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On a Parabolic Symmetry Problem

John L. Lewis and Kaj Nyström

Abstract

In this paper we prove a symmetry theorem for the Green function
associated to the heat equation in a certain class of bounded domains
Ω ⊂ Rn+1. For T > 0, let ΩT = Ω ∩ [Rn × (0, T )] and let G be
the Green function of ΩT with pole at (0, 0) ∈ ∂pΩT . Assume that
the adjoint caloric measure in ΩT defined with respect to (0, 0), ω̂, is
absolutely continuous with respect to a certain surface measure, σ,
on ∂pΩT . Our main result states that if

dω̂

dσ
(X, t) = λ

|X|
2t

for all (X, t) ∈ ∂pΩT \ {(X, t) : t = 0} and for some λ > 0, then
∂pΩT ⊆ {(X, t) : W (X, t) = λ} where W (X, t) is the heat kernel and
G = W − λ in ΩT . This result has previously been proven by Lewis
and Vogel under stronger assumptions on Ω.

1. Introduction

In this paper we prove a symmetry result for the heat equation in a certain
class of bounded domains Ω ⊂ Rn+1 and in order to avoid minor notational
technicalities we will in the following assume n ≥ 2. To properly formulate
our problem we define for (X, t) = (x0, x1, ..., xn−1, t) ∈ Rn+1 the heat kernel

W (X, t) = (4πt)−n/2 exp(−|X|2
4t

).

For t ≤ 0 we let W (X, t) ≡ 0. For λ > 0 we define

L(λ) = {(X, t) : W (X, t) = λ}, D(λ) = {(X, t) : W (X, t) > λ}.
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Furthermore for t > 0

Lt(λ) = L(λ) ∩ {(X, τ) : τ = t}, Dt(λ) = D(λ) ∩ {(X, τ) : τ = t}.

By σλ,t(·) we denote the n− 1 dimensional Hausdorff measure on Lt(λ) and
dσλ(X, t) := dσλ,t(X)dt is defined to be the surface measure on L(λ). Note
that if (X, t) ∈ L(λ) then

|∇XW (X, t)| = λ
|X|
2t
,

andW (X, t)−λ can be seen as the Green function ofD(λ) with pole at (0, 0).
Furthermore, the associated adjoint caloric measure, ω̂, (defined with respect
to (0,0)) is absolutely continuous with respect to the surface measure σλ and
its Radon-Nikodym derivative equals λ|X|/(2t).

For (X, t) ∈ Rn+1 and r > 0 we set

Cr(X, t) = {(Y, s) ∈ Rn+1 : |yi − xi| < r, |t− s| < r2 }.

The geometrical set-up of this paper is what we call local Lip(1,1/2) domains.

Definition 1 Let Ω ⊂ Rn+1 be a bounded domain and define, for T > 0,
ΩT = Ω ∩ [Rn × (0, T )]. Assume that (0, 0) ∈ ∂pΩT . ΩT is said to be a local
Lip(1,1/2) domain if for every (X0, t0) ∈ ∂Ω ∩ [Rn × (0, T )] and for a scale

2ρ = t
1/2
0 there exists a function A(x, t) and a constant δ0 = δ0(t0) such that

|A(x, t) −A(y, s)| ≤ δ0(|x− y| + |t− s|1/2) for x, y ∈ Rn−1, t, s ∈ R

and such that after a possible rotation in the space variables,

Ω ∩ Cρ(X0, t0) = {(x0, x, t) ∈ R × Rn−1 × R : x0 > A(x, t)} ∩ Cρ(X0, t0),

∂Ω ∩ Cρ(X0, t0) = {(x0, x, t) ∈ R × Rn−1 × R : x0 = A(x, t)} ∩ Cρ(X0, t0).

To properly understand the reason for introducing this notion of local
Lip(1,1/2) domains note that the level lines of the heat kernel, i.e., the sets
L(λ) for λ > 0, define local Lip(1,1/2) domains. In fact if (X, t) ∈ L(λ),
t > 0 close to zero, then

|X|2 = −C1(n, λ)t− C2(n)t ln t

for appropriate constants C1 and C2. This relation shows that L(λ) is a local
Lip(1,1/2) domain in the sense of Definition 1 with Lip(1,1/2) constants
blowing-up as we approach the origin, (0, 0).
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Let in the following ΩT = Ω∩ [Rn× (0, T )] be a local Lip(1,1/2) domain
in the sense of Definition 1 and let ∂pΩT denote the parabolic boundary
of ΩT . Given (Y, s) ∈ ΩT we let G(·, ·, Y, s) denote Green’s function for the
heat equation in ΩT with pole at (Y, s). That is

∂
∂t
G(X, t, Y, s)−∆G(X, t, Y, s) = δ((X, t)−(Y, s)) in ΩT and G≡ 0 on ∂pΩT .

