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Global infinite energy solutions of the
critical semilinear wave equation

Pierre Germain

Abstract

We consider the critical semilinear wave equation

(NLW )2∗−1

⎧⎪⎨⎪⎩
�u + |u|2∗−2u = 0

u|t=0 = u0

∂tu|t=0 = u1 ,

set in R
d, d ≥ 3, with 2∗ = 2d

d−2 · Shatah and Struwe [22] proved that,
for finite energy initial data (ie if (u0, u1) ∈ Ḣ1 × L2), there exists
a global solution such that (u, ∂tu) ∈ C(R, Ḣ1 × L2). Planchon [17]
showed that there also exists a global solution for certain infinite en-
ergy initial data, namely, if the norm of (u0, u1) in Ḃ1

2,∞×Ḃ0
2,∞ is small

enough. In this article, we build up global solutions of (NLW )2∗−1

for arbitrarily big initial data of infinite energy, by using two methods
which enable to interpolate between finite and infinite energy initial
data: the method of Calderón, and the method of Bourgain. These
two methods give complementary results.

1. Introduction

1.1. Wave equations with a power non-linearity

Consider the following Cauchy problem, set in R
d, where u(t, x) is a real-

valued function, and we denote � = ∂2
t − ∆.

(NLW )p

⎧⎪⎨⎪⎩
�u+ |u|p−1u = 0

u|t=0 = u0

∂tu|t=0 = u1 .
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This Cauchy problem has two interesting features. First, it enjoys a scaling
invariance: if u is a solution of (NLW )p for the initial data (u0, u1), then

(1.1) λ
2

p−1u(λx, λt)

will be a solution for the initial data(
λ

2
p−1u0(λx), λ

2
p−1

+1u1(λx)
)
.

Furthermore, denoting by ‖ · ‖r the norm of the Lebesgue space Lr, the
energy

E(u, t)
def
=

1

2
‖∇u(t, ·)‖2

2 +
1

2
‖∂tu(t, ·)‖2

2 +
1

p+ 1
‖u(t, ·)‖p+1

p+1

is (at least formally) conserved by the flow of (NLW )p. The index pc =

2∗ − 1, with 2∗ def
= 2d

d−2
appears to be critical because for this value of p the

scaling transformation (1.1) leaves E invariant. The equation is said to be
subcritical for p < pc, critical for p = pc, and supercritical for p > pc.

1.2. Finite energy solutions

Using the formal conservation of energy, Segal [19] (see also Shatah and
Struwe [22]) proved for any p the existence of a weak finite energy solution
such that (u, ∂tu) ∈ L∞(R, Ḣ1 ×L2). Recall that the homogeneous Sobolev
spaces Ḣs are given by the norm

‖f‖2
Ḣs

def
=

∫
Rd

|ξ|2s|f̂(ξ)|2 dξ .

The uniqueness of this weak solution is known in the subcritical case (Ginibre
and Velo [9]). In the critical case one must add a supplementary condition:
we have the following theorem, which goes back to Grillakis [10], but whose
proof has been simplified and generalized by Shatah and Struwe [20] [21] [22].

Theorem 1.1 Let d ≥ 3, and consider initial data (u0, u1) ∈ Ḣ1×L2. Then
the Cauchy problem (NLW )2∗−1 has a unique solution u such that

(u, ∂tu) ∈ C(R, Ḣ1 × L2) ∩ Lµ
loc(R, Ḃ

1/2
µ,2 × Ḃ

−1/2
µ,2 ) ,

with µ = 2(d+1)
d−1

·
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1.3. Infinite energy solutions

We refer for this topic to the paper of Lindblad and Sogge [15]. These

authors show in particular that in the range p ≥ p̂
def
= d+3

d−1
, the optimal space

for the local resolution of (NLW )p is given by the scaling of the equation. Set

s(p)
def
=
d

2
− 2

p− 1
;

it is the Sobolev exponent s such that the norm of Ḣs is invariant by the
scaling of (NLW )p.

Theorem 1.2 Let p ≥ p̂. Then

1. (NLW )p is not locally well-posed for initial data (u0, u1) ∈ Ḣs × Ḣs−1

if s < s(p).

2. (NLW )p is locally well-posed for initial data (u0, u1) ∈ Ḣs × Ḣs−1 if
s ≥ s(p).

In the critical case p = 2∗ − 1, s(p) = 1; so we cannot hope to obtain
infinite energy solutions by taking initial data in Sobolev spaces. We must
therefore use Besov spaces, see the appendix for a definition. Planchon [17]
built up solutions of (NLW )p for initial data in Besov spaces; we state his
result only in the critical case.

Theorem 1.3

• If the initial data (u0, u1) belong to the closure of the Schwartz class S
in Ḃ1

2,∞ × Ḃ0
2,∞, there exists a local solution of (NLW )2∗−1.

• If the initial data (u0, u1) have a small enough norm in Ḃ1
2,∞ × Ḃ0

2,∞,
there exists a global solution of (NLW )2∗−1.

1.4. Interpolation between finite and infinite energy solutions: the
subcritical case

Given the existence results stated above, one would like to interpolate be-
tween finite and infinite energy solutions in order to obtain the existence of
global solutions of (NLW )2∗−1 for large infinite energy initial data.

Let us focus here on the case d = 3, p = 3, which is quite typical (see the
article of Kenig, Ponce and Vega [13] for a larger range for p). The equation
reads

(NLW )3

⎧⎪⎨⎪⎩
�u+ u3 = 0

u|t=0 = u0

∂tu|t=0 = u1 .
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The results stated above give for (u0, u1) ∈ Ḣ1 × L2 a finite energy global
solution, and for (u0, u1) small in Ḣ1/2 × Ḣ−1/2 an infinite energy global
solution.

By interpolating between finite and infinite energy solutions, the follow-
ing theorem can be proved.

Theorem 1.4 If the initial data (u0, u1) belongs to Ḣs×Ḣs−1, with s > 3/4,
there exists a global solution of (NLW )3.

This theorem was first proved by Kenig, Ponce and Vega [13] using a
method developed by Bourgain [3] to study non-linear Schrödinger equa-
tions. To explain very briefly this idea, consider (u0, u1) in Ḣs × Ḣs−1; we
can also write this initial data as

(1.2) (u0, u1) = (v0, v1) + (w0, w1)

with (v0, v1) ∈ Ḣ1 × L2, and (w0, w1) small in Ḣs × Ḣs−1. Let v be the
finite energy solution associated to the initial data (v0, v1). In order to get a
global solution of our problem, we just have to solve the perturbed equation

(1.3)

⎧⎪⎨⎪⎩
�w + (v + w)3 − v3 = 0

w|t=0 = w0

∂tw|t=0 = w1 ,

and this can be done by using repetitively a fixed point argument.

Theorem 1.4 has been proved by a different method by Gallagher and
Planchon [7]. They adapted to this setting an idea which had been intro-
duced by Calderón [4], and applied by the same authors [6], in order to study
the Navier-Stokes equation. This method is somewhat dual of Bourgain’s
one. As a first step, one splits the data as in (1.2). One considers then a so-
lution of (NLW )3 for the initial data (w0, w1), so one obtains the perturbed
equation

(1.4)

⎧⎪⎨⎪⎩
�v + (v + w)3 − w3 = 0

v|t=0 = v0

∂tv|t=0 = v1 .

The idea is then to show that v remains of finite energy and to use energy
methods.
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1.5. Statement of the theorems

Our aim in this article is to show how the methods of Bourgain and Calderón
can be applied to the critical equation (NLW )2∗−1, in order to show global
existence results for arbitrarily large infinite energy initial data.

To adapt the methods explained above to the critical case, it suffices
to replace Ḣs × Ḣs−1 by Ḃ1

2,∞ × Ḃ0
2,∞. Interestingly, both methods give

complementary results in the critical case.
First, one obtains with the method of Bourgain the following theorem.

Theorem A Let d = 3, 4 or 6. There exist constants C > 0 and κ > 0 such
that, for initial data (u0, u1) of the form

(u0, u1) = (v0 + w0, v1 + w1)

with
E = ‖v0‖Ḣ1 + ‖v1‖L2 <∞

and
‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞
≤ C exp(− exp(Eκ)) ,

there exists a global solution u of (NLW )2∗−1.

Furthermore, if one denotes

(1.5) µ =
2(d+ 1)

d− 1
, ν =

2(d+ 1)

d+ 3
, α =

µ

ν(2∗ − 1)
and

1

ρ
=
α

µ
+

1 − α

2
,

then
u ∈ X

def
= L̃µ/α(R, Ḃ1−α/2

ρ,∞ )

(see the appendix for the definition of the spaces L̃q(R, Ḃs
r,k)). Finally, u is

unique in the set

(1.6) E def
= {u , dX(u,S) < ε1}

where ε1 > 0 is a universal constant and

dX(u,S) = inf
{‖f − u‖X , f ∈ S} .

