function on R with maxψ = 1 and support in the unit
interval. Let L be the set of all y ∈ {yi}N

1 for which

B(y, 100r) ∩
l+1⋃
k=0

Ek 
= ∅

For a fixed y = (y1, y2) ∈ L let j be the smallest nonnegative integer with

(3.5) B(y, 100r) ∩ Ej 
= ∅
Put

ξ(x1) = θ(x1) − σ4
j rψ(x1/rσ

2
j ) + y2 x1 ∈ R

Now we define Ω′ as follows

Ω \
⋃
y∈L

B(y, 10r) = Ω′ \
⋃
y∈L

B(y, 10r)(i)

∂Ω′ ∩B(y, 10r) = {(x1 + y1, ξ(x1)) : x1 ∈ R} ∩ B(y, 10r)(ii)

Ω′ ∩B(y, 10r) = {(x1 + y1, x2) : x2 > ξ(x1)}} ∩ B(y, 10r).(iii)

Clearly Ω′ is of class C4.

Lemma 10. Let u′ be defined by (1.5a)–(1.5b) with D replaced by Ω′. Then
u′ ∈ C4(Ω̄′) and if r0 is small enough

(3.6) |∇u′(x)| > 1, x ∈ ∂Ω′.



586 B. Bennewitz

Proof. First u′ ∈ C4(Ω) follows from lemma 9 since ∇u′ 
= 0 in Ω′ (see [15]).
If x ∈ ∂Ω′ ∩ ∂Ω then it follows from the maximum principle that (3.6) is
true. Let Z(y, t) = {(x1, x2) : |xi − yi| < t, i = 1, 2}. If x ∈ ∂Ω′ \ ∂Ω we first
note that since ψ has support in the unit interval

(3.7) (∂Ω′ \ ∂Ω) ∩B(y, 10r) ⊂ Z(y, r)

whenever y ∈ L. From the maximum principle and (3.7) it follows that to
prove (3.6) it suffices to show that

(3.8) |∇u∗(x)| > 1 x ∈ Z(y, r) ∩ ∂Ω∗

where Ω∗ is obtained by adding just one bump to Ω at the point y and u∗

satisfies (1.5a)-(1.5b) with D replaced by Ω∗.
We note that since |∇u(x)| > 1 on ∂Ω it follows from (3.2) that ux2 > 1/2

when x ∈ Z(y, r). Let t0 = minY u where Y = {(x1, x2) ∈ ∂Z(y, r) ∩ Ω :
|y2 − x2| = r}. Note that ct0 ≥ maxΩ∩Z(y,r) u by Harnack’s inequality. Let
U = Ω ∩ Z(y, r) ∩ {u < t0} and note that u is increasing on ∂U ∩ ∂Z(y, r).
Let U∗ = Ω∗∩Z(y, r)∩{u(x) < t0}. Define v to be the p harmonic function
in U∗ such that v = 0 on ∂Ω∗ and v = u on ∂U∗ \ ∂Ω∗. Note that v ≤ u∗

in U∗ by the boundary maximum principle so it suffices to show |∇v| > 1
on ∂Ω∗. In order to do this we need to apply the estimates in section 2 to
the function v. This requires us to show that ∇v 
= 0.

Consider the function vε in U∗ which solves the equation

(3.9) ∇ · ((|∇vε|2 + ε)p/2−1∇vε)

and satisfies vε = v on ∂U∗. This equation is strictly elliptic so it follows
from Schauder estimates (see [13] or [18]) that vε is real analytic in the
interior of U∗ and continous in the closure of U∗ (see [13]). If t < t0 the
set ∂U ∩ {u = t} contains exactly two points. Since vε = u on ∂U∗ \ ∂Ω∗

the set {vε(x) > s} is connected in U∗ (s < t0) since each component must
intersect the boundary of U by the maximum principle for vε. We note that
it follows from [15] that if |∇vε(x0)| = 0 then {vε(x) > vε(x0)} can not be
connected. Since we have already concluded that these sets are connected
we see that ∇vε 
= 0 in U∗. Now one can argue as in [15] to obtain ∇v 
= 0
in U∗. Since u is Hölder continous there exists a λ which depends only on p
so that u < t0 in Z(y, λr) so Z(y, λr) ∩ Ω∗ ⊂ U∗. Thus we have ∇v 
= 0
in Z(y, λr).