Here δ denotes the Dirac delta function and ∆ is the Laplacian in X. We
note that G(Y, s, ·, ·) is the Green’s function for the adjoint heat equation
with pole at (Y, s) ∈ ΩT , i.e.,

− ∂
∂t
G(Y, s, ·, ·) − ∆G(Y, s, ·, ·) = δ(· − (Y, s)).

Let ω(Y, s, ·), ω̂(Y, s, ·) be the corresponding caloric and adjoint caloric mea-
sures for the heat - adjoint heat equation in Ω defined with respect to
(Y, s) ∈ Ω. In particular this means, by the Riesz representation theo-
rem, that if we define G(·, ·, Y, s) ≡ 0 on [Rn × [s, T ]] \ ΩT , then u(·, ·) =
G(·, ·, Y, s) is, considered as a function in Rn × [s, T ], subcaloric and for all
φ ∈ C∞

0 (Rn × (s, T )),∫
[〈∇u,∇φ〉 − uφt]dXdt = −

∫
φ(X, t)dω̂(Y, s,X, t).

If ΩT is a local Lip(1,1/2) domain in the sense of Definition 1 then (0, 0) ∈
∂pΩT and in the following we will need an extension of the notion of Green’s
function to allow (0, 0) to be the pole. To be able to make sense of such
an extension we impose one more restriction on the set of domains we will
consider.

Definition 2 Let Ω ⊂ Rn+1 be a bounded domain, T > 0, and assume that
ΩT is a local Lip(1,1/2) domain. If there exists λ > 0 such that D(λ)∩ [Rn×
(0, T )] ⊂ ΩT then ΩT is said to be a local Lip(1,1/2) domain containing a
heat ball.

Let ΩT and λ be as in Definition 2 and define G > 0 to be the positive so-
lution to the heat equation in ΩT constructed as G(Y, s) = W (Y, s)+u(Y, s),
(Y, s) ∈ ΩT where u(Y, s) is the bounded solution to the heat equation in
ΩT with boundary values u(Y, s) = −W (Y, s) in the sense of Perron-Wiener-
Brelot. Note that the existence of u, −λ ≤ u ≤ 0, follows from Definition 2
and arguments based on the Perron approach. As any point of ∂pΩT , ex-
cept for (0, 0) ∈ ∂pΩT , is regular with respect to the Dirichlet problem for
the heat equation it follows that G has continuous boundary value zero on
∂pΩT \ {(0, 0)}. We note that G(·, ·, Z, τ) converges uniformly to G on com-
pact subsets of ΩT \ {(Y, s) : s > 0} when (Z, τ) approaches (0, 0) in D(λ).
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Also ω̂(Z, τ, ·) converges weakly as a measure to ω̂ and thus the consequence
of the Riesz representation theorem stated above remains valid with ω̂(Y, s, ·)
and G(·, ·, Y, s) replaced by ω̂ and G.

Before we state our main theorem note, as a general remark, that if A
is a Lip(1,1/2) function and if Ω = {(x0, x, t) ∈ Rn : x0 > A(x, t)} then
we can define the surface measure σ on ∂Ω as dσ(X, t) = dσt(X)dt where
(X, t) ∈ ∂Ω and dσt is the n − 1 dimensional Hausdorff measure on the
Lipschitz graph ∂Ωt = {(x0, x) ∈ Rn : x0 = A(x, t)}.

In this paper we prove the following symmetry theorem using this notion
of Green’s function of ΩT with pole at (0, 0) ∈ ∂pΩT .

Theorem 1 Let ΩT be a local Lip(1,1/2) domain containing a heat ball in
the sense of Definition 2. Let G, ω̂ and σ be as above and assume that ω̂ is
absolutely continuous with respect to σ. If

dω̂

dσ
(X, t) = λ

|X|
2t

for all (X, t) ∈ ∂pΩT \{(X, t) : t = 0} and for some λ > 0, then ∂pΩT ⊆ L(λ)
and G = W − λ in ΩT .

To put the result in Theorem 1 into perspective we recall that Theo-
rem 1 was proven in [13, Theorem 4] under additional regularity assump-
tions on ΩT . Furthermore, in addition to the above assumptions, in [13] it
was assumed that

lim
(Y,s)→(X,t)

|∇G(Y, s)| = λ
|X|
2t
,

radially, for almost every (X, t) ∈ ∂pΩT \ {(X, t) : t = 0}. As we will see
below our assumption on the adjoint caloric measure implies the existence
of this radial limit.