This theorem is proved in Part 2.

Remark 1.1 The restriction to d = 3, 4 or 6 is simply due to the fact
that 2∗ is an integer for these values of d. We could not prove the product
lemma 2.4 for other values of d, but we believe that the theorem is true for
any d ≥ 3.
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The method of Calderón gives the following theorem.

Theorem B Let d = 6. There exists ε > 0 such that the Cauchy problem
(NLW )2∗−1 has a global solution u provided the initial data (u0, u1) can be
written

u0(x) = v0(x) +
c0
|x|2 and u1(x) = v1(x) +

c1
|x|3 ,

with (v0, v1) ∈ Ḣ1 × L2, c1 < ε and c2 < ε.
Furthermore, u is unique in the set

(1.7) E def
=
{
u , dX(u,S) < ε1

}
where ε1 > 0, and the notations are those of Theorem A.

This theorem is proved in Part 3.

Remark 1.2

• First, since d = 6,

x �→ 1

|x|2 ∈ Ḃ1
2,∞ \ Ḣ1 and x �→ 1

|x|3 ∈ Ḃ0
2,∞ \ L2 ;

the theorem would otherwise have no interest.

• As opposed to Theorem A, the infinite energy perturbations must here
have a precise form; but the bound on the size of these perturbations
does not depend any more on v0 or v1.

• We believe that the restriction d = 6 could be replaced by a bound
d ≥ 4, but we could not do it because of technical problems.

2. Proof of Theorem A

2.1. Strichartz estimates

Strichartz estimates will be an essential tool in the proof of Theorem A.
Let us denote simply by LqLr the space Lq(R, Lr(Rd)), i.e.

‖u(t, x)‖LqLr =

(∫
R

(∫
Rd

|u(t, x)|r dx
)q/r

dt

)1/q

.

Strichartz estimates give information on the space time-norm of the so-
lution U of a linear wave equation. This kind of estimates goes back to
Strichartz [23], and has been proved in its greatest generality by Ginibre
and Velo [9], and Keel and Tao [12].
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Theorem 2.1 Suppose d ≥ 3, and take j ∈ Z. If the Fourier transforms
of U0(x) and U1(x) are supported in the annulus {2j ≤ |ξ| ≤ 2j+2}, and if
F (t, x) is a real function of (t, x) ∈ R × R

d, whose x-Fourier transform is
supported in {2j ≤ |ξ| ≤ 2j+2}, then the solution U of

(2.1)

⎧⎪⎨⎪⎩
�U = F

U|t=0 = U0

∂tU|t=0 = U1

verifies

‖U‖LqLr + 2−j‖∂tU‖LqLr

≤ C2j(− 1
q
− d

r
+ d

2)
(‖U0‖2 + 2−j‖U1‖2

)
+ C2j(− d

r
− d

�r
− 1

q
− 1

�q
+d−1)‖F‖L�q′L�r′ ,

provided (q, r) and (q̃, r̃) verify

(2.2) q ≥ 2 , (q, r, d) 
= (2,∞, 3) and
1

q
+
d− 1

2r
≤ d− 1

4
·

The above theorem gives estimates for solutions of wave equations which
are localized in frequency in dyadic annuli. We will make use in the following
of estimates in Besov and Sobolev spaces; they are easily deduced from this
theorem.

The space-time norms at the scaling of Strichartz estimates control the
critical wave equation (NLW )2∗−1.

We will need in the following to control, for a finite energy solution, these
space-time norms by the energy. Bahouri and Gérard [1] showed that such a
control exists, but without giving an explicit bound. Nakanishi [16] proved
the following theorem.

Theorem 2.2 (Nakanishi [16]) Let d ≥ 3, consider initial data (u0, u1) ∈
Ḣ1 × L2, and let us denote

E = ‖u0‖Ḣ1 + ‖u1‖L2 .

Let u be the solution of (NLW )2∗−1 given by Theorem 1.1. There exist
constants C > 0 and κ > 0 such that

‖u‖Lq0(R,Ḃ
s0
r0,2)

≤ C expEκ ,

with

q0 =
2(d2 + 2)

(d+ 1)(d− 2)
r0 = 2∗ s0 =

1

q0
·
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2.2. Core of the proof of Theorem A

1. Let us take (v0, v1) as in the theorem, and let v be the finite energy
solution of (NLW )2∗−1 associated to this initial data by Theorem 1.1. In
order to prove the theorem, it suffices to show that there exists a global
solution of

(2.3)

⎧⎪⎨⎪⎩
�w + (v + w)|v + w|2∗−2 − v|v|2∗−2 = 0

w|t=0 = w0

∂tw|t=0 = w1

for then v + w is a solution of (NLW )2∗−1 associated to the initial data
(v0 + w0, v1 + w1).

2. The idea of the proof is now the following: we split [0,+∞[ into N
intervals [Tn, Tn+1], with T0 = 0 and TN = +∞.

Then we solve the perturbed equation (2.3) successively on the intervals
[Tn, Tn+1], with the help of a fixed point theorem, in

X[Tn,Tn+1]
def
= L̃µ/α([Tn, Tn+1], Ḃ

1−α/2
ρ,∞ ) ,

where µ, α and ρ have been defined in (1.5) and spaces L̃r([0, T ], Ḃs
p,q) are

defined in the appendix.
The use of this fixed point theorem will be made possible by the smallness

of v in X[Tn,Tn+1], for Tn close enough to Tn+1. We will also have to control
the norm of w(Tn) for each n ≤ N , and check that it remains small enough.
Finally, the crucial point is that N is indeed finite. This is a consequence of
Theorem 2.2, which will give us a bound on the norm of v in X[0,∞[.

The proof sketched above will give us a solution of (2.3) for t ∈ [0,+∞[;
since the case t ∈]−∞, 0] is identical, we will actually get a solution defined
on R, and the theorem will be proved.

3. Let us now implement the program described above. By Theorem 2.2,
we have

(2.4) ‖v‖Lq0Ḃ
s0
r0,2

≤ C expEκ .

Moreover, Theorem 2.1 implies that the solution v of (NLW )2∗−1 associated
to the initial data (v0, v1) verifies the estimate (we denote as in the statement
of the theorem X]−∞,∞[ simply by X)

‖v‖X ≤ ‖v‖
�Lµ/α(R,Ḃ

1−α/2
ρ,2 )

≤ C
(
‖v0‖Ḣ1 + ‖v1‖L2 + ‖v|v|2∗−2‖Lq1 Ḃ

s1
r1,2

)(2.5)
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with

q1 =
2(d2 + 2)

(d+ 1)(d+ 2)
r1 =

2(d2 + 2)

d2 + 2d− 2
s1 =

1

q0
·

We conclude as in Nakanishi’s paper [16, page 34], that

(2.6) ‖v‖X ≤ C

(
‖v0‖Ḣ1 + ‖v1‖L2 + ‖v‖2∗−1

Lq0 Ḃ
s0
r0,2

)
.

Combining (2.4) and (2.6), we get, for new positive constants κ and C,

(2.7) ‖v‖X ≤ C exp(Eκ) .

Let us take ε > 0 (we shall set the value of ε later), and let us build up

0 = T0 < T1 < · · · < Tn < Tn+1 < · · · < TN = ∞
with the help of the following lemma, whose proof we postpone for the
moment.

Lemma 2.1 Let v be as above, and ε > 0. There exists an integer N and
N + 1 numbers T0, . . . , TN belonging to [0,∞] such that

0 = T0 < T1 < · · · < Tn < Tn+1 < · · · < TN = ∞
and

‖v‖X[Tn,Tn+1]
≤ ε .

Furthermore, we have the estimate

(2.8) Nα/µε ≤ C exp(Eκ) .

4. The following lemma gives conditions such that (2.3) has a solution
on [0, T1]; it also gives a bound on the norm of this solution in T1.

Lemma 2.2 Let T > 0. There exist constants c0 and C0 such that if{ ‖w0‖Ḃ1
2,∞

+ ‖w1‖Ḃ0
2,∞

≤ c0

‖v‖X[0,T ]
≤ c0

then the Cauchy problem (2.3) has a solution w ∈ X[0,T ] which verifies

‖w‖X[0,T ]
≤ C0

(
‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞

)
and

‖w(T )‖Ḃ1
2,∞

+ ‖∂tw(T )‖Ḃ0
2,∞

≤ C0

(
‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞

)
.
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We will not prove this lemma at once, and will first show how it enables
us to conclude the proof of the theorem. Let us first set ε = c0. If ‖w0‖Ḃ1

2,∞
+

‖w1‖Ḃ0
2,∞

≤ c0, we can use Lemma 2.2, which gives us a solution w ∈ X[0,T1]

such that

‖w(T1)‖Ḃ1
2,∞

+ ‖∂tw(T1)‖Ḃ0
2,∞

≤ C0

(
‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞

)
.