Now we can apply lemma 9 to v and obtain

max
Z(y,λr/8)∩Ω∗

|D2v| ≤ c

r2
max

Z(y,λr)
v ≤ c

r2
max
Z(y,r)

u ≤ c

r
|∇u|(t)

for t ∈ Z(y, r).
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Let σ0 be so small that σ0 < λ/8. By the maximum principle |∇v| ≥ |∇u|
on ∂Ω ∩ ∂Ω∗ and from our construction we know that there exists some
point x ∈ ∂Ω ∩ B(y, 100r) such that 1 + σj ≤ |∇u|(x). From (3.2) it
follows that |∇u|(x) ≥ 1 + σj/2 for all x ∈ ∂Ω ∩ B(y, 100r). Pick a point
z ∈ ∂Ω ∩ ∂Ω∗ ∩B(y, σ2

j r). By (3.2) we see that

|∇u(t)| ≤ |∇u(z)| + 10−9ε4r1/2

for t ∈ Z(y, r). Choosing σ0 smaller so that Cσ0 < 10−3 and using the mean
value theorem and (3.2) we obtain for x ∈ ∂Ω∗ ∩ B(y, σ2

j r)

|∇v(z) −∇v(x)| ≤ max
Z(y,r)∩Ω∗

|D2v||z − x|
(3.10)

≤ c|∇u|(t) |z − x|
r

≤ 10−3σj |∇u|(z) + 10−12ε4r1/2σj

and since |∇v|(z) ≥ |∇u|(z)

|∇v|(x) ≥ (1 − 10−3σj)|∇v|(z) − 10−12ε4r1/2σj(3.11)

≥ (1 − 10−3σj)(1 +
1

2
σj) − 10−12ε4r1/2σj > 1.

Which is what we needed to prove. �

Lemma 11. Let Ω, Ω′ be as above. If ε ≤ t ≤ 1

H1(∂Ω′) ≥ H1(∂Ω) + η(t)H1{x : |∇u(x)| > 1 + t}(3.12)

if p < 2 but

H1(∂Ω′) ≥ H1(∂Ω) + η(t)H1{x : |∇u(x)| < 1 − t}(3.13)

if p > 2. Here η is a positive function on ]0,∞[.

Proof. To prove (3.12) let

c2 =

∫
R

|ψ′(x)|2 dx

and choose σ0 even smaller so that

(3.14) σ0 ≤ c2 ≤ 2(max
R

|ψ′|)2 ≤ σ−1
0 10−6
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Then it follows from (3.1) and the definition of σj

H1(Z(y, r) ∩ ∂Ω′) =

∫ r

−r

√
1 + |ξ′|2 dx(3.15)

≥
∫ r

−r

√
1 + σ4

j |ψ′(x/r)|2 dx− 2ε8r

= r

∫ 1

−1

√
1 + σ4

j |ψ′(x)|2 dx− 2ε8r

≥ (1 +
1

4
σ4

j c2 − ε8)2r ≥ 1

8
σ4

j c22r +H1(Z(y, r) ∩ ∂Ω).

Take t ≥ ε and let k be the least nonnegative integer such that t ≥ σk,
0 ≤ k ≤ l + 1. Let J = J(k) be the set of all i such that (3.5) holds with
y = yi and j ≤ k. From (3.1) it is clear that

H1{x ∈ ∂Ω : |∇u(x)| ≥ 1 + t} ≤ H1
(⋃

i∈J

B(yi, 100r) ∩ ∂Ω
)

(3.16)

≤ 2
∑
i∈J

200r

and we conclude that

H1(∂Ω′) ≥ H1(∂Ω) + c3σ
4
kH

1{x ∈ ∂Ω : |∇u(x) > 1 + t}(3.17)

Let

(3.18) η(t) =

{
c3σ

4
0 if σ0 ≤ t

c3σ
4
k if σk ≤ t < σk−1, k = 1, 2, . . .

