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Interpolation and Sampling for
Generalized Bergman Spaces
on finite Riemann surfaces

Alexander Schuster and Dror Varolin

Abstract

We find sufficient conditions for a discrete sequence to be inter-
polating or sampling for certain generalized Bergman spaces on open
Riemann surfaces. As in previous work of Bendtsson, Ortega- Cerdà,
Seip, Wallsten and others, our conditions for interpolation and sam-
pling are as follows: If a certain upper density of the sequence has
value less that 1, then the sequence is interpolating, while if a certain
lower density has value greater than 1, then the sequence is sampling.

Unlike previous works, we introduce a family of densities all of
which provide sufficient conditions. Thus we obtain new results even
in classical cases, some of which might be useful in industrial appli-
cations.

The main point of the article is to demonstrate the interaction
between the potential theory of the Riemann surface and its interpo-
lation and sampling properties.

1. Introduction

The goal of this paper is to establish sufficient conditions for a uniformly
separated set on a finite Riemann surface to be interpolating or sampling
for a generalized Bergman space of holomorphic functions on that surface.

Let us fix an open Riemann surface X. Much of the geometry used in the
statements and proofs of our results arises from potential theory on X. If X
is hyperbolic, then X admits a Green’s function, while if X is parabolic, then
X admits a so-called Evans Kernel. (See Section 2 for definitions.) After a
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normalization of the latter, both objects are unique, and we refer to either
as the extremal fundamental solution E(z, ζ).1 Associated to this extremal
fundamental solution is a distance ρ(z, ζ) = eE(z,ζ), and we denote by Dε(z)
the ε-disk with respect to this distance. The geometry and potential theory
we use in this paper is discussed in greater detail in Section 2.

To a conformal metric g = e−ψ|dz|2 on X, a smooth function ϕ : X → R

and a discrete subset Γ ⊂ X, uniformly separated with respect to the dis-
tance ρ above, we associated the following two Hilbert spaces:

B2
X = B2

X(ϕ, g) :=

{
h ∈ O(X) ; ||h||2 :=

∫
X

|h|2e−ϕdAg < +∞
}

and

B2
Γ = B2

Γ(ϕ, g) :=

{
(sγ)γ∈Γ ;

∑
γ∈Γ

|sγ|2e−ϕ(γ)Ag(Dσ(γ)) < +∞
}
,

where O(X) denotes the set of holomorphic functions on X,

Ag(S) =

∫
S

e−ψ
√−1

2
dz ∧ dz̄ and σ = σ(Γ) = 1

4
inf
γ �=γ′

ρ(γ, γ′).

Definition 1.1. Let X be an open Riemann surface with extremal funda-
mental solution E, let ϕ be a weight function and g a conformal metric, and
let Γ be a discrete set such that σ(Γ) > 0.

1. We say that Γ is an interpolation set if for every (sγ) ∈ B2
Γ there exists

F ∈ B2
X such that for all γ ∈ Γ, F (γ) = sγ.

2. We say that Γ is a sampling set if there is a constant M such that for
all F ∈ B2

X ,

1

M
||F ||2 ≤

∑
γ∈Γ

|F (γ)|2e−ϕ(γ)Ag(Dε(γ)) ≤M ||F ||2.

The potential theoretic data that X comes equipped with gives rise to a
special conformal metric eν |dz|2 which we call the fundamental metric (see
Definition 2.3) and which plays a key role in our results.

Let

RX :=

{
1 X is hyperbolic

+∞ X is parabolic

1For the sake of brevity, we have been slightly inaccurate. In the parabolic case, we will
end up selecting an Evans kernel for a partial compactification of our Riemann surface.
See the remark in the first paragraph of Section 2 below.
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Definition 1.2. (1) For each locally integrable function f : [0, RX) → [0,∞)
and each r ∈ (0, RX), let cr := 2π

∫ r
0
tf(t)dt and define ξr(z, ζ) by

ξr(z, ζ)e
−ν√−1dζ ∧ dζ̄ =

1

cr
f(ρz(ζ))1Dr(z)(ζ)dρz(ζ) ∧ ∗dρz(ζ),

where 1A denotes the characteristic function of a set A.

(2) For a conformal metric g = e−ψ|dz|2 on X, we set

τψ = eν−ψ.

(3) The relative curvature of the metric g = e−ψ|dz|2 is the (1, 1)-form

Θψ = ∆ψ − τ−1
ψ ∆τψ

(4) A metric g = e−ψ|dz|2 on a Riemann surface is admissible if the function

D2
ψ :=

eψ

τψ

∣∣∣∣∂τψ∂z
∣∣∣∣
2

is uniformly bounded on X.

(5) To every uniformly separated sequence (see section 4 for the definition)
we associate the upper and lower densities

D+
f (Γ) := lim sup

r→RX

sup
z∈X

∑
γ∈Γ

π
2
ξr(γ, z)

(eν(∆ϕ + Θψ)) (z)
,

and

D−
f (Γ) := lim inf

r→RX
inf
z∈X

∑
γ∈Γ

π
2
ξr(γ, z)

(eν(∆ϕ+ Θψ)) (z)
.

Our main results can now be stated as follows.

Theorem 1. Let X be a finite open Riemann surface with fundamental
metric e−ν |dz|2 and admissible metric g = e−ψ|dz|2. Let ϕ be a weight funct-
ion on X such that, for some c > 1, 1

c
≤ eν∆ϕ ≤ c and eν(∆ϕ + Θψ) ≥ 1

c
.

Then every uniformly separated sequence Γ ⊂ X satisfying D+
f (Γ) < 1 is an

interpolation sequence.

For the case of sampling, we must place an additional constraint on the
metric g beyond admissiblity, namely that g is dominated by a multiple of
the fundamental metric.

Theorem 2. Let X be a finite open Riemann surface with fundamental
metric e−ν |dz|2 and an admissible metric g = e−ψ|dz|2 such that e−ψ ≤ Ce−ν

for some constant C > 0. Let ϕ be a weight function on X such that, for
some c > 1, 1

c
≤ eν∆ϕ ≤ c and eν(∆ϕ + Θψ) ≤ c. Then every uniformly

separated sequence Γ ⊂ X satisfying D−
f (Γ) > 1 is a sampling sequence.
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Theorems 1 and 2 are generalizations, to the case of open finite Rie-
mann surfaces, of the celebrated results of Seip and Seip-Wallstén [8, 9, 10],
who proved these theorems for the Bargmann-Fock space, of entire holo-
morphic functions in L2(e−|z|2) and the Bergman space, of square integrable
holomorphic functions on the unit disk. The theorems of Seip et al. were
generalized by Berndtsson and Ortega-Cerda [1] to more general weights.
Berndtsson and Ortega-Cerdà also gave different proofs, using L2 methods.
In this paper, we employ the L2 approach as well. In more general contexts,
Ohsawa has studied interpolation problems for L2 sections of holomorphic
vector bundles on Stein manifolds [4, 5], using L2 methods.

The main point of the present paper is to demonstrate the key role that
the potential theory and geometry of the fundamental metric of a Riemann
surface play in the study of interpolation and sampling on that Riemann
surface. The use of finite Riemann surfaces, as opposed to more general
Riemann surfaces, is to establish certain bounds for the fundamental metric,
and other related potential theoretic objects. We do not know whether these
needed bounds hold in complete generality.
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2. Analytic geometry of Riemann surfaces

Extremal fundamental solutions

We write
∆ :=

√−1∂∂̄

for the Laplace operator (with complex analytic normalization). Let δζ
denote the Dirac mass at ζ . The following definition is standard.

Definition 2.1. The Green’s function G : X×X → [−∞, 0) on a Riemann
surface X is the function with the following properties.

(a) For each ζ ∈ X, ∆zG(z, ζ) = π
2
δζ(z).

(b) If H : X × X → [−∞, 0) is a function with property (a), then
H(z, w) ≤ G(z, w) whenever z 
= w.

It is well-known that the Green’s function is symmetric.

Recall that an open Riemann surface is said to be hyperbolic if it admits
a bounded subharmonic function and parabolic otherwise. It is well known
that a Riemann surface has a Green’s function if and only if it is hyperbolic.
Property (b) guarantees that the Green’s function is unique.

Definition 2.2. An Evans kernel on a Riemann surface X is a symmetric
function S : X ×X → [−∞,+∞) with the following properties.