To better understand the additional regularity, beyond being Lip(1,1/2),
imposed in [13] we recall that through the works in [11, 6, 5] it has become
clear that from the perspective of parabolic singular integrals and caloric
measure the parabolic analogue of the notion of Lipschitz domains, explored
in elliptic partial differential equations, is graph domains Ω̃ ⊂ Rn+1 of the
form

Ω̃ = {(x0, x, t) ∈ R × Rn−1 × R : x0 > A(x, t)}
where n ≥ 2, A(x, t) : Rn → R is compactly supported and A(x, t) has
additional smoothness beyond being just Lip(1,1/2).
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To formulate the additional regularity assumption we need to introduce
some more notation. Let z = (x, t) ∈ Rn−1 × R and let ‖z‖ be the unique
positive solution ρ of the equation

t2

ρ4
+

n−1∑
i=0

x2
i

ρ2
= 1.

Note that ‖(δx, δ2t)‖ = δ‖(x, t)‖ and we will call ‖z‖ the parabolic norm
of z. By definition parabolic BMO is the space of locally integrable functions
modulo constants satisfying

‖b‖∗ := sup
B

1

|B|
∫
B

|b(z) −mBb|dz <∞.

Here z = (x, t), B denotes the parabolic ball B = Br(z0) = {z ∈ Rn−1 ×R :
‖z − z0‖ < r} and mBb denotes the average of the function b over the ball

B. Let f̂(ξ, τ) be the Fourier transform of a function f defined on Rn, and
let ξ, τ denote the phase variables. For a function g ∈ C∞

0 (R) we introduce
the fractional differentiation operator D1/2 by

̂(D1/2g)(τ) := |τ |1/2ĝ(τ).

It is well-known that this definition implies

D1/2g(s) = c

∫
R

g(s) − g(τ)

|s− τ |3/2 dτ,

for an appropriate constant and whenever s ∈ R. If h ∈ C∞
0 (Rn) then by

Dt
1/2h : Rn → R we will mean D1/2h(x, ·) defined a.e. for each x ∈ Rn−1.

The domains considered in [11, 6] can be defined in the following way.

Definition 3 A Time-Varying domain with defining function A and para-
meters a1 and a2, denoted TV (A, a1, a2), is a domain Ω̃ ⊂ Rn+1 of the form

Ω̃ = {(x0, x, t) ∈ R × Rn−1 × R : x0 > A(x, t)}

where n ≥ 2 and where the function A(x, t) : Rn → R is compactly supported
and satisfies

(i) |A(x, t) − A(y, t)| ≤ a1|x− y|, x, y ∈ Rn−1, t ∈ R,

(ii) Dt
1/2A ∈ BMO(Rn), ‖Dt

1/2A‖∗ ≤ a2.
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One can prove that if Ω̃ is TV (A, a1, a2) for some a1, a2 then

|A(x, t) − A(y, s)| ≤ δ0(|x− y| + |t− s|1/2) x, y ∈ Rn−1 t, s ∈ R

for some δ0 = δ0(a1, a2). The connection between the notion of time-varying
domains and caloric - adjoint caloric measure is that if Ω̃ is TV (A, a1, a2) for
some a1, a2 then caloric and adjoint caloric measure are each in a Lp reverse
Hölder class for some p > 1 (see [11]). Finally we note that examples of [9]
and [12] show that caloric and adjoint caloric measure need not be absolutely
continuous with respect to the surface measure σ in a graph Lip(1,1/2)
domain.

After this digression we note that Theorem 1 was proven in [13, Thm. 4]
under the assumption that ΩT is not just a bounded Lip(1,1/2) domain but
that locally the domain is in fact TV (A, a1, a2) for some a1, a2. Important
use was made of the above Lp results for adjoint caloric measure in a time-
varying domain. Therefore our main contribution beyond [13] is that we
initially make no assumption on ΩT apart from that it should be locally
Lip(1,1/2) and contain a heat ball in the sense of Definition 2. We in fact
show that the assumption on ω̂ in Theorem 1 implies that Ω locally can be
described as a time-varying graph domain and that this is enough to use the
argument in [13] to conclude Theorem 1.

We also note that concerning the type of symmetry problems considered
in this paper much more progress has been made on the corresponding el-
liptic problems. In particular if we consider a bounded domain D ⊂ Rn

with 0 ∈ D then we can formulate the following theorem due to Lewis and
Vogel [15].

Theorem 2 Assume that D ⊂ Rn is a bounded domain with 0 ∈ D. Let µ
be harmonic measure in D defined with respect to 0 and assume

µ(B(x, r) ∩ ∂D) ≤ crn−1

for all x ∈ ∂D and r < r0. If

µ = aHn−1 on ∂D

then D is a ball with center at 0.