Let us apply once again Lemma 2.2 to the Cauchy problem

(2.9)

⎧⎪⎨⎪⎩
�w + (v + w)|v + w|2∗−2 − v|v|2∗−2 = 0

w|t=T1 = w(T1)

∂tw|t=T1
= w(T1) ,

so as to get a solution on [T1, T2].

Provided C0

(‖w0‖Ḃ1
2,∞

+ ‖w1‖Ḃ0
2,∞

) ≤ c0, the lemma gives a solution

w ∈ X[T1,T2] such that

‖w(T2)‖Ḃ1
2,∞

+ ‖∂tw(T2)‖Ḃ0
2,∞

≤ C2
0

(
‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞

)
.

By iterating this procedure, we obtain a solution w on [0,∞[ under the
condition that

CN
0

(
‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞

)
≤ c0 .

This inequality and (2.8) imply that a sufficient condition in order to obtain
a global solution w is that

‖w0‖Ḃ1
2,∞

+ ‖w1‖Ḃ0
2,∞

≤ C exp (− exp (Eκ)) ,

for universal constants C and κ; this proves the “existence” part of the
theorem.

5. The “uniqueness” part is left. Let us observe first that the solution
u = v+w which has been built up in the previous paragraph belongs to the
set E defined in (1.6). Indeed, we know by (2.6) that v ∈ L̃µ/α(R, Ḃ

1−α/2
ρ,2 ).

This implies that

(2.10) dX(v,S) = 0 .

Moreover, we will majorize ‖w‖X[0,∞[
(a bound for ‖w‖X can be obtained

identically); we shall use the times T0, T1 . . . TN defined above. Let

an,j
def
= 2j(1−α/2)‖∆jw‖Lµ/α([Tn−1,Tn],Lρ) .
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By Minkowski’s inequality, we have

(2.11)

‖w‖X[0,∞[
= sup

j∈Z

( N∑
n=1

a
µ/α
n,j

)α/µ

≤ sup
j

N∑
n=1

an,j ≤
N∑

n=1

sup
j
an,j =

N∑
n=1

‖w‖X[Tn−1,Tn]
.

Furthermore, we deduce from Lemma 2.2 and from the paragraph 4. that

(2.12)
N∑

n=1

‖w‖X[Tn−1,Tn]
≤ (C0 + C2

0 + · · ·+ CN
0

) (‖w0‖Ḃ1
2,∞

+ ‖w1‖Ḃ0
2,∞

)
≤ Cc0

and this last quantity is smaller than ε1 (whose value will be set later on)
provided that c0 be chosen small enough, which we can assume.

Gathering (2.10), (2.11) and (2.12), we get

dX(u,S) ≤ dX(v,S) + dX(w,S) ≤ ‖w‖X ≤ ε1 ,

and therefore u ∈ E .

6. Let us now show that uniqueness indeed holds in E . Suppose that u
and ũ are two solutions of (NLW )2∗−1, belonging to E , and associated to
the same initial data (u0, u1), which of course satisfies the assumptions of
Theorem A. We finally assume that these two solutions are not equal for all
time; we can take 0 to be the maximal time until which they are equal.

The following lemma, proved in Section 2.3, will enable us to conclude.

Lemma 2.3 There exist ε > 0 and ζ > 0 such that, if (u0, u1) are initial
data verifying

dḂ1
2,∞×Ḃ0

2,∞
((u0, u1),S)

def
= inf

{‖(u0, u1) − f‖Ḃ1
2,∞×Ḃ0

2,∞
, f ∈ S} ≤ ε ,

then there exist T > 0 and u such that

• u is a solution of (NLW )2∗−1 on [0, T ] for the initial data (u0, u1)

• for any t ≤ T , u is unique on [0, t] if one adds the condition

‖u‖
�Lµ/α([0,t],Ḃ

1−α/2
ρ,∞ )

< ζ .

We observe then that, if u ∈ E ,

limsup
t→0

‖u‖
�Lµ/α([0,t],Ḃ

1−α/2
ρ,∞ )

≤ ε1 .

In particular, if ε1 < ζ (we choose ε1 such that this inequality holds), for t
small enough, one can apply the uniqueness criterion of the above lemma
to u and ũ. We obtain that u = ũ on [0, t], which is absurd. This concludes
the proof of the theorem. �
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2.3. Proof of the auxiliary lemmas

This section is dedicated to the proof of Lemmas 2.1, 2.2 and 2.3, which
have been used in the proof of Theorem A.

Proof of Lemma 2.1. First pick T1 such that

‖v‖
�Lµ/α([0,T1],Ḃ

1−α/2
ρ,2 )

= ε

(if ‖v‖
�Lµ/α([0,∞[,Ḃ

1−α/2
ρ,2 )

< ε, we are done). Pick then T2 such that

‖v‖
�Lµ/α([T1,T2],Ḃ

1−α/2
ρ,2 )

= ε ,

then T3, and so on. This procedure stops for some N , and the estimate (2.8)
of Lemma 2.1 holds, because of the inequality which we are about to prove.
Suppose T1 < T2 < · · · < TK have been built up.

Let us define as above the sequence (an,j), n ∈ {1 . . .K} and j ∈ Z, by

an,j
def
= 2j(1−α/2)‖∆jv‖Lµ/α([Tn−1,Tn],Lρ) .

We have then

(2.13)
K∑

n=1

(∑
j∈Z

a2
n,j

)1/2

=
K∑

n=1

‖v‖
�Lµ/α([Tn−1,Tn],Ḃ

1−α/2
ρ,2 )

≥ Kε .

We will estimate the left-hand side of the above equation with the help of
the concavity inequality

M∑
n=1

bβn ≤M1−β

( M∑
n=1

bn

)β

which holds if M ∈ N, b1 . . . bM are positive, and β ∈ [0, 1]. We get

K∑
n=1

(∑
j∈Z

a2
n,j

)1/2

≤
√
K

( K∑
n=1

∑
j∈Z

a2
n,j

)1/2

≤
√
K

(∑
j∈Z

K1−2α/µ

[ K∑
n=1

a
µ/α
n,j

]2α/µ)1/2

≤ K1−α/µ

(∑
j∈Z

[ K∑
n=1

a
µ/α
n,j

]2α/µ)1/2

,

(2.14)
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where we used in the second inequality that 0 < 2α/µ < 1. Now we notice
that

(2.15)

(∑
j∈Z

[ K∑
n=1

a
µ/α
n,j

]2α/µ)1/2

= ‖v‖
�Lµ/α([T0,TK ],Ḃ

1−α/2
ρ,2 )

.

It follows from (2.13), (2.14) and (2.15) that

Kε ≤ K1−α/µ‖v‖
�Lµ/α([T0,TK ],Ḃ

1−α/2
ρ,2 )

,

and, combined with (2.7), this concludes the proof of the lemma. �

Proof of Lemma 2.2. Solving (2.3) on [0, T ] is equivalent to solving on
the same interval the integral equation

w(t) = Ẇ (t)w0 +W (t)w1(2.16)

+

∫ t

0

W (t− s)
[
(v + w)|v + w|2∗−2(s) − v|v|2∗−2(s)

]
ds

def
= G(w)(t) ,

where W (t)
def
=

sin(t|D|)
|D| is the wave operator. For η > 0, let us denote

Y =
{
w ∈ X[0,T ] , ‖w‖X[0,T ]

< η
}

;

and let us determine for which η > 0 does G stabilize Y . We shall need
Lemma 2.4, which is proved below and states that the mapping

(2.17)

{
(u1, . . . , u2∗−1) �→ u1|u2| . . . |u2∗−1|(
X[0,T ]

)2∗−1 → L̃ν
(
[0, T ], Ḃ

1/2
ν,∞
)

is continuous (ν was defined in (1.5)).
We will also need a Strichartz estimate: Theorem 2.1 implies that the

solution U of (2.1) verifies

(2.18) ‖U‖X[0,T [
≤ C

(
‖U0‖Ḃ1

2,∞
+ ‖U1‖Ḃ0

2,∞
+ ‖F‖

�Lν([0,T ],Ḃ
1/2
ν,∞)

)
.