(a) For each ζ ∈ X, ∆zS(z, ζ) = π
2
δζ(z).

(b) For each r ∈ R and p ∈ X, the level set {ζ ∈ X ; S(ζ, p) = r} is
compact and non-empty.

An open Riemann surface admits an Evans kernel if and only if it is par-
abolic (see [2] or [3, pp. 352]). Moreover, after prescribing (with somewhat
limited possibility) the logarithmic singularity at infinity, the Evans kernel
is unique up to an additive constant.

We shall use the notation E : X ×X → [−∞, logRX) to denote either
the Green’s function or some chosen Evans kernel, depending on whether
the Riemann surface is hyperbolic or parabolic, respectively.

Remark. In fact, this is not precisely what we will do. Below we will deal
only with finite Riemann surfaces. If such a surface X is parabolic, then
it is a compact Riemann surface with a finite number of points removed.
Thus there is a compact Riemann surface X̃ and points γ1, . . . , γN such that
X = X̃ − {γ1, . . . , γN}. We will take the Evans kernel not for X, but for
some X̃ − γj for some j. Thus if the surface has only one puncture, then we
have no choice, but if the surface has multiple punctures, we choose one of
these punctures to define our kernel.
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We shall refer to E as the extremal fundamental solution for X.
Using the extremal fundamental solution, we define

ρz(ζ) := eE(z,ζ), Dε(z) := {ζ ∈ X ; ρz(ζ) < ε} and Sε(z) = ∂Dε(z).

The fundamental metric

Definition 2.3. The fundamental metric e−ν |dz|2 is given by the formula

e−ν(z)dz ∧ dz̄ = lim
ζ→z

∂ρz(ζ) ∧ ∂̄ρz(ζ).

Note that any solution of the equation

∆zE(z, ζ) = πδz(ζ)

locally has the form

E(z, ζ) = log |z − ζ | + h(z, ζ)

for some function h(z, ζ) that is Harmonic in z. If E is symmetric, then so
is h and thus h is also harmonic in ζ .

Now,

∂ρz(ζ) = ρz(ζ)

(−(z̄ − ζ̄)

2|z − ζ |2 +
∂h(z, ζ)

∂ζ

)
dζ

= eh(z,ζ)

(−(z̄ − ζ̄)

2|z − ζ | + |z − ζ |∂h(z, ζ)
∂ζ

)
dζ.

It follows that

ν(z) = −2h(z, z) + 2 log 2.

Green’s Formula and mean values

Recall that on a Riemann surface with a conformal metric e−ψ|dz|2, the
Hodge star operator simplifies somewhat when expressed in analytic coor-
dinates z = x+

√−1y: if f is a real-valued function, α = α1dx+ α2dy is a
real 1-form and θdx ∧ dy is a real 2-form, then one has

∗f = fdAg = e−ψfdx ∧ dy
∗(α1dx+ α2dy) = −α2dx+ α1dy

∗(θdx ∧ dy) = eψθ.
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Using these formulas, we have 2∆ = d ∗ d, and Green’s formula can be
written

2

∫
D

f∆h− h∆f =

∫
∂D

f ∗ dh− h ∗ df.(2.1)

Let X be an open Riemann surface and Y ⊂⊂ X an open connected
subset whose boundary consists of finitely many smooth Jordan curves. It
is well known that the Green’s function GY for Y exists and is continuous
up to the boundary. Moreover, the exterior derivative d(GY (ζ, ·)) is also
continuous up to the boundary.

Remark. One can construct the Green’s function GY from the extremal
fundamental solution E of X as follows. Since Y has smooth boundary, the
Dirichlet Problem of harmonic extension from the boundary can be solved
on Y . We then take GY (ζ, z) := E(ζ, z) − hζ(z), where hζ is the harmonic
function in Y that agrees with E(ζ, ·) on the boundary of Y .

We write Hr,ζ(z) := GDr(ζ)(ζ, z). In fact, the function Hr,ζ has a partic-
ularly simple form in terms of the extremal fundamental solution E:

(2.2) Hr,ζ(z) = E(z, ζ) − log r, z ∈ Dr(ζ).

Moreover, in this case we don’t need to assume that r is a regular value
of ρζ .

Putting D = Dr(z) and h = Hr,z in (2.1) and using the definition of
Green’s function, we obtain the following lemma.

Lemma 2.4. Let r < RX and ζ ∈ X. Then

(2.3) 2πf(z) =

∫
Sr(z)

f ∗ dEz +

∫
Dr(z)

Hr,z∆f.

In particular, if f is subharmonic, then

(2.4) f(z) ≤ 1

2π

∫
Sr(z)

f ∗ dEz

with equality when f is harmonic.

Let ξr be as in Definition 1.2. Then for any function F , we have∫
X

F (w)ξr(z, w)e−ν(w)
√−1dw ∧ dw̄ =

1

cr

∫
Dr(z)

Ff(ρz)dρz ∧ ∗dρz

=
1

cr

∫ r

0

tf(t)

(∫
St(z)

F ∗ dEz
)
dt.

Thus, in view of (2.4) of Lemma 2.4, we have the following Lemma.
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Lemma 2.5. If h is subharmonic then

h(z) ≤
∫
X

ξr(z, w)h(w)e−ν(w)
√−1dw ∧ dw̄(2.5)

with equality if h is harmonic.

Ohsawa’s L2 estimates for ∂̄

In our proof of the interpolation theorem, we require a theorem for solving ∂̄
with certain L2 estimates. The theorem we need is slightly sharper than
Hörmander’s Theorem, due to Ohsawa.

Theorem 2.6 (Ohsawa). Let X be a Riemann surface with conformal metric
e−ψ|dz|2, V → X a holomorphic line bundle with smooth Hermitian metric
e−ϕ, and τ a positive function. Suppose that for some ε, δ > 0,

eψ
(
τ∆(ϕ + ψ) − ∆τ − ε |∂τ |

2

τ

)
≥ δ.

Then there exists a constant C = Cδ,ε such that for any V -valued (0, 1)-form
α satisfying ∫

X

e−ϕ
√−1ᾱ ∧ α < +∞,

the equation ∂̄U = α has a solution satisfying∫
X

|U |2 e
−ϕ

τ
dAg ≤ C

∫
X

e−ϕ
√−1ᾱ ∧ α.

In the case of Riemann surfaces there is a short proof of Ohsawa’s the-
orem. Since a short proof is not easily accessible in the literature, we shall
give one here.

Proof of Ohsawa’s Theorem. Let us first endow V → X with the Her-
mitian metric e−ξ = τe−ϕ. With

∇̄(hdz̄) := (hz̄ + ψz̄h)dz̄
⊗2

denoting the covariant ∂̄ derivative, a straightforward calculation shows that
the formal adjoints ∂̄∗ of ∂̄ and ∇̄∗ of ∇̄ are given by
(2.6)

∂̄∗(hdz̄) = −eψ
(
∂h

∂z
− ∂ξ

∂z
h

)
and ∇̄∗(hdz̄⊗2) = −eψ

(
∂h

∂z
− ∂ξ

∂z
h

)
dz̄.

Using these, another calculation shows that

∂̄∂̄∗β − ∇̄∗∇̄β = eψ∆(ξ + ψ)β,
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and thus one has the identity

(2.7) ||∂̄∗β||2 = ||∇̄β||2 + (eψ∆(ξ + ψ)β, β), β ∈ A 0,1
0 (X).

Now,

(2.8) ∆ξ = ∆ϕ− 1

τ
∆τ +

√−1
∂τ ∧ ∂̄τ
τ 2

,

and formula (2.6) implies that

(2.9) ∂̄∗ξ (hdz̄) = ∂̄∗ϕ(hdz̄) −
1

τ

∂τ

∂z
h.