In the statement of Theorem 2, Hn−1 is the (n−1)-dimensional Hausdorff
measure. Note that our theorem, i.e., Theorem 1, gives a parabolic version
of Theorem 2 under much stronger hypotheses on the domain. Also note
that in [14] it was shown by examples that the conditions in the statement
of Theorem 2 are essentially minimal for Theorem 2 to hold. To continue
in [20, Theorem 2], Serrin proved the following elliptic symmetry result.
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Theorem 3 Suppose that D ⊂ Rn is a bounded domain with a C2 boundary.
If there is a positive solution u ∈ C2(D̄) to the elliptic equation

h(u, |∇u|2) ∆u+ k(u, |∇u|2)
n∑

i,j=1

uxi uxj uxixj = l(u, |∇u|2)

where h, k, l are continuously differentiable everywhere with respect to their
arguments and if u satisfies the boundary conditions

u = 0 and ∂u
∂n

= a = constant on ∂D

then D is a ball and u is radially symmetric about the center of D.

In the statement of this theorem ∂
∂n

denotes the inner normal deriva-
tive of u at a point in ∂D. We note that through a sequence of papers,
see [17] for references, Lewis and Vogel have made considerable progress
on the project to obtain the conclusion of Serrin’s theorem under minimal
regularity assumptions on ∂D and on the boundary values of |∇u|. In partic-
ular Theorem 2 is one theorem proved as part of this project and recently,
see [16, 17], similar theorems are also proved for non-linear equations of
p-Laplace type.

Concerning the proof of our result, Theorem 1, the proof combines results
and ideas from [8], [10] and [13]. We believe that by connecting these lines
of thought we introduce some important new ideas to the field of parabolic
free boundary problems and parabolic symmetry theorems. In particular our
local Lip(1,1/2) assumption on ∂Ω is considerably weaker than other papers
we have seen in this field (see for example [1] and [19]). Furthermore, the
result of Theorem 1 should be considered as a prototype for the more general
parabolic symmetry theorems that we plan to prove in the future.

The rest of the paper is organized as follows. In section 2 we start by
listing a few basic estimates for solutions to the heat - adjoint heat equation
in domains which are locally Lip(1,1/2). We here have to pay some attention
to the fact that we want the lemmas to be valid for the Green function
with pole at (0, 0) as well. If ΩT , ω̂ and G are as in the statement of

Theorem 1, (X0, t0) ∈ ∂Ω ∩ [Rn × (0, T )], 2ρ = t
1/2
0 > 0, we then prove that

C−1δ(Y, s) ≤ G(Y, s) ≤ Cδ(Y, s) for all (Y, s) ∈ Ω ∩ C3ρ/2(X0, t0) and that
this implies that |Gyiyj (Y, s)|2G(Y, s) satisfies a local Carleson measure type
condition. Using our Carleson measure condition we prove that locally Ω
is uniformly rectifiable in the sense of [7] and [8]. In the case of graphs
this implies that we can control ‖Dt

1/2A‖∗ and we can therefore prove that
locally Ω can be described as a time-varying graph domain. Some of the ideas
behind the proof of these results can also be found in [10] where a different
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but related problem is considered in the case n = 1. Finally in section 3 we
prove Theorem 1 and we prove, by using the results of section 2, that the
assumptions of Theorem 1 imply that the argument presented in [13] can be
reused.

2. Square functions and uniform rectifiability

In this section we will prove the following theorem.

Theorem 4 Let ΩT , G and ω̂ be as in the statement of Theorem 1. Then
for each (X0, t0) ∈ ∂Ω ∩ [Rn × (0, T )] there exists a function A(x, t) such
that after a possible rotation in the space variables,

Ω ∩ Cρ(X0, t0) = {(x0, x, t) ∈ R × Rn−1 × R : x0 > A(x, t)} ∩ Cρ(X0, t0),

∂Ω ∩ Cρ(X0, t0) = {(x0, x, t) ∈ R × Rn−1 × R : x0 = A(x, t)} ∩ Cρ(X0, t0),

where 2ρ = t
1/2
0 and A(x, t) fulfills the regularity conditions, for some con-

stants a1, a2, stated in Definition 3.

If Ω is a Lip(1,1/2) domain (X, t) ∈ ∂Ω, r > 0, then in the following we
let ∆(X, t, r) = Cr(X, t) ∩ ∂Ω define our surface cubes.