Since η does not depend on Ω this proves (3.12). The case when p > 2 is
similar. �

4. Proof of Theorem 1

Lemma 12. Let u, Ω be as above. If 1 < p < 2 then

(4.1)

∫
∂Ω

|∇u|p−1 log |∇u| dH1 ≤ C

and if p > 2 then

(4.2)

∫
∂Ω

|∇u|p−1 log |∇u| dH1 ≥ C

where the constant C depends only on F .
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Proof . We proceed as in [2]. Note that if η ∈ R
2 and |η| = 1 then

ζ = 〈∇u, η〉 is a strong solution to

Lζ = ∇ · ((p− 2)|∇u|p−4〈∇u,∇ζ〉∇u+ |∇u|p−2∇ζ) = 0

in Ω ∩N since ∇u 
= 0. In other words

(4.3) Lζ =
2∑

i,k=1

∂

∂xi

(
aik(x)ζxk

(x)
)

= 0

where

(4.4) aik(x) = |∇u|p−4
(
(p− 2)uxi

uxk
+ δik|∇u|2

)
(x)

and δij is the Kronecker δ. Note that

(4.5) Lu = (p− 1)∇ · (|∇u|p−2∇u) = 0

Since the equation is rotationally invariant we can assume that ∇u(x) =
(|∇u(x)|, 0). Let v = log |∇u(x)|. Then

vxk
= |∇u|−2

2∑
l=1

uxl
uxlxk

and so

Lv =

2∑
i,k=1

∂(aikvxk
)

∂xi
=

2∑
i=1

∂

∂xi

(
|∇u|−2

2∑
k,l=1

aikuxl
uxlxk

)
.

Using (4.3) on the righthand side we get

Lv = − 2|∇u|−4

2∑
i,k,l,m=1

aik(uxl
uxlxk

uxmuxmxi
)(4.6)

+ |∇u|−2

2∑
i,k,l=1

aikuxlxi
uxlxk

= T1 + T2 .

From the definiton of the aik’s and our assumption that ∇u(x) = (|∇u(x)|, 0)
we see at x

a11 = (p− 1)|∇u|p−2, a22 = |∇u|p−2 and a12 = a21 = 0(4.7)

and also from (4.5)

(4.8) (p− 1)ux1x1 + ux2x2 = 0 .
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Using this in the definitions of T1, T2 we obtain at x

T1 = −2|∇u|p−4((p− 1)(ux1x1)
2 + (ux1x2)

2)

and
T2 = p|∇u|p−4((p− 1)(ux1x1)

2 + (ux1x2)
2)

and we conclude

(4.9) Lv = (p− 2)|∇u|p−4((p− 1)(ux1x1)
2 + (ux1x2)

2)

so Lv ≤ 0 when 1 < p < 2 and Lv ≥ 0 when p > 2. Since u is smooth
and ∇u 
= 0 and ∂Ω is smooth we can apply the divergence theorem to the
vector field whose ith component is

u

2∑
k=1

aikvxk
− v

2∑
k=1

aikuxk

in the region Ω\G where G is a region with smooth boundary which contains
the set F in its interior. If 1 < p < 2 we obtain

0 ≥
∫

Ω\G
u

(
2∑

k=1

∂

∂xi
(aikvxk

)

)
− v

(
2∑

k=1

∂

∂xi
(aikuxk

)

)
dx

(4.10)

=

∫
∂Ω

|∇u|p−1 log |∇u| dH1 +

∫
∂G

2∑
i=1

(
u

2∑
k=1

aikvxk
− v

2∑
k=1

aikuxk

)
ηi dH

1

where η is the outward unit normal for Ω\G on ∂G and we used the fact that
u = 0 on ∂Ω and η = − ∇u

|∇u| on ∂Ω. This gives (1.9) and (1.10) where the
constant is determined by the integral over ∂G which is independent of Ω. �

Remember that ψ is a C∞ function on R with maxψ = 1 and support
in the unit interval. Also, in section 3 σ0, 0 < σ0 ≤ 10−3 was chosen so
that (3.14) was true. Finally, for a given ε, 0 < ε ≤ σ0 r0 was chosen so
small that the estimates in section 3 are true for 0 < r ≤ r0. We describe the
construction of D in more detail. We only describe the case of ”pushing out”
since the other case is similar. Let D0 be a domain such that F ⊂ D0 and
the function u0 which satisfies (1.5a)-(1.5b) for D0 also satisfies |∇u0| > 1
on ∂D0. Let ρ = d(∂Ω, F ) . Let ε0 = σ0 and εk = 2−kε0 for k = 1, 2, . . ..
Choose a covering L1 = {B(zi