Substituting (2.8) and (2.9) into the identity (2.7), we obtain

||∂̄∗ϕβ||2ξ = ||∇̄β||2ξ +
(
eψ
{

∆(ϕ + ψ) − ∆τ
τ

+ |∂τ |2
τ2

}
β, β

)
ξ

−|| 〈∂τ,β〉
τ

||2ξ + 2Re
(
∂̄∗ϕβ,

〈∂τ,β〉
τ

)
ξ

= ||∇̄β||2ξ +
(
eψ
{
∆(ϕ+ ψ) − ∆τ

τ

}
β, β

)
ξ
+ 2Re

(
∂̄∗ϕβ,

〈∂τ,β〉
τ

)
Substituting e−ξ = τe−η, we have the so-called twisted Bochner-Kodaira
Identity:

||√τ ∂̄∗ϕβ||2ϕ = ||√τ∇̄β||2ϕ +
(
eψ {τ∆(ϕ + ψ) − ∆τ} β, β)

ϕ
(2.10)

+2Re
(
∂̄∗ϕβ, 〈∂τ, β〉

)
ϕ

The Cauchy-Schwarz inequality applied to the last term of (2.10) then shows
that for any ε > 0 we have

(2.11) (1 + ε−1)||√τ ∂̄∗ϕβ||2ϕ ≥
(
eψ
{
τ∆(ϕ + ψ) − ∆τ − ε |∂τ |

2

τ

}
β, β

)
ϕ
.

Letting Tf := ∂̄(
√
τf), we can rewrite (2.11) as

||T ∗β||2ϕ ≥ Cε

(
eψ
{
τ∆(ϕ+ ψ) − ∆τ − ε |∂τ |

2

τ

}
β, β

)
ϕ
.(2.12)

Suppose now that for some ε > 0 there is a δ > 0 such that one has

eψ
(
τ∆(ϕ + ψ) − ∆τ − ε |∂τ |

2

τ

)
≥ δ.

The from (2.12) and the fact that smooth compactly supported (0, 1)-forms
are dense in the domain of T ∗, we obtain

||T ∗β||2ϕ ≥ C||β||2ϕ.(2.13)
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A standard Hilbert space argument yields a function f such that

Tf = α

with the estimate ∫
X

|f |2e−ϕdAg ≤ C||α||2ϕ.(2.14)

Letting U =
√
τf completes the proof. �

3. Examples

The Euclidean plane

Consider the Euclidean complex plane (X, g) = (C, |dz|2). The generalized
Bergman space in this situation is

BF 2 =

{
h ∈ O(C) ; ||h||2ϕ :=

∫
C

|h|2e−ϕdm < +∞
}
,

where dm is Lebesgue measure in the plane, and

Bf2 =

{
(sγ) ⊂ C ; ||(sγ)||2ϕ :=

∑
γ∈Γ

|sγ|2e−ϕ(γ) < +∞
}
.

The space BF 2 is sometimes called generalized Bargmann-Fock space. When
ϕ(z) = |z|2 we obtain the classical Bargmann-Fock space.

The plane is a parabolic Riemann surface. The Evans kernel in C is
unique, up to an additive constant, and is given by E(z, ζ) = log |z − ζ | if
we require E(0, 1) = 0. Thus ρz(ζ) = |z− ζ | and the disks Dσ(z) are simply
the Euclidean disks |z − ζ | < σ. A simple calculation shows that

√−1∂ρz(ζ) ∧ ∂̄ρz(ζ) =
1

2
dρz(ζ) ∧ ∗dρz(ζ) =

√−1

4
dζ ∧ dζ̄,

and thus the fundamental metric is just a multiple of the Euclidean metric.
The upper and lower densities are given by

D+
f (Γ) = lim sup

r→∞
sup
z∈C

∑
Γ∩Dr(z)

f(|z − γ|)
2∆ϕ

∫ r
0
tf(t)dt

and

D−
f (Γ) = lim inf

r→∞
inf
z∈C

∑
Γ∩Dr(z)

f(|z − γ|)
2∆ϕ

∫ r
0
tf(t)dt

.
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If we choose as our locally integrable function f the constant function,
we recover the results of [1]. However, by making other choices, we can get
other sufficient conditions that, although not necessary, might be of use in
some applications.

For the sake of simplicity, we will consider in the following examples only
the classical Bargmann-Fock space.

Example 3.1. (i) Let f(t) = e−t. Then Γ is interpolating if for all r � 0,

sup
z∈C

∑
Γ∩Dr(z)

e−|z−γ| < 2

and sampling if for all r � 0,

inf
z∈C

∑
Γ∩Dr(z)

e−|z−γ| > 2.

Integration by parts, together with a standard argument shows that Γ is
interpolating if

sup
z∈C

∫ ∞

0

#(Γ ∩Ds(z))
ds

es
< 2

and sampling if

inf
z∈C

∫ ∞

0

#(Γ ∩Ds(z))
ds

es
> 2.

(ii) Let fa := 1[0,a]. We then obtain:

If a > 1/
√

2 and every disk of radius a contains at most one member
of Γ, then Γ is interpolating.

If a < 1/
√

2 and every disk of radius a contains at least one member
of Γ, then Γ is sampling.

The disk

The unit disk D is a hyperbolic Riemann surface. Its Green’s function is

E(z, ζ) = log |φz(ζ)|, where φz(ζ) =
z − ζ

1 − z̄ζ

is the standard involution. Thus ρz(ζ) = |φz(ζ)| and the disks Dσ(z) are the
well-known pseudo-hyperbolic disks. Standard calculations show that

|dρz(ζ)|2 =

∣∣∣∣ 1 − |z|2
(1 − z̄ζ)2

∣∣∣∣
2

=
(1 − ρz(ζ)

2)2

(1 − |ζ |2)2
,

so we have ν(ζ) = − log 4 + log(1 − |ζ |2)2.
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We endow D with the metric g = (1 − |z|2)−1|dz|2, and thus obtain

τψ = 1
4
(1 − |z|2), D2

ψ = 1
4
|z|2

and

eνΘψ =
1

4
(1 − |z|2)2(∆ψ − τ−1

ψ ∆τ−1
ψ )

=
(1 − |z|2)2

4
(−(1 − |z|2)−2 + (1 + |z|2)−1) =

−|z|2
4

.

We also have
Ag(Dσ(γ)) = Cσ(1 − |γ|2).

Thus our Hilbert spaces are

B2
ϕ :=

{
h ∈ O(D) ;

∫
D

|h|2e−ϕ dm

(1 − |z|2) < +∞
}

and

B2
ϕ :=

{
(sγ) ;

∑
γ∈Γ

|sγ|2e−ϕ(γ)(1 − |γ|2) < +∞
}
.

Finally, we let
ϕ := ϕo − log(1 − |z|2), ∆ϕo > 0.

Observe that

∆ϕ + Θψ = ∆ϕo +
1

(1 − |z|2)2
− |z|2

4
≥ ∆ϕo > 0.

Thus the densities are given by

D+
f (Γ) = lim sup

r→1
sup
z∈D

∑
ρz(γ)<r

f(ρz(γ))(1 − ρz(γ)
2)2

((1 − |z|2)2∆ϕo(z) + (1 − |z|2)) ∫ r
0
tf(t)dt

,

and

D−
f (Γ) = lim inf

r→1
inf
z∈D

∑
ρz(γ)<r

f(ρz(γ))(1 − ρz(γ)
2)2

((1 − |z|2)2∆ϕo(z) + (1 − |z|2)) ∫ r
0
tf(t)dt

.

If we take

f(t) =
− log t

(1 − t2)2
1[ 1

2
, 1),

we find that Theorems 1 and 2 recover the results from [1].
Again for the sake of illustration we will consider below only the classical

unweighted Bergman space, which is obtained by setting ϕ = − log(1−|z|2).
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Example 3.2. (i) Letting f = 1, we see that Γ is interpolating if

sup
z∈D

∑
(1 − ρz(γ)

2)2 < 1

and sampling if

inf
z∈D

∑
(1 − ρz(γ)

2)2 > 1.

(ii) Letting f(t) = (1 − t2)−2, we see that Γ is interpolating if

lim sup
r→1

sup
z∈D

#(Γ ∩Dr(z))

Ahyp(Dr(z))
< 1

and sampling if

lim inf
r→1

inf
z∈D

#(Γ ∩Dr(z))

Ahyp(Dr(z))
> 1,

where

Ahyp(Dr(z)) =
1

2π

∫
Dr(z)

dm(z)

(1 − |z|2)2

denotes hyperbolic area of Dr(z).

(iii) Let fa := 1[0,a]. We then obtain:
If δ > 1√

2
and Γ has at most one point in every disk of radius δ, then Γ

is interpolating.
If δ < 1√

2
and every disk of radius δ contains at least one member of Γ,

then Γ is sampling.