We start this section by stating a few preliminary lemmas. These lemmas
are well established results in the setting of Lip(1,1/2) domains for non-
negative solutions to the heat equation and the adjoint heat equation and we
refer the reader to [3], [4], [11] and [18]. In [18] relevant estimates are stated
and proved in the general setting of second order parabolic equations in
divergence form in Lip(1,1/2) domains. Still we have to be careful as we want
these lemmas to apply to the Green function G with pole at (0, 0) ∈ ∂pΩT

in domains, ΩT , which are local Lip(1,1/2) domains containing a heat ball
in the sense of Definition 2. The notion of Green function G with pole at
the boundary point (0, 0) ∈ ∂pΩT was defined in the introduction. As noted
in the introduction if (Y, s) ∈ ΩT , (X, t) ∈ ∂pΩT , r > 0 and 2r < t1/2 then

G(Y, s) = lim
m→∞

G(Y, s,Xm, tm), ω̂(∆(X, t, r)) = lim
m→∞

ω̂(Ym, sm,∆(X, t, r))

for any sequence of points (Xm, tm) ∈ D(λ) such that (Xm, tm) → (0, 0),
i.e., the sequence converges to the pole at (0, 0). In this way several of
the estimates for the Green function with pole at a point inside ΩT can be
extended to the Green function with pole at (0, 0) ∈ ∂pΩT .
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Before we continue we need to introduce some more notation. Suppose
Ω = {(x0, x, t) ∈ R × Rn−1 × R : x0 > A(x, t)} for some Lip(1,1/2) function
A having Lip(1,1/2) constant δ0. If (X, t) = (x0, x, t) ∈ ∂Ω we define

Ar(X, t) = (x0 + 100δ0r, x, t + r2),

Ar(X, t) = (x0 + 100δ0r, x, t),

Ar(X, t) = (x0 + 100δ0r, x, t− r2).

As ΩT is a local Lip(1,1/2) we know that locally, after a possible rotation in
the space variables, ΩT can always be described using such a function A and
hence the notation introduced can be used in appropriate local coordinates
charts. In the following we let

d(F1, F2) = inf{|X − Y | + |s− t|1/2 : (X, t) ∈ F1, (Y, s) ∈ F2 }

denote the parabolic distance between the sets F1, F2 and we let δ(Y, s)
denote the parabolic distance from (Y, s) to the boundary of ∂Ω.

Lemma 5 Let Ω ⊂ Rn+1 be a Lip(1,1/2) domain, (X0, t0) ∈ ∂Ω, r0 > 0 and
assume Cr0(X0, t0)∩∂Ω is contained in a Lip(1,1/2)-graph with constant δ0.
Let (X, t) ∈ Cr0/2(X0, t0)∩∂Ω and suppose that u is a non-negative solution
to either the heat or the adjoint heat equation in Ω∩Cr(X, t), r < r0/2, which
vanishes continuously on ∂Ω∩C2r(X, t). There exists α = α(δ0), 0 < α < 1

2
,

and c = c(δ0) ≥ 1 such that if (Y, s) ∈ Ω ∩ Cr(X, t) then

u(Y, s) ≤ c

[
d({(Y, s)}, {(X, t)})

r

]α
sup

(Z,τ)∈Ω∩Cr(X,t)
u(Z, τ).

Proof. This result uses, by its very nature, only local information on the so-
lution u and on the domain and follows by a standard iteration argument. �

Lemma 6 Let Ω ⊂ Rn+1, (X0, t0), r0 > 0, Cr0(X0, t0)∩∂Ω, u, and (X, t) be
as in the previous lemma and let r < r0/(200δ0). If (Y, s) ∈ Ω ∩ Cr/2(X, t),
then there exists c = c(δ0)

u(Y, s) ≤ c u(Ar(X, t))

when u is a solution to the heat equation while

u(Y, s) ≤ c u(Ar(X, t))

when u is a solution to the adjoint heat equation in C2r(X, t) ∩ Ω.



522 J. L. Lewis and K. Nyström

Proof. This lemma is what is usually referred to as a Carleson type lemma
and again the proof is of local nature and follows by a standard argument
based on Lemma 5. We refer the reader to [3], [4], [11] and [18]. �

Lemma 7 Assume ΩT to be a local Lip(1,1/2) domain containing a heat

ball and assume (X0, t0) ∈ ∂pΩT , 2ρ = t
1/2
0 > 0. Let r < ρ/2 and A ≥ 100.

Then there exists a constant c independent of (X, t) and r such that if

(X, t) ∈ Cρ/2(X0, t0) ∩ ∂Ω and if |X|2 ≤ At, t ≥ 4r2

then
c−1 rnG(Ar(X, t)) ≤ ω̂(∆(X, t, r)) ≤ c rnG(Ar(X, t)).