Denoting {
δ = ‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞
ε = ‖v‖X[0,T ]

,
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the inequality (2.18) combined to (2.17) gives, if w ∈ Y ,

‖G(w)‖X[0,T ]
≤ C

(
δ + ‖(v + w)|v + w|2∗−2 − v|v|2∗−2‖

�Lν([0,T ],Ḃ
1/2
ν,∞)

)
≤ C

(
δ +

∥∥∥∥(2∗ − 1)w

∫ 1

0

|v + τw|2∗−2dτ

∥∥∥∥
�Lν([0,T ],Ḃ

1/2
ν,∞)

)
≤ C

(
δ + (2∗ − 1)‖w‖X[0,T ]

∫ 1

0

‖v + τw‖2∗−2
X[0,T ]

dτ

)
≤ C(δ + η(η + ε)2∗−2) .

(2.19)

As a consequence, G stabilizes Y if

(2.20) δ ≤ c1η , η ≤ c2 and ε ≤ c2

(c1 and c2 are positive constants). Let us now find conditions such that G
be contracting on Y . If w and w′ belong to Y , we have, due to (2.18) and
Lemma 2.4,

‖G(w) −G(w′)‖X[0,T ]

=

∥∥∥∥∫ t

0

W (t− s)
[
(v + w)|v + w|2∗−2(s) − (v + w′)|v + w′|2∗−2(s)

]
ds

∥∥∥∥
X[0,T ]

≤ C‖(v + w)|v + w|2∗−2 − (v + w′)|v + w′|2∗−2‖
�Lν([0,T ],Ḃ

1/2
ν,∞)

≤ C

∥∥∥∥(2∗ − 1)(w − w′)
∫ 1

0

|v + w + τ(w′ − w)|2∗−2dτ

∥∥∥∥
�Lν([0,T ],Ḃ

1/2
ν,∞)

≤ C(η + ε)2∗−2‖w − w′‖X[0,T ]
.

So G is contracting if

(2.21) η ≤ c3 and ε ≤ c3 .

Let us set η =
δ

c1
. Then (2.20) and (2.21) are equivalent to

δ ≤ c0 and ε ≤ c0 .

If this last condition is verified, G is contracting on Y , and Picard’s fixed
point theorem implies the existence of a solution of (2.3) belonging to Y ,
hence such that

‖w‖X(0,T ]
≤ η =

δ

c1
.
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We are left with estimating its norm in T . Applying once again Theorem 2.1
gives the inequality

‖w‖L∞([0,T ],Ḃ1
2,∞) + ‖∂tw‖L∞([0,T ],Ḃ0

2,∞)

≤ C
(
‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞
+ ‖(v + w)|v + w|2∗−2 − v|v|2∗−2‖

�Lν([0,T ],Ḃ
1/2
ν,∞)

)
≤ C1δ .

The last majorization is justified by (2.19) and by the choice of η which we
made. �

We will now prove a product lemma which has already been useful in
the proof of Lemma 2.2, and which we will use again in Part 3.

Recall we set

(2.22) µ =
2(d+ 1)

d− 1
, ν =

2(d+ 1)

d+ 3
, α =

µ

ν(2∗ − 1)
and

1

ρ
=
α

µ
+

1 − α

2
.

Lemma 2.4 Take d equal to 3, 4 or 6, and take T ≤ T ′ two real numbers.

1. The mapping{
(u1, u2, . . . , u2∗−1) �→ u1|u2| . . . |u2∗−1|(
L̃µ/α([T, T ′], Ḃ1−α/2

ρ,∞ )
)2∗−1

→ L̃ν([T, T ′], Ḃ1/2
ν,∞)

is continuous.

2. The mapping⎧⎨⎩ (u1, u2, . . . , u2∗−1) �→u1|u2| . . . |u2∗−1|
L̃µ/α([T, T ′], Ḃ1−α/2

ρ,2 ) ×
(
L̃µ/α([T, T ′], Ḃ1−α/2

ρ,∞ )
)2∗−2

→L̃ν([T, T ′], Ḃ1/2
ν,2 )

is continuous.

Proof of Lemma 2.4. We shall only prove point 1.; the proof of point 2.
is very similar.

To simplify notations, we will take z1 . . . z2∗−1 in Ḃ
1−α/2
ρ,∞ and prove that

their product belongs to Ḃ
1/2
ν,∞. This corresponds to the statement of the

lemma, except for the Lebesgue spaces in time, but one simply needs to use
Hölder’s inequality to add them; and except for the absolute values, but it
is possible to add them due to the boundedness of the mapping f �→ |f | on
Ḃs

p,q if s < 1.
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So as to use Bony’s paraproduct algorithm [2], we write the product
z1 . . . z2∗−1 as a telescopic sum

z1 . . . z2∗−1 =
∑
j∈Z

[
2∗−1∏
i=1

Sj+1zi −
2∗−1∏
i=1

Sjzi

]
def
=
∑

j

Aj

(see the appendix for the definition of Sj, and of ∆j , which we are about to
use). It is clear that for any j, Aj is localized in frequency in a ball whose
radius is proportional to 2j. We would like to show that

∑
j Aj belongs

to Ḃ
1/2
ν,∞, and since this space has a positive regularity index, it suffices, by

a classical result (see [17]), to show that

sup
j∈Z

2
j
2‖Aj‖ν <∞ .

If one looks closer at the Aj , it appears that each one of them is a linear
combination of products a1...a2∗−1, where each ai is either equal to ∆jzi or
Sjzi, but with at least one of the ai equal to ∆jzi. Let us now estimate the
size of the ai.

• First, by definition of Ḃ
1−α/2
ρ,∞ , ‖∆jzi‖ρ ≤ C2(1−α/2)j‖zi‖Ḃ

1−α/2
ρ,∞

.

• Secondly, the classical Sobolev embedding

Ḃ1−α/2
ρ,∞ ↪→ Ḃ

1−α
2
+d( 1

R
− 1

ρ)
R,∞ for R > ρ

gives

‖∆jzi‖R ≤ C2−j[1−α
2
+d( 1

R
− 1

ρ)]‖zi‖Ḃ
1−α/2
ρ,∞

and

‖Sjzi‖R ≤ C2−j[1−α
2
+d( 1

R
− 1

ρ)]‖zi‖Ḃ
1−α/2
ρ,∞

provided that R > ρ and 1 − α
2

+ d
(

1
R
− 1

ρ

)
< 0.

Consider one of the terms a1...a2∗−1; by symmetry, we may assume that
a1 = ∆jz1. Hölder’s inequality added to the two previous estimates gives

‖Aj‖ν ≤ ‖a1‖ρ‖a2‖R . . . ‖a2∗−1‖R

≤ C2−j(1−α/2)
(
2−j[1−α

2
+d( 1

R
− 1

ρ)]
)2∗−2

= C2−
j
2 ,
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and the last inequality holds provided

(2.23)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρ
+

2∗ − 2

R
=

1

ν

1 − α

2
+ (2∗ − 2)

[
1 − α

2
+ d

(
1

R
− 1

ρ

)]
=

1

2

R > ρ

1 − α

2
+ d

(
1

R
− 1

ρ

)
< 0 .

It turns out that the two first lines of (2.23) are equivalent and lead to a
value of R which verifies the two last inequalities. This proves the lemma. �

Proof of Lemma 2.3. The proof of this lemma is quite similar to the one
of Lemma 2.2, so we will only give the outline of the proof. As above, we
work on the integral equation

u(t) = Ẇ (t)u0 +W (t)u1 +

∫ t

0

W (t− s)u|u|2∗−2(s) ds ,

which we solve in
XT

def
= L̃µ/α([0, T ], Ḃ1−α/2

ρ,∞ ) .

We use the two following facts:

• The mapping
X2∗−1

T −→ L̃ν([0, T ], Ḃ1/2
ν,∞)

(z1 . . . , zν) �−→ z1|z2| . . . |z2∗−1|
is bounded - that is Lemma 2.4.

• Theorem 2.1 gives the following Strichartz estimate, for U solution
of (2.1)

‖U‖XT
≤ C‖Ẇ (t)U0‖XT

+ ‖W (t)U1‖XT
+ ‖F‖

�Lν([0,T ],Ḃ
1/2
ν,∞)

.

We deduce from the two previous points the following a priori estimate, for
u solution of (NLW )2∗−1,

‖u‖XT
≤ C

[
‖Ẇ (t)u0‖XT

+ ‖W (t)u1‖XT
+ ‖u‖2∗−1

XT

]
.

But

lim
T→0

(
‖Ẇ (t)u0‖XT

+ ‖W (t)u1‖XT

)
≤ CdḂ1

2,∞×Ḃ0
2,∞

((u0, u1),S) ≤ Cε

by hypothesis. Hence if ε is chosen small enough, the fixed point problem
has a solution. This solution is unique in a ball of radius ζ small enough. �
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2.4. Complementary result

The proof which we have given above actually shows a result which is slightly
better than Theorem A. We state it as a corollary

Corollary 2.1 Let d = 3, 4 or 6, and let v be a solution of (NLW )2∗−1

associated to initial data (v0, v1) ∈ Ḃ1
2,∞ × Ḃ0

2,∞. We assume that

‖v‖X <∞ .