4. Finite Riemann surfaces

Definition and construction of finite Riemann surfaces

Recall that a finite Riemann surface is a two dimensional compact manifold
with boundary, possibly with a finite number of points removed.

There are two types of finite Riemann surfaces. One type has boundary
having only punctures and no one dimensional components, while the other
type also has at least one smooth codimension-1 boundary component. The
first type of is always parabolic (unless it has no punctures, in which case it
is compact) while the second type is always hyperbolic.

An alternate description of a finite Riemann surface X can be given as
follows: X is a (not necessarily compact) manifold with compact boundary,
and in addition X can be decomposed as

X = Xcore ∪
N⋃
j=1

Uj ,
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where Xcore is a compact manifold with smooth boundary, and each Uj
is biholomorphic to a punctured disk whose outer boundary is one of the
smooth boundary curves of Xcore. (Of course, Xcore may have some other
boundary components that do not meet one of the Uj .) The Uj correspond
to the punctures.

While every finite Riemann surface with no one dimensional boundary is
obtained from a compact Riemann surface by removal of a finite number of
points, there is an almost equally simple way to construct hyperbolic finite
Riemann surfaces; simply take a compact Riemann surface and remove a
finite number of smooth Jordan curves so that the resulting surface as two
components. Then either component is a finite Riemann surface, and one
can further remove any finite number of points.

In fact, all finite Riemann surfaces are of this type. Indeed, we can fill
in the punctures complex analytically (since they are just punctured disks)
to obtain a compact Riemann surface with boundary

X̃ = Xcore ∪
N⋃
j=1

Uj ,

and then form the so-called double of X̃. For more on this well-known
construction see, for example, [7].

Analytic-geometric properties of finite Riemann surfaces

Theorem 4.1. Let X be a finite Riemann surface with extremal fundamental
solution E. Then for each sufficiently small σ ∈ (0, RX) there is a constant
C = Cσ such that for all z ∈ X and all ζ ∈ Dσ(z) the following estimate
holds.

1

C
≤ eν(ζ)|∂ρz(ζ)|2 ≤ C.(4.1)

Remark. As we have already pointed out, locally one has

E(z, ζ) = log |ζ − z| + h(z, ζ),

and thus ρz(ζ) = |z − ζ |eh(z,ζ). Differentiation then gives

∂ρz(ζ) =
ζ − z

|ζ − z|e
h(z,ζ)

(
1

2
+ (z − ζ)∂ζh(z, ζ)

)
,

so that 4e−ν(ζ) = e2h(ζ,ζ) and

(4.2) eν(ζ) |∂ρz(ζ)|2 = e2(h(z,ζ)−h(ζ,ζ))

∣∣∣∣1 + 2(ζ − z)
∂h(z, ζ)

∂ζ

∣∣∣∣
2

.

In particular, the right hand side of (4.2) is well defined, since this is the
case for the left hand side.
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Proof of theorem 4.1. We shall break up the proof into the hyperbolic
and parabolic case.

(The case of bordered Riemann surfaces.) We realize X as an open subset of
its double Y . Since X = X ∪ ∂X is compact, it suffices to bound the right
hand side of (4.2) in a set U ∩X, where U is a coordinate chart in Y . For
coordinate charts whose closure lies in the interior X, it is clear that this
can be done. Indeed, if U ⊂⊂ X and z, ζ ∈ U , then h is a smooth function
that is harmonic in each variable separately, and ρz(ζ) � |ζ − z| uniformly
on U . Thus by taking σ sufficiently small, we obtain the estimate (4.1) for
all z ∈ U and ζ ∈ Dσ(z). We thus restrict our attention to the boundary.

There are two types of boundary points; zero dimensional and one di-
mensional. However, the Green’s function ignores isolated zero dimensional
boundary components, since they have capacity zero. (In particular, the dis-
tance ρz fails to be proper when there are punctures.) Thus we may assume
that there are no punctures.

Let U ⊂ Y be a coordinate neighborhood of a boundary point x ∈ ∂X.
By taking U sufficiently small, we may assume that U is the unit disk in the
plane, that U ∩X lies in the upper half plane and that ∂X lies on the real
line. It follows that the Green’s function is given by

E(z, ζ) = log |z − ζ | − log |z̄ − ζ | + F (z, ζ),

where F (z, ζ) is smooth and harmonic in each variable on a large open set
containing the closure of U . Indeed, the Green’s function for the upper half
plane is log |z − ζ | − log |z̄ − ζ |. The regularity of F then follows from the
construction of Green’s functions on finite Riemann surfaces using harmonic
differentials on the double. (See [7, §4.2].) It follows that in U ,

2
∂h(z, ζ)

∂ζ
= − 1

z̄ − ζ
+ 2

∂F (z, ζ)

∂ζ
and ρz(ζ) ≥ C

|z − ζ |
|z̄ − ζ | .

Thus ∣∣∣∣2(ζ − z)
∂h(z, ζ)

∂ζ

∣∣∣∣ ≤ |z − ζ |
|z̄ − ζ | + 2|z − ζ |

∣∣∣∣∂F (z, ζ)

∂ζ

∣∣∣∣
≤ C

|z − ζ |
|z̄ − ζ | ≤ C ′ρz(ζ),

where the constant C ′ depends only on the neighborhood U . The proof in
the hyperbolic case is thus complete.

(The case of compact Riemann surfaces with punctures.) Let E be the chosen
extremal fundamental solution of X. Fix p ∈ X and choose r so large that
the set X −Dr(z) is a union of punctured disks U1, . . . , UN . We may think
of each Uj as sitting in C, with the puncture at the origin.
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Since Dr(z) ⊂⊂ X, each x ∈ Dr(z) has a neighborhood U for which
the expression (4.2) is bounded above and below by positive constants, de-
pending only on U , whenever ρz(ζ) < σ for some sufficiently small σ again
depending only on U . Indeed, in any such neighborhood the function h is
very regular, and ρz(ζ) is uniformly comparable to |z − ζ |.

Next, for all but one of the punctures, our kernel is again regular by our
choices. (See the remark in the first paragraph of Section 2.) Thus we may
focus on the one puncture where we have a singularity, which we call Uj .

For z, ζ ∈ Uj, the Evans kernel has the form

E(z, ζ) = log |z − ζ | − log |ζ | + F (z, ζ),(4.3)

where F (z, ζ) is smooth across the origin (see [3]). Indeed, using the method
of constructing harmonic differentials with prescribed singularities (see [7,
§2.7]) we can construct a function with the right singularities, defined every-
where on X̄. Such a function clearly can be written in the form (4.3) near
the puncture. Thus by the uniqueness of the Evans kernel for a surface with
a single puncture, this function must differ from E by a constant.

It follows that in U ,

h(z, ζ) − h(ζ, ζ) ∼ 1, 2
∂h(z, ζ)

∂ζ
= −1

ζ
+
∂F (z, ζ)

∂ζ

and

ρz(ζ) ≥ C
|z − ζ |
|ζ | .

Thus ∣∣∣∣2(ζ − z)
∂h(z, ζ)

∂ζ

∣∣∣∣ ≤ |z − ζ |
|ζ | + 2|z − ζ |

∣∣∣∣∂F (z, ζ)

∂ζ

∣∣∣∣
≤ C

|z − ζ |
|ζ |

≤ C ′ρz(ζ),

where again the constant C ′ depends only on the neighborhood U . The
proof of Theorem 4.1 is thus complete. �
Proposition 4.2. Let X be a finite Riemann surface. Then there exists a
constant C such that, for sufficiently small σ > 0 and all z ∈ X,

sup
w∈Dσ(z)

exp

(
4

π

∫
D2σ(z)

−G(w, ζ)e−ν(ζ)
)

(4.4)

≤ C inf
w∈Dσ(z)

exp

(
4

π

∫
D2σ(z)

−G(w, ζ)e−ν(ζ)
)
< +∞,

where G is the Green’s function for the domain D2σ(z).
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Sketch of proof. Once again we can use compactness properties of finite
surfaces. The finiteness of the integrals in question is easy, since extremal
fundamental solutions have only a logarithmic singularity, and are thus lo-
cally integrable. Thus we restrict ourselves to estimating near the boundary.

The local analysis used in the proof of Theorem 4.1 shows that, near the
boundary, the disks Dσ(z) are simply connected and that the metric e−ν is
equivalent to the Poincaré metric of the disk in the hyperbolic case, and the
metric |z|−2|dz|2 in the parabolic case.