Proof. This lemma relates the value of the Green function with pole at
(0, 0) ∈ ∂pΩT to the associated adjoint caloric measure. As the pole is on
∂pΩT this lemma is not completely obvious. Note, using the notation in the
statement of the lemma, that if (Y, s) ∈ ΩT with s < t, |Y −X|2 ≤ A(t− s),
t− s ≥ 4r2, then there exists c = c(A, δ0) ≥ 1 such that

c−1 rnG(Ar(X, t), Y, s) ≤ ω̂(Y, s, ∆(X, t, r)) ≤ c rnG(Ar(X, t), Y, s).

For the proof of this well-known relation we refer the reader to [3], [4], [11]
and [18]. Using this inequality and letting (Y, s) → (0, 0) through a sequence
in D(λ) we get Lemma 7. �

Lemma 8 Assume ΩT to be a local Lip(1,1/2) domain containing a heat

ball and assume (X0, t0) ∈ ∂pΩT , 2ρ = t
1/2
0 > 0. Let G and ω̂ be as in the

statement of Theorem 1. Then there exists a constant c such that for all
(Y, s) ∈ Ω ∩ C3ρ/2(X0, t0)

c−1δ(Y, s) ≤ G(Y, s) ≤ cδ(Y, s).

Proof. This is a simple consequence of Lemma 6, Lemma 7 and the as-
sumption that

dω̂

dσ
(X, t) = λ

|X|
2t
.

�

Our next result is crucial to the arguments in this paper. Theorem 9
below is also proved in [10] in one-space dimension and, though we here
formulate the theorem under the assumption that Ω is a local Lip(1,1/2)
domain, the reader will notice that the argument in the proof only requires
that ∂Ω separates Rn+1 into two unbounded connected components and
satisfies a (M,R) Ahlfors condition (see Definition 4 below).
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Theorem 9 Let Ω ⊂ Rn+1 be a local Lip(1,1/2) domain with constant δ0.

Let (X0, t0) ∈ ∂Ω ∩ [Rn × (0, T )] and let 2ρ = t
1/2
0 > 0. Assume that there

exists a non-negative solution u to the heat or the adjoint heat equation in
Ω which vanishes continuously on ∂Ω ∩ C3ρ/2(X0, t0) and a constant c such
that for all (Y, s) ∈ Ω ∩ C3ρ/2(X0, t0)

u(Y, s) ≤ cδ(Y, s).

Then there exists a constant ĉ = ĉ(c) such that for all (X̂, t̂) ∈ ∂Ω∩Cρ(X0, t0)
and 0 < r < ρ/4

n−1∑
i,j=0

∫
Cr(X̂,t̂)∩Ω

u2
yiyj

(Y, s)u(Y, s) dY ds+2

∫
Cr(X̂,t̂)∩Ω

u2
s(Y, s)u(Y, s) dY ds ≤ ĉrn+1.

Note that the theorem states that locally the measure

[u2
yiyj

(Y, s)u(Y, s) + 2u2
s(Y, s)u(Y, s)]dY ds

is a Carleson measure.

Proof. We will only supply the proof in the case u solves the heat equation,
the case of a solution to the adjoint equation being treated similarly. To
prove the theorem we consider a Whitney decomposition of Ω adjusted to
C5ρ/4(X0, t0). We obtain such a Whitney decomposition of the part of Ω
located in C5ρ/4(X0, t0) from subdividing C5ρ/4(X0, t0) using the bisection
method. Hence we let {Ci = Cri(Yi, si)} be a the set of all such Whitney
cubes located in Ω∩C5ρ/4(X0, t0) with center (Yi, si) and radius ri.We choose
this sequence such that Ci∩Cj = ∅ if i �= j, γ1d(Ci, ∂Ω) ≤ ri ≤ γ2d(Ci, ∂Ω)
and

⋃
i C̄i = Ω ∩ C5ρ/4(X0, t0). Here γ1 = γ1(n), γ2 = γ2(n) and γ1 <<

γ2 << 1. Next let ηi be a partition of unity, i.e.,
∑

ηi ≡ 1, adapted to
{Ci} such that the support of ηi is a subset of

⋃{Cj : C̄j ∩ C̄i �= ∅}. We also
assume that ηi is infinitely differentiable with ηi ≥ c−1 on Ci, |(ηi)yj | ≤ cr−1

i ,
|(ηi)yjyk | ≤ cr−2

i and |(ηi)s| ≤ cr−2
i . Next we fix ξ << 1 and define

Λ = {j : Cj ∩ C2r(X̂, t̂) �= ∅, rj ≥ ξr}.