0, t
i
0)}, 1 ≤ i ≤ k0 of ∂D0 such that ti0 ≤ 1/2

for all i and

2

k0∑
i=1

ti0 ≤ H1(∂D0) +
1

2
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Since D0 is compact we can assume k0 < ∞. Let 2r′1 > 0 be the dis-
tance from ∂D0 to R

2 \ ⋃k0

1 B(zi
0, t

i
0). Set Ω = D0, ε = ε1 and r1 =

min{r′1, r0(ε1, K1, K2), 10−9ρ} where K1 and K2 are defined relative to D0,
u0 as in section 3. Then we do as in section 3 to obtain D1 = Ω′. Now
suppose for some m ≥ 1 we have defined {Dk}m

0 , {Lk}m
0 , {r′k}m

0 and {rk}m
0 .

Let Lm+1 = {B(zi
m, t

i
m)}km

1 be a covering of ∂Dm such that tim ≤ 2−(m+1),
1 ≤ i ≤ km and

(4.11) 2

km∑
i=1

tim ≤ H1(∂Dm) + 2−(m+1)

Let 2r′m > 0 be the distance between ∂Dm and R
2 \ ⋃km

1 B(zi
m, t

i
m). Let

Ω = Dm, ε = εm and r = rm+1 = min{r′m, r0(εm+1, K1, K2), 10−4mrm} where
K1 and K2 are defined relative to Dm, um as in Section 3. Then we do as in
Section 3 to obtain Dm+1 = Ω′ ⊃ Dm. By induction we get {Dk}∞0 , {Lk}∞1 ,
{r′k}∞1 and {rk}∞1 . Finally define D to be the union of the sets Dk

Lemma 13. Let D, Dk, k = 1, 2, . . . be as above. Then D is a quasicircle
which is not convex. For Dk we have µk(∂Dk) ≤ C where C is inedependent
of k and µk is the measure corresponding to uk as in (1.2).

Proof. To prove that D is a quasicircle it suffices to show that ∂Dm satisfies
the Ahlfors three point condition for m = 1, 2, . . . with constant independent
of m. Once we have proved this we get a sequence {fm} of quaisconformal
mappings of R

2 with

(4.12) fm(∂B(0, 1)) = ∂Dm and |(fm)z̄| ≤ k|(fm)z|

where 0 < k < 1 is independent ofm. Since a subsequence of {fm} converges
uniformly on compact subsets of R

2 to a quasiconformal f : R
2 → R

2 we see
that (4.12) holds with fm, Dm replaced by f,D. To show that ∂Dm satisfies
the Ahlfors three point condition independent ofm we first find a constant C
such that |z1−z3| < C|z1−z2| for z1, z2, z3 on the graph of ψ and z3 between
z1 and z2. Now suppose z1, z2, z3 lie on ∂Dm and |z1−z2| < 10rm. Let ξ be a
function whose graph is after a rotation and translation ∂Dm ∩B(z1, 10rm).
By (3.1) the distance |ξ(x)−ψ(x)| is less than 10−9ε4m|x| which implies that
the graph of ξ and therefore ∂Dm ∩ B(z1, 10rm) satisfies the Ahlfors three
point condition with a slightly larger constant C but still independent of
m. If |z1 − z2| > 10rm we find k < m such that |z1 − z2| < 10rk but
|z1 − z2| > 100rk+1. Let z∗ be the projection of z ∈ ∂Dm on ∂Dk. Then
|z1−z2| > |z∗1−z∗2 |−ηrk where η is small and likewise |z1−z3| < |z∗1−z∗3 |+ηrk.
From this it follows that |z1 − z3| < 2C|z1 − z3| for all m.
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To prove that µk(∂Dk) ≤ C where C is independent of k we recall that
µ(B(x, r)) ≤ cr2−p(maxB(x,2r) u)