The hyperbolic case follows from the fact that the Green’s function
G(w, ζ) is comparable to the Green’s function of the disk. In the parabolic
case it is easier to work with the complement of the unit disk rather than
the punctured disk. Then the metric e−ν is comparable to the Euclidean
metric, the Green’s function G(w, ζ) is comparable to the Green’s function
of the plane, and the necessary estimate follows as in the Euclidean case.
This completes the sketch of proof. �

Lemma 4.3. Let X be a finite Riemann surface. Let σ > 0 be a fixed,
sufficiently small constant. If ϕ is a function for which eν∆ϕ is bounded
above and below by positive constants, then there is a constant C = Cσ such
that, for all z ∈ X and all w ∈ Dσ(z),

exp

(
4

π

∫
D2σ(z)

−G(w, ζ)∆ϕ(ζ)

)
≤ C(4.5)

Proof. By Theorem 4.1, Proposition 4.2 and the boundedness of ∆ϕ, it
suffices to prove the result when ∆ϕ(ζ) = dρz(ζ) ∧ ∗dρz(ζ) and w = z. In
this case, it is easy to show that the integral is equal to 8σ2. �

The next result we will need is a global version of the Cauchy estimates
on a Riemann surface with Riemannian metric.

Proposition 4.4. Let X be a finite Riemann surface and let g be a con-
formal metric for X. Then for every σ ∈ [0, RX) and ε > 0 there exists a
constant Cε,σ such that for any x ∈ X the following Cauchy estimates hold.

(4.6) sup
Dε(x)

|h|2 ≤ Cε,σ

∫
Dσ(x)

|h|2dAg,

and

(4.7) sup
Dε(x)

|∂ρx|−2|h′|2 ≤ Cε,σ

∫
Dσ(x)

|h|2dAg.

To establish Proposition 4.4, we need the following lemma.
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Lemma 4.5. Let X be a finite Riemann surface. Then for every x ∈ X
there exists a function Kx : X×X → R such that the following hold for any
σ ∈ [0, RX):

1. In the sense of distributions, ∆zK
x(z, ζ) = π

2
δz(ζ) for all z, ζ ∈ Dσ(x).

2. For every ε < σ/4 there exists a constant Cε,σ such that for any x ∈ X
the following estimates hold:

sup
z∈Dε(x)

∫
Vσ(x)

eψ
∣∣∣∣∂ρx∂ζ ∂K

x(z, ζ)

∂ζ

∣∣∣∣
2

≤ Cε,σ(4.8)

sup
z∈Dε(x)

|∂ρx(z)|−2

∫
Vσ(x)

eψ|∂ρx|2
∣∣∣∣∂2Kx(z, ζ)

∂z∂ζ

∣∣∣∣
2

≤ Cε,σ(4.9)

Here Vσ(x) := Dσ(x) −Dσ/2(x).

Sketch of proof. In the case of a bordered Riemann surface with a finite
number of punctures, one can find a function Kx that does not depend on
the point x. This is done as follows. Let Y be the double of X, and fix
any smooth distance function on Y . We let Xε be the set of all x ∈ Y
that are a distance less than ε from X. For ε sufficiently small, Xε − X
is a finite collection of annuli whose inner boundaries form the boundary
of X. We may take for our Cauchy-Green kernel the Green’s function of Xε.
We leave it to the reader to check that the relevant estimates hold.

In the case of an N -punctured compact Riemann surface, one decom-
poses X as

X = Xcore ∪
N⋃
j=1

Uj ,

where Xcore is a bordered Riemann surface, and each Uj is a neighborhood of
a puncture biholomorphic to the punctured disk. Each surface in the union
has a Cauchy-Green kernel by the construction in the bordered Riemann
surface case, and thus we are done. �
Proof of Proposition 4.4. Let f ∈C∞

0 (Dσ(x)) and write Kx
z (ζ)=Kx(z, ζ).

Applying formula (2.1) with h(ζ) = Kx
z (ζ), we obtain

π

2
f(z) =

∫
Dσ(x)

Kx
z d∂̄f =

∫
Dσ(x)

∂̄f ∧ ∂Kx
z .

Now let ε < σ/4 and let χ ∈ C∞
0 ([0, 3σ/4)) be such that

χ|[0, σ/2] ≡ 1 and sup |χ′| ≤ 5

σ
.
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If h ∈ O(Dσ(x)), then with z ∈ Dε(x) we have

h(z) =

∫
Dσ(x)

hχ′(ρx)∂̄ρx ∧ ∂Kx
z .(4.10)

An application of the Cauchy-Schwarz inequality and the estimate (4.8) gives
the inequality (4.6), while differentiation of (4.10) followed by an applica-
tion of the Cauchy-Schwarz inequality and the estimate (4.9) gives inequal-
ity (4.7). �
Remark. Note that were it not for the requirement that Cε,σ be independent
of x, Proposition 4.4 would follow without (4.8) and (4.9).

Discrete subsets in finite Riemann surfaces

Let X be an open Riemann surface. Our work on sampling and interpo-
lation sequences requires the notion of the separation of a sequence. For a
measurable subset A ⊂ X, let

Dr(A) = {w ∈ X ; w ∈ Dr(a) for some a ∈ A}.
We define two separation conditions on a sequence Γ, both of which are given
in terms of the distance induced by the extremal fundamental solution.

Definition 4.6. Let Γ ⊂ X be a discrete set.

1. The separation constant of Γ is the number

σ(Γ) := sup{r ; Dr(γ) ∩Dr(γ
′) = ∅},

and say that Γ is uniformly separated if σ(Γ) > 0.

2. We say Γ is sparse if there is a positive constant Nr,ε, depending only
on 0 < r, ε < RX , such that the number of points of Γ lying in the set
Dr(Dε(z)) is at most Nr,ε for all z ∈ X.

In both the complex plane and the unit disk, the triangle inequality
allows one to estimate the diameter of a set Dε(Dr(a)) in terms of ε and r,
and thus show that a uniformly separated sequence is sparse.

Such an diameter estimate can always be found if it is allowed to depend
on the base point a. This situation can be made uniform when X is a finite
Riemann surface. As in the proofs of Theorem 4.1 and Propositions 4.2
and 4.4, we can take advantage of the compactness in the picture. In par-
ticular, we have uniform estimates if we have them in neighborhoods of the
boundary. But on the boundary, the potential theory of X is either like that
(near the boundary) of the upper half plane or (near infinity) of the plane,
where we know, from triangle inequalities in those cases, that the needed
estimates hold. We thus have the following proposition.
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Proposition 4.7. In a finite Riemann surface X every uniformly separated
sequence is sparse.

Remark. We do not know whether Proposition 4.7 holds if one removes the
finiteness condition.

5. Compact Riemann surfaces

Cohomological criterion for interpolation and sampling

Let X then be a compact Riemann surface and let V → X be a holomorphic
line bundle. We denote by Vx the fiber of V over x ∈ X. Then Γ is
interpolating if and only if the evaluation map

H0(X,L) � s �→
∑
γ∈Γ

s(γ) ∈
⊕
γ∈Γ

Vγ(5.1)

is surjective, and sampling if and only if (5.1) is injective.
Let Λ be the line bundle corresponding to the effective divisor Γ. One

can understand the situation completely using the short exact sequence of
sheaves

0 → OX(L⊗ Λ∗) → OX(L) →
⊕
γ∈Γ

Vγ → 0,

where Vγ(U) = Vγ if γ ∈ U and Vγ(U) = 0 if γ 
∈ U . Passing to the long
exact sequence, we have that

0 → H0(X,L⊗ Λ∗) i0−→H0(X,L)
eΓ−→
⊕
γ∈Γ

Vγ
δ0−→H1(X,L⊗ Λ∗)

i1−→H1(X,L) → . . .

We see that e is injective if and only if Image(i0) = {0} and surjective if
and only if i1 is injective, i.e., Image(δ0) = {0}. We then have the following
proposition.

Proposition 5.1. Let X be a compact Riemann surface of genus g, Γ ⊂ X
a finite subset and L→ X a holomorphic line bundle.