Then if (w0, w1) verifies

‖w0‖Ḃ1
2,∞

+ ‖w1‖Ḃ1
2,∞

≤ C exp(−C‖v‖X) ,

there exists a global solution of (NLW )2∗−1 associated to the initial data
(v0 + w0, v1 + w1).

3. Proof of Theorem B

In order to keep notations as light as possible, we shall show the theorem in
the case where c1 = 0.

3.1. Global solutions for infinite energy and small initial data

The following proposition is very close to a result proved by Planchon [17].
This proposition can be seen as a particular case of Lemma 2.2.

Proposition 3.1 (Planchon [17]) For d = 3, 4, 6 there exists ε, ε1 > 0
such that, for any initial data verifying

‖w0‖Ḃ1
2,∞

+ ‖w1‖Ḃ0
2,∞

< ε ,

there exists w a global solution of (NLW )2∗−1. Moreover, w is unique in the
set of functions such that

‖w‖
�Lµ/α(R,Ḃ

1−α/2
ρ,∞ )

< ε1

(the notations are the same as in theorem A), and verifies the estimate

(3.1) ‖w‖
L∞(R,Ḃ1

2,∞)∩�Lµ(R,Ḃ
1/2
µ,∞)

≤ C
(
‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞

)
.
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Proof. We do not give the details of the proof, since it relies on a fixed
point argument identical to the one appearing in Lemma 2.3; one should
simply substitute

L̃µ/α(R, Ḃ1−α/2
ρ,∞ ) for XT . �

Let us consider w a solution of (NLW )2∗−1 for small initial data given by
Proposition 3.1; we examine from now on on the following Cauchy problem

(3.2)

⎧⎪⎨⎪⎩
�v + (v + w)|v + w|2∗−2 − w|w|2∗−2 = 0

v|t=0 = v0

∂tv|t=0 = v1 ,

where (v0, v1) ∈ Ḣ1 × L2. Our aim is to prove the existence of a global
solution of (NLW )2∗−1 for the initial data (u0, u1). Such a solution is given
by u = v + w, if v is a global solution of the above Cauchy problem. So we
just have to prove the existence of (3.2).

The first step is to build up a local solution; this is done in the next
section.

3.2. Local solution of the perturbed equation and blow up criterion

Proposition 3.2 Let d = 3, 4, 6.

(i) There exists ε > 0 such that, for initial data (w0, w1) verifying

‖w0‖Ḃ1
2,∞

+ ‖w1‖Ḃ0
2,∞

< ε ,

the Cauchy problem (NLW )2∗−1 has a global solution w which is unique in

a ball centered in 0, of positive radius, of L̃µ/α(R, Ḃ1−α/2
ρ,∞ ). For this w and

initial data (v0, v1) ∈ Ḣ1 × L2, there exists T > 0 such that the Cauchy
problem (3.2) has a solution v such that

(v, ∂tv) ∈ C([0, T ], Ḣ1 × L2) .

Let T ∗ be the maximal time with that property.

(ii) There exists η > 0 such that if one denotes

β(t)
def
= sup

{
r > 0 , ‖v(t, ·)‖Ḣ1(B(x,r)) + ‖∂tv(t, ·)‖L2(B(x,r))

+‖v(t, ·)‖L2∗(B(x,r)) < η ∀x ∈ R
d
}

for t < T ∗, and if moreover T ∗ <∞, then

β(t)
t→T ∗−→ 0 .

We have the more precise estimate

β(t) ≤ T ∗ − t .
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Proof. (i) The existence and uniqueness of w for ε small enough correspond
to Proposition 3.1.

In order to prove the local existence of a solution v of (3.2), let us recall
first that (3.2) is equivalent to the integral equation

(3.3)

v(t) = Ẇ (t)v0 +W (t)v1 +

∫ t

0

W (t− s)
[
(v + w)|v + w|2∗−2 − w|w|2∗−2

]
ds .

We will now apply Picard’s fixed point theorem in the space

X
def
= L̃µ/α([0, T ], Ḃ

1−α/2
ρ,2 ) ,

where T > 0 will be set up in the following, and where µ, α and ρ are defined
as in (1.5). We need two estimates

• On the one hand, using Lemma 2.4 and its notations, we have

‖(v + w)|v + w|2∗−2 − w|w|2∗−2‖
�Lν([0,T ],Ḃ

1/2
ν,2 )

=

∥∥∥∥(2∗ − 1)v

∫ 1

0

|w + τv|2∗−2dτ

∥∥∥∥
�Lν([0,T ],Ḃ

1/2
ν,∞)

≤ C‖v‖X (‖v‖X + ‖w‖X)2∗−2

≤ C‖v‖X(ε+ ‖v‖X)2∗−2 ,

(3.4)

where the bound (3.1) was used in the last inequality.

• On the other hand, Theorem 2.1 gives, for U solution of (2.1),

‖U‖L∞([0,T ],Ḣ1) + ‖∂tU‖L∞([0,T ],L2) + ‖U‖X

≤ C
(
‖U0‖Ḣ1 + ‖U1‖L2 + ‖F‖

�Lν([0,T ],Ḃ
1/2
ν,2 )

)
.

(3.5)

Taking the norm of (3.3) inX, and using (3.4) and (3.5), we get the following
a priori estimate for v solution of (3.2)

‖v‖X ≤ C
(
‖Ẇ (t)v0‖X + ‖W (t)v1‖X + ‖v‖X(ε+ ‖v‖X)2∗−2

)
.

This estimate enables us to apply Picard’s fixed point theorem, provided ε
is small enough, which we assume from now on, and provided that

(3.6) ‖Ẇ (t)v0‖X + ‖W (t)v1‖X ≤ c ,

for a universal constant c. Pick T so that this last condition is fulfilled; this
is possible since (v0, v1) ∈ Ḣ1 × L2.
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We get a solution v of (3.2) on [0, T ].
We are left with showing that

(v, ∂tv) ∈ C([0, T ], Ḣ1 × L2) .

But this is a consequence of the following a priori estimate, which is implied
by (3.4) and (3.5),

‖v‖
L∞([0,T ],Ḣ1)

+‖∂tv‖L∞([0,T ],L2)
≤ C

(‖v0‖Ḣ1 + ‖v1‖L2 + ‖v‖X(ε+ ‖v‖X)2∗−2
)
.

Indeed, v is built up using an iterative scheme. At each step, we compute the
solution of a linear equation, and this solution therefore has the desired con-
tinuity property. Due to the above estimate, this iterative scheme converges
in L∞Ḣ1 × L∞L2, therefore the limit function v is also continuous.

(ii) The following lemma will be useful.

Lemma 3.1 For any r > 0 and x ∈ R
d, there exists an extension operator

E(x, r) : [Ḣ1 ∩ L2∗ ](B(x, r)) → [Ḣ1 ∩ L2∗ ](Rd)

which is bounded and verifies (E(x, r)v)|B(x,r) = v. Furthermore, its bound
does not depend on x or r.

Proof of Lemma 3.1. Take two functions φ and ψ such that

• φ : R → R, φ(x) = x if 0 ≤ x ≤ 1 and φ(x) = 2 − x if 1 ≤ x ≤ 2.

• ψ : R
d → R, ψ ∈ C∞, Supp(ψ) ⊂ B(0, 3/2) and ψ = 1 on B(0, 1).

One can check that the following operator has all the desired properties

E(x, r)(v)(y) = ψ

(
y − x

r

)
v

(
x+

r(y − x)

|y − x| φ
( |y − x|

r

))
.

�

Back to the proof of Proposition 3.2: Let us take x ∈ R
d and t < T ∗.

By definition of β, we have if r ≤ β(t)

‖v(t, ·)‖Ḣ1(B(x,r)) + ‖v(t, ·)‖L2∗(B(x,r)) + ‖∂tv(t, ·)‖L2(B(x,r)) ≤ η ,

(the value of η has not been set yet) and therefore

‖E(x, r)(v(t, ·))‖Ḣ1(Rd) + ‖χB(x,r)∂tv(t, ·)‖L2(Rd) ≤ C0η ,

where C0 is the norm of E(x, r) and χB(x,r) the characteristic function of
B(x, r).
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Moreover, Strichartz estimates (Theorem 2.1) give

‖Ẇ (t′)E(x, r)(v(t,·))‖
�Lµ/α([0,∞[,Ḃ

1−α/2
ρ,2 )

+ ‖W (t′)χB(x,r)∂tv(t, ·)‖
�Lµ/α([0,∞[,Ḃ

1−α/2
ρ,2 )

≤ C1

(
‖E(x, r)(v(t, ·))‖Ḣ1(Rd) + ‖χB(x,r)∂tv(t, ·)‖L2(Rd)

)
≤ C1C0η .