In the following we will use summation convention and we sum the indicies i
and j from 0 to n− 1. We want to estimate

A :=
∑
k∈Λ

∫
u(uyiyj )

2ηk dY ds, B :=
∑
k∈Λ

∫
uu2

sηk dY ds.
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By integration by parts we have

A = −
∑
k∈Λ

∫
uyiuyjuyiyjηk dY ds−

∑
k∈Λ

∫
uuyj∆uyjηk dY ds

−
∑
k∈Λ

∫
uuyjuyiyj (ηk)yj dY ds

= − 1

2

∑
k∈Λ

∫
∂

∂yj
|∇u|2uyjηk dY ds−

1

2

∑
k∈Λ

∫
u
∂

∂s
|∇u|2ηk dY ds

−
∑
k∈Λ

∫
uuyjuyiyj (ηk)yj dY ds.

Using integration by parts once more we can conclude that,

A =
1

2

∑
k∈Λ

∫
|∇u|2∆uηk dY ds+

1

2

∑
k∈Λ

∫
|∇u|2uyj(ηk)yj dY ds

+
1

2

∑
k∈Λ

∫
∆u|∇u|2ηk dY ds+

1

2

∑
k∈Λ

∫
u|∇u|2(ηk)s dY ds

−
∑
k∈Λ

∫
uuyjuyiyj(ηk)yj dY ds.

Before continuing we similarly manipulate the term B. In fact

B =
∑
k∈Λ

∫
uu2

sηk dY ds =
∑
k∈Λ

∫
u(∆u)2ηk dY ds

= −
∑
k∈Λ

∫
|∇u|2∆uηk dY ds−

∑
k∈Λ

∫
uuyi∆uyiηk dY ds

−
∑
k∈Λ

∫
uuyi∆u(ηk)yi dY ds.

By further manipulations

B = −
∑
k∈Λ

∫
|∇u|2∆uηk dY ds− 1

2

∑
k∈Λ

∫
u
∂

∂s
|∇u|2ηk dY ds

−
∑
k∈Λ

∫
uuyi∆u(ηk)yi dY ds

= −
∑
k∈Λ

∫
|∇u|2∆uηk dY ds+

1

2

∑
k∈Λ

∫
∆u|∇u|2ηk dY ds

+
1

2

∑
k∈Λ

∫
u|∇u|2(ηk)s dY ds−

∑
k∈Λ

∫
uuyi∆u(ηk)yi dY ds.
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We can therefore conclude that

A+ 2B =
1

2

∑
k∈Λ

∫
|∇u|2uyj(ηk)yj dY ds+

3

2

∑
k∈Λ

∫
u|∇u|2(ηk)s dY ds

−
∑
k∈Λ

∫
uuyjuyiyj(ηk)yj dY ds− 2

∑
k∈Λ

∫
uuyi∆u(ηk)yi dY ds

=: I1 + I2 + I3 + I4.

We define Λ̂ to consist of all Whitney cubes Ci such that there exist j ∈ Λ
and k /∈ Λ, Ci ∩ Cj �= ∅, Ci ∩ Ck �= ∅. Note that u(Y, s) ≤ cδ(Y, s)
for (Y, s) ∈ Ω ∩ C3ρ/2(X0, t0) implies a uniform bound on |∇u(Y, s)| for
(Y, s) ∈ Ω ∩ C5ρ/4(X0, t0). We can also assume, by interior regularity for
the heat equation, that |uyiyj(Y, s)| ≤ cδ(Y, s)−1 for a uniform constant c.
As {ηk} constitutes a partition of unity we get, using these estimates that

|I1| + |I2| + |I3| + |I4| ≤ C
∑
k∈Λ̂

rn−1
k .

Let Λ̂1 consist of all i ∈ Λ̂ for which there exists k with Ci ∩ Ck �= ∅ and
rk ≤ ξr. By a simple argument,∑

k∈(Λ̂\Λ̂1)

rn−1
k ≤ Crn−1.

Let, for an arbitrary Whitney cube Crk(Yk, sk), (Ŷk, ŝk) be a point on ∂Ω
which is closest to (Yk, sk) is the parabolic metric. Then for some γ3 =
γ3(n) >> 1, as ∂Ω is Lip(1,1/2),∑

k∈Λ̂1

rn−1
k ≤ C

∑
k∈Λ̂1

σ(Cγ3rk(Ŷk, ŝk) ∩ ∂Ω).

As the surface cubes {Cγ3rk(Ŷk, ŝk) ∩ ∂Ω} have finite overlap and as in par-

ticular each point (X̂, t̂) belongs to at most c = c(n) of these cubes we can
conclude that the last term in the previous inequality is bounded by

σ(∂Ω ∩ Cγ3r(X̂, t̂)) ≤ Ĉrn+1.