1. If #Γ < deg(L) + 2 − 2g, then Γ is interpolating.

2. If #Γ > deg(L), then Γ is sampling.

Proof. To establish 1, note that by Serre duality, h1(X,L⊗Λ∗)= h0(X,KX⊗
Λ ⊗ L∗), and the latter vanishes if

#Γ + 2g − 2 − deg(L) = deg(KX ⊗ Λ ⊗ L∗) < 0.

Similarly, if deg(L) − #Γ = deg(L⊗ Λ∗) < 0, then h0(X,L⊗ Λ∗) = 0. �
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Analytic proof of Proposition 5.1(1)

Part (1) of Proposition 5.1 can also be proved using Theorem 2.6. Because
it is similar to the proof of our main interpolation theorem, we sketch this
method here.

Let
∑
vγ ∈ ⊕Vγ. First, observe that there is a smooth section η of L

such that η(γ) = vγ for all γ ∈ Γ. In fact, by the usual cutoff method, we
can take η supported near Γ and holomorphic in a neighborhood of Γ.

Fix a conformal metric e−ψ|dz|2 on X. Let τ be the canonical section
of Λ corresponding to the divisor Γ. By the degree hypothesis, there is a
metric e−ϕ for the line bundle L⊗Λ∗ such that the curvature

√−1∂∂̄(ϕ+ψ)
of L⊗Λ∗ ⊗K∗

X is strictly positive on X. Then e−ϕ/|τ |2 is a singular metric
for L such that the curvature current of e−(ϕ+ψ)/|τ |2 is still strictly positive
on X. Moreover, since η is holomorphic in a neighborhood of Γ, we have∫
X
|∂̄η|2|τ |−2e−ϕ < +∞. By Hörmander’s Theorem there is a section u of L

such that ∂̄u = ∂̄η and
∫
X
|u|2|τ |−2e−(ϕ+ψ) < +∞. But since τ vanishes

on Γ, so does u. Thus σ = η−u is holomorphic and solves the interpolation
problem. �
Remark. We note that if e−ϕ is a metric for a holomorphic line bundle L,
then

deg(L) =
1

4π

∫
X

∆ϕ.

This fact shows the resemblance between Proposition 5.1 and our main the-
orems.

6. Functions and singular weights

A local construction of a holomorphic function

In the proofs of Theorems 1 and 2 we will need, for each γ ∈ Γ, a holomor-
phic function defined in a neighborhood of γ and satisfying certain global
estimates. For reasons that will become clear later, the size of this neigh-
borhood cannot be taken too small. As a consequence, we must overcome
certain difficulties presented by the topology of the neighborhood.

Lemma 6.1. Let X be a finite open Riemann surface. Assume eν∆ϕ is
bounded above and below by positive constants. Let Γ be a uniformly sep-
arated sequence. Then there exists a constant C = CΓ > 0 and, for each
γ ∈ Γ, a holomorphic function Fγ ∈ O(Dσ(γ)) such that Fγ(γ) = 0 and for
all z ∈ Dσ(γ),

(6.1)
1

C
e−ϕ(γ) ≤ ∣∣e−ϕ+2Fγ

∣∣ ≤ Ce−ϕ(γ).
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Proof. Let G be the Green’s function for the domain D2σ(γ). Consider the
function

Tγ(z) :=
1

π

∫
D2σ(γ)

−G(z, ζ)∆ϕ(ζ).

By Green’s formula, we have that

2Tγ(z) = −ϕ(z) +
1

2π

∫
S2σ(γ)

ϕ(ζ) ∗ dζG(z, ζ).

We claim that the harmonic function

hγ :=
1

2π

∫
S2σ(γ)

ϕ(ζ) ∗ dζG(z, ζ)

has a harmonic conjugate, i.e., it is the real part of a holomorphic function.
Indeed, if C is a Jordan curve in Dr(γ), then∫

C
∗dhγ(z) =

1

2π

∫
S2σ(γ)

ϕ(ζ) ∗ dζ
(∫

C
∗dzG(z, ζ)

)
.(6.2)

Since S2σ(γ) ∩ C = ∅, the function z �→ G(z, ζ) is harmonic and thus
∗dzG(z, ζ) is a closed form. It follows that the term in the parentheses on the
right hand side of (6.2) depends only on the homology class [C] ∈ H1(X,Z).
Since H1(X,Z) is discrete and ∗dzG(z, ζ) is continuous in ζ , we see that the
right hand side of (6.2) vanishes, as claimed.

Let

Hγ := hγ +
√−1

∫ z

γ

∗dhγ

be the holomorphic function whose real part is hγ , and let Fγ := Hγ−Hγ(γ).
We have

|ϕ(γ) − ϕ(z) + 2Re Fγ(z)| = 2 |Tγ(γ) − Tγ(z)| ≤ 2|Tγ(γ)| + |Tγ(z)|.

Taking exponentials and applying Lemma 4.3 completes the proof. �

A function with poles along Γ

For z, ζ ∈ X and r < RX , let

I(ζ, z) =

∫
X

ξr(ζ, w)E(w, z)e−ν(w)
√−1dw ∧ dw̄

=
1

cr

∫ r

a

tf(t)

(∫
St(ζ)

E(w, z) ∗ dEζ(w)

)
dt.
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Since E is a fundamental solution to the Laplacian,

eν(z)∆zI(ζ, z) =
π

2

∫
X

ξr(ζ, w)δz(w) =
π

2
ξr(ζ, z).

Next it follows from (2.5) that, since E(·, z) is subharmonic, E(ζ, z) ≤ I(ζ, z)
and, since E(·, z) is harmonic in the region {w ∈ X : ρζ(w) > r}, E(ζ, z) =
I(ζ, z) if ρz(ζ) > r. Moreover, in view of (2.2), an application of (2.3) shows
that

1

2π

∫
St(ζ)

E(w, z) ∗ dEζ(w) = E(z, ζ) − 1Dt(z)(ζ) (E(z, ζ) − log t) .

We see that

I(ζ, z) =
2π

cr

(
log(ρz(ζ))

∫ ρz(ζ)

0

tf(t)dt+

∫ r

ρz(ζ)

tf(t) log tdt

)

if ρz(ζ) < r. Note that ∣∣∣∣ 1cr
∫ r

ρz(ζ)

tf(t) log(t)dt

∣∣∣∣ ≤ Dr,

where Dr depends only on r. We then have

|I(ζ, z)| ≤ Krρz(ζ) |log(ρz(ζ))|+Dr

for all z, ζ ∈ X satisfying ρz(ζ) < r. Since the expression on the right hand
side is bounded by a constant that depends only on r, we have

|I(ζ, z)| ≤ Cr(6.3)

whenever ρz(ζ) < r.
Let Γ be a discrete sequence. We define the function

vr(z) =
∑
γ∈Γ

(E(γ, z) − I(γ, z)) .

By the preceding remarks, vr(z) ≤ 0 and

vr(z) =
∑

γ∈Γ∩Dr(z)
(E(γ, z) − I(γ, z)) .

Moreover,

eν∆vr =
π

2

∑
γ∈Γ

(eνδγ − ξr(γ, ·)).(6.4)



522 A. Schuster and D. Varolin

Writing

XΓ,ε :=

{
z ∈ X ; min

γ∈Γ
ργ(z) > ε

}
,

we have the following lemma.

Lemma 6.2. Let Γ be a sparse, uniformly separated sequence and let ε ≤
σ(Γ). The function vr is uniformly bounded on XΓ,ε. Moreover, vr satisfies
the following estimate: if γ ∈ Γ and ργ(z) < σ, then

|vr(z) − log ργ(z)| ≤ Cr,ε.(6.5)

Proof. Let z ∈ XΓ,ε. Since Γ is sparse, there are at most N = Nr,0 members
of Γ, say γ1, . . . , γN , lying in Dr(z), and so

|vr(z)| ≤
N∑
j=1

(|E(γj, z)| + |I(γj, z)|) ≤
N∑
j=1

(|log(ρz(γj))| + Cr) .

Note that the number N does not depend on z. Since ε < ρz(γj) < r, the
term involving the logarithm has a bound that depends only on ε and r. We
thus see that vr is uniformly bounded on XΓ,ε.

Let γ ∈ Γ. Since Γ is sparse, there are at most N = Nr,ε elements of
Γ that lie in Dr(Dε(γ)). We write Γ ∩ Dr(Dε(γ)) = {γ1, . . . , γN}, where
γ1 = γ. Again, N does not depend on z. Then

|vr(z)− log ρz(γ)| ≤
(

N∑
j=2

|E(γj, z)| +
N∑
j=1

|I(γj, z)|
)

+ |E(γ, z)− log ρz(γ)|.