We now set η such that
C1C0η ≤ c .

Then the inequality (3.6) holds, with

v0 = E(x, r)(v(t, ·)) and v1 = χB(x,r)∂tv(t, ·) ,
and one can apply the construction of (i). One gets a global solution of (3.2)
for the initial data (E(x, r)(v(t, ·)), χB(x,r)∂tv(t, ·)). By finite propagation
speed, this is, in the space-time truncated cone with base {t} ×B(x, r) and
vertex (t+ r, x), a solution for the initial data (v(t, ·), ∂tv(t, ·)).

By repeating this construction for all couples (x, r), with r < β(t), we
get a solution of (3.2) on [t, t+ β(t)[×R

d.
If t+ β(t) > T ∗, this contradicts the definition of T ∗; so there must hold

β(t) ≤ T ∗ − t .

This proves (ii). �
By the above blow-up criterion, in order to show that v can be prolonged

past T , we just need to prove that the energy of v does not concentrate.

We focus from now on on the case d = 6

We will see in Section 3.4 that the energy of v does not concentrate if

w ∈ L∞
loc(]0,∞[, L6,∞

loc ) .

We will first prove, in the next section, that there exists infinite energy
initial data (w0, w1) in Ḃ1

2,∞×Ḃ0
2,∞ such that the associated solution belongs

to L∞
loc(]0,∞[, L6,∞

loc ). We will prove this result by studying a self-similar
solution.

3.3. Study of a self-similar solution

Recall the space dimension has been set equal to 6; we denote the solution
of the Cauchy problem by w.⎧⎪⎪⎨⎪⎪⎩

�w + |w|w = 0

w|t=0(x) = w0(x)
def
=

c

|x|2
∂tw|t=0 = 0 .
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Since d = 6, 2∗ = 3, and we are therefore considering the critical equation
(NLW )2∗−1. Notice that the initial data w0(x) = c

|x|2 belongs to Ḃ1
2,∞.

Choosing c small enough, we get, thanks to Proposition 3.1, a global solution
of the above Cauchy problem, which is unique in a ball of L∞(R, Ḃ1

2,∞) ∩
L̃µ(R, Ḃ1/2

µ,∞).
Moreover, w0 is self-similar, hence there exists a profile ψ, radially sym-

metric, such that

w(t, x) =
1

t2
ψ
(x
t

)
.

Proposition 3.3 The profile ψ belongs locally to L6,∞.

Proof. We will first employ Strichartz estimates, in order to get as much
regularity as possible on ψ. But this will not be enough, and we will have
to use the ordinary differential equation satisfied by ψ.

1. Let us first examine ψ away from 0. Since w ∈ L∞Ḃ1
2,∞, we also have

ψ ∈ Ḃ1
2,∞. Since ψ is radial, this implies that it is continuous away from 0.

So we just have to ensure that ψ does not have a too singular behavior
in 0.

2. We use now Strichartz estimates: Theorem 2.1 gives

‖w‖
�LqḂs

r,∞
≤ C

(
‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞
+ ‖w|w|‖

�LνḂ
1/2
ν,∞

)
if s is given by s = 1

q
+ 6

r
−2, and if q and r verify conditions (2.2). It follows

by Lemma 2.4 that

‖w‖
�LqḂs

r,∞
≤ C

(
‖w0‖Ḃ1

2,∞
+ ‖w1‖Ḃ0

2,∞
+ ‖w‖2

�Lµ/αḂ
1−α/2
ρ,∞

)
<∞

since w ∈ L∞(R, Ḃ1
2,∞) ∩ L̃µ(R, Ḃ

1/2
µ,2 ) ↪→ L̃µ/α(R, Ḃ1−α/2

ρ,∞ ). So we get

(3.7) w ∈ L̃qḂs
r,∞ with s =

1

q
+

6

r
− 2 ,

if q and r satisfy conditions (2.2).

3. We will now deduce, from the belonging of w to the functional spaces
above, that ψ belongs to certain Sobolev spaces, with the help of an argu-
ment used by Planchon [17]. If q, r and s verify conditions (2.2) and (3.7),
we know that

sup
j

2js‖∆jw‖LqLr <∞ ;

till now j was an integer; from now on we consider it as a continuous para-
meter. Obviously,

∆jw(x, t) = t−2 (∆j+ln2 tψ)
(x
t

)
.
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This implies that

‖∆jw(·, t)‖r = t−2+6/r‖∆j+ln2 tψ‖r .

But s, r and q are linked by the relation −2 + 6
r

= s − 1
q
. Taking the Lq

norm in t of the above equality, for j = 0, we obtain

‖∆0w‖LqLr =

[∫
R+

(
ts‖∆ln2(t)ψ‖r

)q dt
t

]1/q

.

This last expression is equivalent to the norm of ψ in Ḃs
r,q. As a conclusion,

if s = 1
q

+ 6
r
− 2, and if q and r verify (2.2), ψ belongs to Ḃs

r,q.

4. Does this last information suffice to affirm that w ∈ L6,∞ locally?
Heuristically, this would correspond to s = 0, r = 6; due to the scaling, this
implies q = 1, but this is a forbidden value for q because of (2.2).

But we can choose s = 0, r = 4 and q = 2; this gives ψ ∈ Ḃ0
4,2 ↪→ L4.

Let us now denote by ψ̃ the function of a real variable such that

ψ̃(|x|) def
= ψ(x) .

It is easy to show that ψ̃ verifies the following equation, already used by
Kavian and Weissler in [11]

if r > 0 , (r2 − 1)ψ̃′′(r) + (6r − 5

r
)ψ̃′(r) + 6ψ̃(r) + ψ̃(r)|ψ̃(r)| = 0 .

We consider this equation on (0, 1
2
).

We have seen that r5/4ψ̃(r) belongs to L4. This implies that, if r ∈ (0, 1
2
),

(r3 − r)ψ̃′′(r) + (6r2 − 5)ψ̃′(r) =
g(r)

r3/2
,

with
g(r) = −6r5/2ψ̃(r) − r5/2ψ̃(r)|ψ̃(r)| ∈ L2([0, 1/2]) .

We now change variables by setting z(r) = r5ψ̃′(r). Then,

(r3 − r)ψ̃′′(r) + (6r2 − 5)ψ̃′(r) = −
√

1 − r2

r4

(√
1 − r2z(r)

)′
.

We can also write this as

−
(√

1 − r2z(r)
)′

= r5/2f(r) ,

with

f(r) =
g(r)√
1 − r2

∈ L2([0, 1/2]) .
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But then
√

1 − r2z(r) is a continuous function on (0, 1
2
), which necessarily

has a zero limit in 0 (if this limit was θ > 0, we would have ψ̃′(r) r→0∼ θ
r5 ,

and r5/4ψ̃(r) would not belong to L4). By integrating the above expression,
we get therefore∣∣∣√1 − r2z(r)

∣∣∣ ≤ ∫ r

0

|t5/2f(t)|dt ≤ ‖f‖2

(∫ r

0

t5dt

)1/2

≤ Cr3 ,

if r ∈ (0, 1
2
). This last estimate enables us to come back to ψ̃′, which can be

bounded if r ∈ (0, 1
2
) by

|ψ̃′(r)| ≤ Cr−2 ,

and it suffices to integrate this inequality to see that

|ψ̃(r)| ≤ Cr−1 ,

so in other words ψ belongs to L6,∞ in a neighbourhood of 0. This concludes
the proof of the proposition. �

3.4. Control of the energy and proof of Theorem B

We shall, in this section, conclude the proof of Theorem B, by showing
that the local solution v given by Theorem 3.2 can be prolonged to a global
solution provided w is chosen as in section 3.3.

Proposition 3.4 Let us suppose d = 6, and let us take initial data (w0, w1)
and (v0, v1) such that

1. w0 =
c

|x|2 , with c small enough

2. w1 = 0

3. (v0, v1) ∈ Ḣ1 × L2 .

Then there exists a global solution v of (3.2) such that

(v, ∂tv) ∈ C(R, Ḣ1 × L2) .

Proof. Shatah and Struwe’s theorem (Theorem 1.1) corresponds to the case
w = 0. We will follow the scheme of the proof of Shatah and Struwe, and
show that this proof is “stable by a well-chosen perturbation”.