p−1 for any measure defined by (1.2). This
estimate is proved in [5] and our claim follows immediately by covering the
boundaries of the domains Dk with balls and then applying the estimate in
each ball since uk(x) ≤ 1 for all x ∈ Dk. To see that the domain is not
convex note that the function ψ can be chosen so that Dm has the property
that there exist points x, y ∈ Dm such that

max
t∈[0,1]

d(tx+ (t− 1)y,Dm) >
ε4mrm

8
> 54mrm+1

ε0
8
> rm+1

if m is large enough. It is clear from the construction described above that
if z ∈ D then d(z,Dm) < rm+1 so the line segment between x and y does
not lie in D. However x, y ∈ D so D is not convex. �

The proof of Theorem 1 follows from the above lemmas and the argument
at the end of section 1 once we prove (1.14). The proof thatH1|∂Dm → H1|∂D

in [16] applies to our case without change. For completeness we give a brief
outline. First show that there exists a mapping hm from ∂Dm to ∂Dm+1

which satisfies
|hm(x) − hm(z)| ≥ (1 − cr1/2

m )|x− z|.
Then let

pj(x) = lim
k→∞

hk ◦ · · · ◦ hj+1(x) for x ∈ ∂Dj .

If

ej =

∞∏
m=j+1

(1 − cr1/2
m )

it follows that

ej|x− y| ≤ |pj(x) − pj(y)|, x, y ∈ ∂Dj ,

and if qj is the inverse of pj we have

(4.13) |qj(x) − qj(y)| ≤ e−1
j |x− y|

when x, y ∈ ∂D. Next we use Kirsbraun’s Theorem (see [7]) to obtain
an extension of qj to R

2 such that (4.13) holds whenever x, y ∈ R
2. Let

ν(E) = H1(q−1
j (E) ∩ ∂D). Then we have

H1(E ∩ ∂Dj) ≤ ejν(E)

Also note that it follows from the definition of the rm’s that ej → 1 when
j → ∞. Let g ≥ 0 be a continuous function. Then it follows from the
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change of variables formula that

(4.14) ej

∫
∂Dj

g dH1 ≤
∫

Rn

g dν =

∫
∂D

g ◦ qj dH1

If we let j → ∞ then qj(x) → x uniformly on compact subsets of R
n so∫

∂D

g ◦ qj dH1 →
∫

∂D

g dH1

Hence from (4.14) we have

lim sup
k→∞

∫
∂Dn

g dH1 ≤
∫

∂D

g dH1

From our construction of D it follows that

H1(∂D) ≤ lim inf
m→∞

H1(∂Dm)

If 0 ≤ g ≤ 1 then it follows that

H1(∂D) ≤ lim inf
k→∞

H1(∂Dnk
)

≤ lim inf
k→∞

∫
∂Dk

g dH1 + lim sup
k→∞

∫
∂Dk

(1 − g) dH1

≤ lim sup
k→∞

∫
∂Dn

g dH1 + lim sup
k→∞

∫
∂Dn

(1 − g) dH1

≤
∫

∂D

g dH1 +

∫
∂D

(1 − g) dH1 = H1(∂D)

Thus equality holds everywhere so

lim
k→∞

∫
∂Dn

g dH1 =

∫
∂D

g dH1

which is what we wanted to prove.
To show that µk → µ we note that if we are pushing out then u(x) < ε

on ∂Dn for n large enough. Therefore u(x) < un(x)+ ε in Dn in other words
u(x) − un(x) < ε in Dn. Elsewhere un(x) = 0 and u(x) < ε so un → u
uniformly. Since the measures µn are bounded we have a subsequence which
is weakly convergent to some measure ν. Now∫

φ dν = lim
n→∞

∫
φ dµn = lim

n→∞

∫
N

|∇un|p−2〈∇un,∇φ〉 dx(4.15)

=

∫
N

lim
n→∞

|∇un|p−2〈∇un,∇φ〉 dx

=

∫
N

|∇u|p−2〈∇u,∇φ〉 dx =

∫
φ dµ

where N is some neighborhood containing ∂D and ∂Dn if n is large enough
and φ ∈ C∞

0 (N). It follows that ν = µ which is what we wanted to show.
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