The first sum is bounded because σ(Γ) < ρz(γj) < r for j = 2, . . . , N . The
second sum is bounded by (6.3), and the third term vanishes. This completes
the proof of the lemma. �

A function with bumps along Γ

Let

dAE,γ(ζ) := dργ(ζ) ∧ ∗dργ(ζ) and AE,γ(D) :=

∫
D

dAE,γ.

Given a distribution f , we consider its regularization

1

AE,γ(Dε(z))

∫
Dε(z)

fdAE,γ

using the area element dAE,γ, where γ ∈ Γ.
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Observe that

AE,γ(Dε(γ)) =

∫
Dε(γ)

dργ ∧ ∗dργ =

∫
Dε(γ)

ργdργ ∧ ∗dE(γ, ·)

=

∫ ε

0

t

(∫
St(γ)

∗dE(γ, ·)
)
dt = 2π

∫ ε

0

t dt = πε2.(6.6)

Consider the function

vr,ε(z) = t
∑
γ∈Γ

1

πε2

∫
Dε(γ)

(E(ζ, z) − I(ζ, z)) dAE,γ(ζ)

where 0 � t < 1.

Lemma 6.3. The function vr,ε has the following properties.

(1)

eν(z)∆vr,ε(z) = t
∑
γ∈Γ

1

2ε2
eν(z)|dργ(z)|21Dε(z)

−t
∑
γ∈Γ

1

2ε2

∫
Dε(γ)

ξr(·, z)dAE,γ.

In particular,

lim
ε→0

eν∆vr,ε =
π

2
t
∑
γ∈Γ

(eνδγ − ξr(γ, ·))

in the sense of distributions.

(2) There exists a positive constant Cr,ε such that

z ∈ X ⇒ −Cr,ε ≤ vr,ε(z) ≤ 0(6.7)

and for any γ ∈ Γ,

ργ(z) < ε ⇒
∣∣∣∣ vr,ε(z) − t

πε2

∫
Dε(γ)

E(ζ, z)dAE,γ(ζ)

∣∣∣∣ ≤ Cr,ε(6.8)

Proof. 1. The formula for the Laplacian is a straightforward calculation,
and the limit is a standard consequence of the regularization of currents.

2. Since E(ζ, z) = I(ζ, z) whenever ρz(ζ) > r, we have, in view of for-
mula (6.6),

vr,ε(z) =
∑

γ∈Dε(Dr(z))

t

πε2

∫
Dε(γ)

(E(ζ, z) − I(ζ, z)) dAE,γ(ζ).
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Choose γ ∈ Γ. Since Γ is sparse, there exist γ1, . . . , γN ∈ Γ − {γ} such that
for all z ∈ Dε(γ)

vr,ε(z) =
t

πε2

∫
Dε(γ)

(
E(ζ, z) − I(ζ, z)

)
dAE,γ

+
N∑
j=1

t

πε2

∫
Dε(γj)

(E(ζ, z) − I(ζ, z))dAE,γj

Moreover, N is independent of γ, and depends only on r and ε. It follows
that∣∣∣∣vr,ε(z) − t

πε2

∫
Dε(γ)

E(·, z)dAE,γ
∣∣∣∣

≤ t

πε2

∫
Dε(γ)

|I(·, z)|dAE,γ +
N∑
j=1

t

πε2

∫
Dε(γj)

(|E(·, z)| + |I(·, z)|) dAE,γj .

We have estimates for I(ζ, z) as in the proof of Lemma 6.2, and since, by
uniform separation, ρz(ζ) > σ for any ζ ∈ Dε(γj), we can estimate the right
hand side by a constant that depends only on r. This proves (6.8), and (6.7)
follows from (6.8), Lemma 6.2 and the fact that vr ≤ 0. �
Lemma 6.4. For any z ∈ Dε(γ),

1

AE,γ(Dε(γ))

∫
Dε(γ)

E(z, ζ)dAE,γ(ζ) ≤ log
1

ε
+

1

2
.(6.9)

Proof. Observe that if z ∈ Dε(γ) and t ∈ (0, ε], then∫
St(γ)

∗dζE(z, ζ) =

∫
Dt(γ)

dζ ∗ dζE(z, ζ) = 2π1Dt(γ)(z) ≤ 2π.

Applying Green’s formula (2.1) with f = E(z, ·) and h = E(γ, ·), we obtain∫
St(γ)

E(z, ζ) ∗ dζE(γ, ζ) =

∫
St(γ)

E(γ, ζ) ∗ dζE(z, ζ).

We thus have

−
∫
Dε(γ)

log ρzdργ ∧ ∗dργ = −
∫ ε

0

t

(∫
St(γ)

E(z, ζ) ∗ dζE(γ, ζ)

)
dt

= −
∫ ε

0

t

(∫
St(γ)

E(γ, ζ) ∗ dζE(z, ζ)

)
dt

= −
∫ ε

0

t log t

(∫
St(γ)

∗dζE(z, ζ)

)
dt

≤ −2π

∫ ε

0

t log tdt = πε2

(
1

2
− log ε

)
.

The lemma now follows from (6.6). �
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7. Proof of Theorem 1

Let (sγ)∈B2
Γ(ϕ, g). We first construct a smooth function η∈L2(X, e−ϕdAg)

that interpolates (sγ). To this end, let χ ∈ C∞
0 ([0, σ)) satisfy

0 ≤ χ ≤ 1, χ|[0, σ/2] ≡ 1 and |χ′| ≤ 3

σ
.

We define

η(z) :=
∑
γ∈Γ

χ ◦ ργ(z)sγeFγ(z),

where Fγ is as in Lemma 6.1. Observe that η(γ) = sγ for all γ ∈ Γ, and that

∫
X

|η|2e−ϕdAg =
∑
γ∈Γ

|sγ|2
∫
Dσ(γ)

|χ ◦ ργ |2
∣∣e2Fγ−ϕ∣∣ dAg

≤ C
∑
γ∈Γ

|sγ|2e−ϕ(γ)Ag(Dσ(γ)) < +∞.

Next we wish to correct η by adding to it a function U that lies in
L2(X, e−ϕdAg) and vanishes along Γ. The so-called Hörmander-Bombieri-
Skoda technique is to solve the equation ∂̄U = ∂̄η with singular weights,
using Theorem 2.6. We will use the singular weight ϕ̃ := ϕ+ vr. Lemma 6.2
implies that ϕ̃ is comparable to ϕ on the support of ∂̄η, which lies in Vσ(γ) :=
Dσ(γ) −Dσ

2
(γ). One computes that

∂̄η =
∑
γ∈Γ

χ′(ργ)∂̄ργsγeFγ .(7.1)

and thus we then have the estimate∫
X

|∂̄η|2τψe−ϕ̃ ≤ C

σ2

∑
γ∈Γ

|sγ|2e−ϕ(γ)

∫
Vσ(γ)

|∂̄ργ|2τψ

≤ C

σ2

∑
γ∈Γ

|sγ|2e−ϕ(γ)

∫
Dσ(γ)

eν |∂̄ργ |2e−ψ

≤ C ′∑
γ∈Γ

|sγ|2e−ϕ(γ)

∫
Dσ(γ)

e−ψ

< +∞,

where the first inequality follows from Lemma 6.1 and the second to last
inequality follows from (4.1).



526 A. Schuster and D. Varolin

Since D+
f (Γ) < 1, there exist r < RX and δ > 0 such that

eν(∆ϕ̃+ Θψ) = eν(∆ϕ + Θψ) + eν∆vr

≥ eν(∆ϕ + Θψ)

(
1 −

∑
γ∈Γ

π
2
ξr(·, γ)

eν(∆ϕ+ Θψ)

)

> δeν(∆ϕ+ Θψ),

where the first inequality follows from (6.4). It follows from the admissibility
of the metric e−ψ|dz|2 that for ε > 0 sufficiently small there exists δ > 0
such that

eν
(
∆ϕ̃+∆ψ − ∆τψ

τψ
− ε

τ 2
ψ

∣∣∣∂τψ∂z ∣∣∣2 )

= eψ
(
τψ(∆ϕ̃+ ∆ψ) − ∆τψ − ε

τψ

∣∣∣∂τψ∂z ∣∣∣2 ) > δ.