Let us first summarize already known results

• By Proposition 3.3, we know that w(t, x) = 1
t2
ψ
(

x
t

)
, with ψ locally

in L6,∞.
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• By Proposition 3.2, we know there exists a local solution v of (3.2),
such that (v, ∂tv) ∈ C([0, T [, Ḣ1 × L2), for some T > 0. Let us reason
now by contradiction, and assume that T is finite and maximal. We
shall prove that v can actually be prolonged past the time T , and this
will prove the proposition.

Restriction to a bounded domain

The theorem of Shatah and Stuwe enables us to treat the case of finite
energy initial data. The initial data we consider here is locally of finite
energy on R

6 \ {0}. By finite speed of propagation, the solution u can
explode only if it lies on the influence cone of 0. In particular, we can
prolong u on [T, T + 1] × (R6 \ B(0, T + 2)). So we just have to prolong u
on [T, T + ε] × B(0, T + 2) with ε > 0 to conclude.

As a consequence, due to the finite propagation speed, we can assume
from now on that the initial data (v0, v1) and w0, w1) are compactly
supported.

Control of the total energy

Our aim in this paragraph is to show that the energy of v remains
bounded until T . To do so, let us multiply the equation verified by v by ∂tv

∂tv ∂
2
t v − ∂tv∆v + ∂tv v |v| + ∂tv ((v + w) |v + w| − w |w| − v |v|) = 0

and then let us integrate the above equality on [T
2
, T

2
+τ ]×R

6. To justify this
manipulation, we should first mollify the equation, and then use a limiting
argument. In order to avoid supplementary technicalities, we do not perform
this procedure, and refer rather to Shatah and Struwe [22]. We get

E(v,T/2 + τ,R6) + flux

= E(v, T/2,R6) −
∫ T/2+τ

T/2

∫
R6

∂tv ((v + w)|v + w| − w|w| − v|v|) dx dt ,

where flux is a positive quantity, and we denote, if Ω is a space domain,

E(v, t,Ω)
def
=

1

2
‖∇v(t, ·)‖2

L2(Ω) +
1

2
‖∂tv(t, ·)‖2

L2(Ω) +
1

3
‖v(t, ·)‖3

L3(Ω) .

We have then

E(v, T/2 + τ,R6)

≤ E(v, T/2,R6) − 2

∫ T/2+τ

T/2

∫
R6

∫ 1

0

∂tv v (|w + sv| − |sv|)ds dx dt .(3.8)
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We notice that for any real numbers a and b, | |a+ b| − |b| | ≤ |a|, which
implies

‖|w + sv|(t, ·) − |sv|(t, ·)‖L6,∞ ≤ ‖w(t, ·)‖L6,∞

Let us now come back to (3.8): the above inequality and the product law

‖fg‖L2 ≤ C‖f‖Ḣ1‖g‖L6,∞

(which is a consequence of the sharp Sobolev embedding Ḣ1 ↪→ L3,2, see for
instance Lemarié [14], Theorem 2.4.) imply that

E(v, T/2 + τ,R6)

≤E(v, T/2,R6) + Cτ‖w‖
L∞([ T

2 , T
2 +τ ],L6,∞)

‖v‖
L∞([ T

2 , T
2 +τ ],Ḣ1)

‖∂tv‖
L∞([ T

2 , T
2 +τ ],L2)

.

(since we retricted to a bounded domain and are away from 0 in time, we
can consider that w ∈ L∞([T

2
, T

2
+ τ ], L6,∞)). Denoting

Ẽ(τ) = sup
s∈[T

2
, T
2
+τ]

E(v, s,R6) ,

it follows from the last inequality that(
1 − Cτ‖w‖L∞([ T

2
, T
2
+τ ],L6,∞)

)
Ẽ(v, τ) ≤ Ẽ(v, 0) .

Now if we pick τ such that Cτ‖w‖L∞L6,∞(B′) < 1
2
, the above inequality

enables to control Ẽ(v, τ), and hence E(v, s,R6) on [T
2
, T

2
+ τ ]. We can

iterate this argument to control E(v, s,R6) on [T
2
, T

2
+ 2τ ], and after a finite

number of steps on [T
2
, T ].

As a conclusion, E(v, s,R6) is bounded by a constant, which we denote E ,
on [0, T ].

Restriction to a cone

To make notations lighter, we perform a translation in time of −T . So
from now on, we consider v a local solution of

(3.9)

⎧⎪⎨⎪⎩
�v + |v + w| (v + w) − |w|w = 0

v|t=−T = v0

∂tv|t=−T = v1 .

We know that (v, ∂tv) ∈ C([−T, 0[, Ḣ1 ×L2), and we would like to prolong v
past t = 0; since we restricted the problem to a compact domain, we can
assume that the perturbation w belongs to L∞

loc(] − T,+∞[, L6,∞).
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We showed in the previous paragraph that the energy of v remains
bounded until t = 0; we will now prove that it does not concentrate. We
will work in a backward light cone with vertex z0 = (0, x0); up to a space
translation, we can always assume that x0 = 0.

We will use the following notations

• If s < s′ < 0, Ks′
s is the slice of the backward light cone given by

Ks′
s

def
= {(t, x) ∈ [s, s′] × R

d , |x| ≤ |t|} .

• If s < s′ < 0, Ms′
s is the mantel of the backward light cone given by

Ms′
s

def
= {(t, x) ∈ [s, s′] × R

d , |x| = |t|} .

• If s < 0, the disk Ds is the section of the cone by the hyperplane t = s

Ds
def
= {(s, x) , x ∈ R

d , |x| ≤ |s|} .

The flux on the mantel of the cone goes to 0

If −T < s < s′ < 0, the local energy identity is obtained by multiply-
ing (3.2) by ∂tv, and then by integrating on Ks′

s . It reads (see Shatah and
Struwe [22])

E(v, s′, Ds′)+flux(v,Ms′
s )

= E(v, s,Ds) +

∫
Ks′

s

∂tv v

∫ 1

0

(|w + τv| − |τv|) dτ dx dt ,

with

flux(v,Ms′
s ) =

1√
2

∫
Ms′

s

( |∇v − x
|x|∂tv|2
2

+
1

p+ 1
|v|p+1

)
dσ ,

where σ is the surface measure on Ms′
s .

Here again, we should mollify the equation to obtain this identity, but
we skip that step.

Using as above the identity
∣∣ |a+b|−|b| ∣∣ ≤ |a| true for any real numbers a

and b, we obtain

E(v, s′, Ds′) + flux(v,Ms′
s ) ≤ E(v, s,Ds) + E

∫ s′

s

‖w(τ)‖L6,∞dτ
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t = s’

t = s

t

t = 0

Figure 1: The backward light cone with vertex (0, 0). The disks Ds and Ds′

have been colored up.

and then

flux(v,Ms′
s ) ≤ E + E

∫ s′

s

‖w(τ)‖L6,∞dτ .

Let us suppose by contradiction that flux(v,Ms′
s )

s,s′→0


−→ 0. Then there exists
δ > 0 and an increasing sequence (sn) of [−T

2
, 0[, going to 0, such that

flux(v,Msn+1

sn ) ≥ δ .

But this implies that, if N ∈ N is big enough,

flux(v,MsN

s0 ) ≥ Nδ ≥ E + E
∫ 0

−T/2

‖w(τ)‖L6,∞dτ ,

which is absurd. So if −T < s < 0, flux(v,M0
s ) is well defined and

(3.10) flux(v,M0
s )

s→0−→ 0 .
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The L∞L3 norm in the cone goes to 0

If −T < s < 0, we get, using Morawetz’ identity (see Shatah and
Struwe [22]),∫

Ds

|v|3 dx ≤C
(
flux(v,M0

s ) + |s|a flux(v,M0
s )b)

)
+
C

|s|
∣∣∣∣∫

K0
s

v

∫ 1

0

(|w + τv| − |τv|) dτ
(
t∂tv + x · ∇v +

5

2
v

)
dxdt

∣∣∣∣
def
= I(s) + II(s) ,

where a and b are positive numbers. Since the flux goes to 0 (identity (3.10)),

it is obvious that I(s)
s→0−→ 0. As for II(s), we observe that, if −T < t < 0,

‖t ∂tv‖L2(Dt) ≤ |t|E1/2

‖x · ∇v‖L2(Dt) ≤ |t|E1/2

‖v‖L2(Dt) ≤ ‖1‖L6(Dt)‖u‖L3(Dt) ≤ |t|E1/3 ,

where we used Hölder’s inequality in the last line. The bounds above give

|II(s)| ≤ C

|s|
∫ 0

s

‖v(t)‖Ḣ1(Dt)
‖w(t)‖L6,∞

∥∥∥∥t∂tv + x · ∇v +
5

2
v

∥∥∥∥
L2(Dt)

dt

≤ C

|s|
∫ 0

s

‖w(t)‖L6,∞(E + E5/6)|t| dt s→0−→ 0 ,

since ‖w(t)‖L6,∞ is bounded if t ≥ C > −T . So we reach the desired
conclusion

(3.11)

∫
Ds

|v|3 dx s→0−→ 0 .