By Ohsawa’s Theorem 2.6, there is a function

U ∈ L2(X, e−ϕ̃dAg) ⊂ L2(X, e−ϕdAg)

such that ∂̄U = ∂̄η. Moreover, since

e−ϕ̃ ∼ 1

|z − γ|2

for z sufficiently close to γ, we see that U(γ) = 0 for all γ ∈ Γ. Thus the
function

f := η − U ∈ B2
X(ϕ, g)

interpolates (sγ), and the proof of Theorem 1 is complete.

8. Proof of Theorem 2

Let ϕ̂ := ϕ+ vr,ε.

Lemma 8.1. Let g=e−ψ|dz|2 be an admissible metric. For each h∈B2
X(ϕ̂, g),∫

X

|h|2e−ϕ̂eν (∆ϕ̂+ Θψ) dAg ≥ 0.(8.1)

Proof. Consider the function S = |h|2e−(ϕ̂+ψ). Then

∆S

S
= ∆ logS +

1

S2
|∂S|2 =

1

S2
|∂S|2 + ∆ log |h|2 − ∆(ϕ̂ + ψ)
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and thus
eν∆S ≥ −Seν∆(ϕ̂ + ψ).

We claim that ∫
X

eν∆S dAg =

∫
X

S∆τψ.

To prove the claim, let z0 ∈ X. Take λ ∈ C∞
0 ([0, 1/2]) such that λ(t) ≡ 1

for 0 ≤ t ≤ 1/4, and put

χa(r) := λ(r2(1 − a)).

Then∫
X

e−(ψ−ν)∆S =

∫
X

τψ∆S = lim
a↗1

∫
X

τψχa ◦ ρz0∆S

= lim
a↗1

∫
X

S∆ (τψ · (χa ◦ ρz0))

= lim
a↗1

∫
X

S
(
(∆τψ)χa ◦ ρz0 + (∂τψ) ∧ ∂̄(χa ◦ ρz0)

+(∂̄τψ) ∧ ∂(χa ◦ ρz0) + τψ∆(χa ◦ ρz0)
)

= lim
a↗1

∫
X

S ((∆τψ)χa ◦ ρz0 + τψ∆(χa ◦ ρz0)) ,
where the third equality follows from Stokes’ Theorem. Now,

lim
a↗1

∫
X

Sτψ∆(χa ◦ ρz0) = lim
a↗1

∫
X

Sτψ
(
χ′′
a(ρz0)|∂ρz0 |2 + χ′

a(ρz0)∆ρz0
)

= lim
a↗1

∫
X

Sτψ

(
χ′′
a(ρz0) +

χ′
a(ρz0)

ρz0

)
|∂ρz0 |2

= lim
a↗1

∫
X

|h|2e−ϕ̂
(
χ′′
a(ρz0) +

χ′
a(ρz0)

ρz0

)
eν |∂ρz0 |2dAg = 0,

where the last equality follows from (4.1) and the definition of χa. Thus we
have ∫

X

τψ∆S =

∫
X

S∆τψ,

as claimed. Now, ∫
X

S∆τψ = Seν
(

∆τψ
τψ

)
dAg.

It follows that∫
X

Seν(∆ϕ̂+ Θψ)dAg =

∫
X

Seν
(
∆(ϕ̂+ ψ) − ∆τ

τ

)
dAg

=

∫
X

Seν∆(ϕ̂+ ψ)dAg −
∫
X

eν∆SdAg ≥ 0.

The proof is complete. �
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Conclusion of the proof of Theorem 2. Let h ∈ B2
X(ϕ, g). By

Lemma 6.3,

eν(z)(∆ϕ̂+ Θψ)(z) = eν(z)(∆ϕ + Θψ)(z) + eν(z)∆vr,ε(z)

= eν(z)(∆ϕ+ Θψ)(z)

(
1 − t

∑
γ∈Γ

1

2ε2

∫
Dε(γ)

ξr(ζ, z)

eν(z)(∆ϕ+ Θψ)(z)
dAE,γ(ζ)

+ t
∑
γ∈Γ

1

ε2

eψ(z)|∂ργ(z)|2
eν(z)(∆ϕ + Θψ)(z)

1Dε(γ)(z)

)
.

Applying the hypotheses D−
f (Γ) > 1, the admissibility and g and the es-

timate (4.1), we see therefore that, for t sufficiently close to 1, there exist
r, δ, C > 0 such that

(8.2) eν(∆ϕ̂+ Θψ) ≤ −teν(∆ϕ+ Θψ)

(
δ − C

∑
γ∈Γ

e2ψ
2

ε2
1Dε(γ)

)
.

We then apply Lemma 8.1 to get∫
X

|h|2 e−ϕdAg ≤
∫
X

|h|2e−ϕ̂dAg ≤ C

∫
X

eν(∆ϕ+ Θψ)|h|2e−ϕ̂dAg

≤ C ′∑
γ∈Γ

2

ε2

∫
Dε(γ)

eν(∆ϕ + Θψ)|h|2e−ϕ̂dAg

≤ C ′′∑
γ∈Γ

2

ε2

∫
Dε(γ)

|h|2e−ϕ̂dAg ≤ C ′′′∑
γ∈Γ

2

ε2+2t

∫
Dε(γ)

|h|2e−ϕdAg,

where the first inequality follows from Lemma 6.3, the third inequality fol-
lows from integration of (8.2) together with Lemma 8.1 and the last inequal-
ity follows from Lemmas 6.3 and 6.4. Now,∫

Dε(γ)

|h|2e−ϕdAg =

∫
Dε(γ)

|he−Fγ |2e−ϕ+2ReFγdAg

≤ Ce−ϕ(γ)

∫
Dε(γ)

|he−Fγ |2dAg

≤ C ′Ag(Dε(γ))e
−ϕ(γ)

(
|h(γ)|2 + ε2 sup

Dε(γ)

∣∣(he−Fγ )′∣∣2
|∂ργ |2

)

≤ C ′Ag(Dε(γ))e
−ϕ(γ)

(
|h(γ)|2 + ε2Cε,σ

∫
Dσ(γ)

|he−Fγ |2dAg
)

≤ C ′Ag(Dσ(γ))e
−ϕ(γ)|h(γ)|2 + ε2C ′′Ag(Dε(γ))

∫
Dσ(γ)

|h|2e−ϕdAg,
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where the first and last inequalities follow from Lemma 6.1, the second
inequality follows from Taylor’s theorem, and the third inequality from the
Cauchy estimate (4.7).

Next, since e−ψ ≤ Ce−ν for some C > 0, we see by Theorem 4.1 that

Ag(Dε(γ)) ≤ C

∫
Dε(γ)

e−ν ≤ Co

∫
Dε(γ)

|∂ργ |2 = πCoε
2

for all sufficiently small ε and some C independent of γ, where the last
equality follows from (6.6). We thus obtain

∫
X

|h|2e−ϕdAg ≤
∑
γ∈Γ

(
C1

ε2+2t
|h(γ)|2e−ϕ(γ)Ag(Dσ(γ))+ C2ε

2−2t

∫
Dσ(γ)

|h|2e−ϕdAg
)

≤
∑
γ∈Γ

(
C1

ε2+2t
|h(γ)|2e−ϕ(γ)Ag(Dσ(γ))

)
+ C2ε

2−2t

∫
X

|h|2e−ϕdAg.

By taking ε sufficiently small, we obtain the left hand side of the sampling
inequality in Definition 1.1(2). For the right hand side of the sampling
inequality, we argue as follows.

∑
γ∈Γ

|h(γ)|2e−ϕ(γ)Ag(Dσ(γ)) =
∑
γ∈Γ

|h(γ)e−Fγ(γ)|2e−ϕ(γ)Ag(Dσ(γ))

≤ Cσ2
∑
γ∈Γ

e−ϕ(γ)

∫
Dσ(γ)

|he−Fγ |2dAg

≤ C ′∑
γ∈Γ

∫
Dσ(γ)

|h|2e−ϕdAg ≤ C ′′
∫
X

|h|2e−ϕdAg,

where the first inequality follows from (4.6), the second from Lemma 6.1
and the third from the definition of the separation constant. This proves
Theorem 2. �
Acknowledgment. We are grateful to John D’Angelo, Jeff McNeal, Quim
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