The LµḂ
1/2
µ,2 norm in the cone is finite

Let us first notice that, if B is a ball of radius r, and f a function defined
on B,

‖f‖L7/2(B) ≤ C(r)‖f‖L6,∞(B)

with C(r)
r→0−→ 0. In particular, since w is bounded in L∞L6,∞, we have

(3.12) ‖w‖(L∞L7/2)(K0
s )

s→0−→ 0 .
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Moreover, it is possible to localize the Strichartz estimates given by Theo-
rem 2.1 to a cone: see [20] [21]. So we get for −T < s < s′ < 0

‖v‖
(LµḂ

1/2
µ,2 )(Ks′

s )
≤ C

(
‖v(s, ·)‖Ḣ1(Ds) + ‖∂tv(s, ·)‖L2(Ds)

+
∥∥∥|v + w|(v + w) − |w|w

∥∥∥
(Lν Ḃ

1/2
ν,2 )(Ks′

s )

)
≤ C

(
E1/2 +

∥∥∥∥v ∫ 1

0

|w + τv|dτ
∥∥∥∥

(Lν Ḃ
1/2
ν,2 )(Ks′

s )

)
≤ C

(
E1/2 + ‖v‖

(LµḂ
1/2
µ,2 )(Ks′

s )

[
‖v‖L7/2(Ks′

s ) + ‖w‖L7/2(Ks′
s )

])
;

(3.13)

we used in the last inequality the product law

‖f g‖
(Lν Ḃ

1/2
ν,2 )(Ks′

s )
≤ C‖f‖L7/2(Ks′

s )‖g‖(LµḂ
1/2
µ,2 )(Ks′

s )
,

for any functions f and g, see Shatah and Struwe [20]. It is also proved in
that reference that, for any function f ,

‖f‖L7/2(Ks′
s ) ≤ ‖f‖θ

(L∞L3)(Ks′
s )
‖f‖1−θ

(LµḂ
1/2
µ,2 )(Ks′

s )
,

with θ ∈]0, 1[. Coming back to (3.13), we have

‖v‖
(LµḂ

1/2
µ,2 )(Ks′

s )

≤ C
(
E1/2+‖v‖

(LµḂ
1/2
µ,2 )(Ks′

s )
‖w‖

L7/2(Ks′
s )

+‖v‖2−θ

(LµḂ
1/2
µ,2

)(Ks′
s )

‖v‖θ

(L∞L3)(Ks′
s )

)
.

(3.14)

Thanks to (3.12), for s close enough to 0, we have C‖w‖L7/2(K0
s ) <

1
2
. If we

denote by G(s′) the quantity ‖v‖
(LµḂ

1/2
µ,2 )(Ks′

s )
, the above bound gives

G(s′) ≤ C
(
E1/2 +G(s′)2−θ‖v‖θ

(L∞L3)(K0
s )

)
.

The following lemma will enable us to conclude (for the proof, see for in-
stance Bahouri and Gérard [1]).

Lemma 3.2 Let M(t) be a continuous function on [0, A], with A > 0, such
that

M(t) ≤ a+ bM(t)k ,

where a and b are positive numbers, k > 1,

(3.15) a <

(
1 − 1

k

)
1

(kb)1/(k−1)
and M(0) ≤ 1

(kb)1/(k−1)
.

Then, for any t ∈ [0, A],

M(t) ≤ k

k − 1
a .
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We know that
‖v‖(L∞L3)(K0

s )
s→0−→ 0 ,

so we can choose s such that, setting

M(s′ − s) = G(s′) , a = CE1/2 , b = C‖v‖θ
(L∞L3)(K0

s ) and k = 2− θ ,

the conditions (3.15) are verified. Let us then apply the above lemma; we
get, for s′ > s,

G(s′) ≤ C ,

that is

(3.16) ‖v‖
(LµḂ

1/2
µ,2 )(K0

s )
<∞ .

The energy in the cone goes to 0

Using Duhamel’s formula, we can write v in integral form

v(t) = Ẇ (t− s)v(s) +W (t− s)∂tv(s)

+

∫ t−s

0

W (t− t′)v(s+ t′)
∫ 1

0

|w(s+ t′) + τv(s+ t′)| dτ dt′ ,

if −T < s < t < 0. Denoting by f(t) the last term of the right-hand side of
the above expression, Theorem 2.1 localized on the cone K0

s gives

‖f‖(L∞Ḣ1)(K0
s ) + ‖∂tf‖(L∞L2)(K0

s ) ≤ C

∥∥∥∥v ∫ 1

0

|w + τv| dτ
∥∥∥∥

(Lν Ḃ
1/2
ν,2 )(K0

s )

≤ C

(
‖v‖

(LµḂ
1/2
µ,2 )(K0

s )
‖w‖L7/2(K0

s ) + ‖v‖2−θ

(LµḂ
1/2
µ,2 )(K0

s )
‖v‖θ

(L∞L3)(K0
s )

)
,

where the last inequality is obtained using the same bounds as for (3.14). But
we know by (3.16) that ‖v‖

(LµḂ
1/2
µ,2 )(K0

s )
is bounded for −T <s<s′<0, whereas

‖w‖L7/2(K0
s ) and ‖v‖(L∞L3)(K0

s ) go to 0 with s (relations (3.12) and (3.11)).
Consequently,

‖f‖(L∞Ḣ1)(K0
s ) + ‖∂tf‖(L∞L2)(K0

s )
s→0−→ 0 .

Moreover, denoting g(t) = Ẇ (t − s)v(s) + W (t − s)∂tv(s), it is clear that,
for fixed s < 0,

‖g‖(L∞Ḣ1)(K0
t ) + ‖∂tg‖(L∞L2)(K0

t )
t→0−→ 0 .

The two above limits imply that

(3.17) ‖v‖(L∞Ḣ1)(K0
s ) + ‖∂tv‖(L∞L2)(K0

s )
s→0−→ 0 ,

that is to say that the energy of v does not concentrate.
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Conclusion of the proof of Proposition 3.4

Thanks to the limits (3.11) and (3.17), there exists δ > 0 such that

‖v(−δ, ·)‖Ḣ1(B(0,δ)) + ‖v(−δ, ·)‖L2∗ (B(0,δ)) + ‖∂tv(−δ, ·)‖L2(B(0,δ)) <
η

2
.

We can therefore pick ε > 0 such that

‖v(−δ, ·)‖Ḣ1(B(0,δ+ε)) + ‖v(−δ, ·)‖L2∗(B(0,δ+ε)) + ‖∂tv(−δ, ·)‖L2(B(0,δ+ε)) <
3η

4
.

The proof of Proposition 3.2 shows then that one can build up a solution
of (3.2) on the truncated cone with base {−δ}×B(0, δ+ ε) and vertex (ε, 0).

This result of course holds for any x ∈ R
d: for any x ∈ R

d, there exists
εx > 0 such that one can prolong v on the cone with base {0}×B(x, εx) and
vertex (εx, 0).

Since we restricted to a compact domain, there exists a finite number of
balls B(x, εx) which cover this domain. We can then deduce the existence
of ε > 0 such that one can prolong v on [0, ε]. This contradicts the defini-
tion of T and proves the “existence” part of the theorem. The proof of the
“uniqueness” part is identical to the proof of uniqueness in Theorem A, so
we do not give it here. Theorem B is proved. �

4. Appendix: some functional spaces

4.1. Besov spaces

Besov spaces play a key role in this article. We define them briefly below.
For more information on these spaces, see Runst and Sickel [18]. Let us first
introduce a homogeneous Littlewood-Paley decomposition. Consider ψ such
that

ψ ∈ S , Supp(ψ) ⊂ C(0, 3/4, 8/3) , and
∑
j∈Z

ψ(2−jξ) = 1 for ξ 
= 0 .

Then we define the Fourier multipliers

∆j
def
= ψ(2−jD) and Sj

def
= 1 −

∑
k≥j−1

∆k ,

and for s < d/p the Besov spaces Ḃs
p,q by the norm

‖f‖Ḃs
p,q

=

(∑
j∈Z

[
2js‖∆jf‖p

]q )1/q

.
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4.2. Chemin-Lerner spaces

These spaces have been introduced first by Chemin and Lerner [5]. They
are defined by the following norm

‖u‖
�Lr([0,T ],Ḃs

p,q) =

[∑
j∈Z

(
2js‖∆ju‖Lr([0,T ],Lp)

)q ]1/q

.
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