Hence

A + 2B =
∑
k∈Λ

∫
u(uyiyj)

2ηk + uu2
sηk dY ds ≤ C

∑
k∈Λ

rn−1
k ≤ Ĉrn+1.

Recall that Λ = {j : Cj ∩ C2r(X̂, t̂) �= ∅, rj ≥ ξr}. As the constants in the
last inequalities are independent of ξ we can let ξ → 0 in order to complete
the proof. �
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Next we show that Theorem 9 implies parabolic uniform rectifiability in
the sense of [7, 8]. In [8] the parabolic Poisson kernel was analyzed in do-
mains not locally given by graphs and instead the geometry was controlled by
a certain geometric square function, the boundedness of which implied that
on every scale the boundary contained ‘big pieces of time-varying graphs’.
By a time-varying graph, TV (A, a1, a2), we here mean graph domains hav-
ing the regularity defined in Definition 3 (see [7]). We show that this square
function can be estimated by the Carleson measure in Theorem 9. We begin
by listing and discussing some definitions from [7].

A fundamental assumption in [8] is that ∂Ω separates Rn+1 into two
unbounded connected components and that ∂Ω satisfies a (M,R) Ahlfors
condition. To make this precise we, for given a Borel set F ⊂ Rn+1 let F̄
and ∂F denote the closure and the boundary of F, respectively, and put
σ(F ) =

∫
F
dσt dt where dσt is n− 1 dimensional Hausdorff measure on the

time slice F ∩ (Rn × {t}).
Definition 4 Let Ω be a connected open set in Rn+1. We say that ∂Ω
satisfies a (M,R) Ahlfors condition, M ≥ 4, if for all (X, t) ∈ ∂Ω and
0 < r ≤ R,

σ(∂Ω ∩ Cr(X, t)) ≤ Mrn+1.

Using the fact that Hausdorff measure does not increase under a projec-
tion we deduce that for 0 < r ≤ R, (X, t) ∈ ∂Ω,

(r/2)n+1 ≤ σ(∂Ω ∩ Cr(X, t)) ≤ Mrn+1,

whenever ∂Ω separates Rn+1 into two unbounded connected components and
satisfies a (M,R) Ahlfors condition. Recall that

d(F1, F2) = inf{|X − Y | + |s− t|1/2 : (X, t) ∈ F1, (Y, s) ∈ F2 }
denotes the parabolic distance between the sets F1, F2 and for Ω (such that
∂Ω separates Rn+1 and satisfies a (M,R) Ahlfors condition) we set

γ(Z, τ, r) = inf
P

[
r−n−3

∫
∂Ω∩Cr(Z,τ)

d({(Y, s)}, P )2dσ(Y, s)

]
.

Here the infimum is taken over all n dimensional planes P containing a line
parallel to the t axis. Let

dν(Z, τ, r) = γ(Z, τ, r) dσ(Z, τ) r−1dr.

We say that ν is a Carleson measure on [∂Ω ∩ CR(Y, s)] × (0, R) if there
exists M1 <∞ such that whenever (X, t) ∈ ∂Ω and Cρ(X, t) ⊂ CR(Y, s), we
have

ν([Cρ(X, t) ∩ ∂Ω] × (0, ρ)) ≤ M1 ρ
n+1.
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The smallest such M1 is called the Carleson norm of ν on [∂Ω∩CR(Y, s)]×
(0, R) and we write ‖ν‖+ for the Carleson norm of ν if the inequality above
holds for all ρ > 0. The following definition can be found in [7] and [8].

Definition 5 ∂Ω is said to be uniformly rectifiable (in the parabolic sense)
if ‖ν‖+ < ∞ and if the Carleson measure condition stated above holds for
all R > 0. If furthermore ∂Ω separates Rn+1 and is uniformly rectifiable,
then Ω is called a parabolic regular domain.

We are now ready to state and prove our next result.

Theorem 10 Let Ω ⊂ Rn+1 be a local Lip(1,1/2) domain with constant δ0.

Let (X0, t0) ∈ ∂Ω ∩ [Rn × (0, T )], 2ρ = t
1/2
0 > 0. Assume that there exists a

non-negative solution u to the heat or the adjoint heat equation in Ω which
vanishes continuously on ∂Ω ∩ C3ρ/2(X0, t0) and a constant c such that for
all (Y, s) ∈ Ω ∩ C3ρ/2(X0, t0)

c−1δ(Y, s) ≤ u(Y, s) ≤ cδ(Y, s).

Then

δ := sup
(X,t)∈∂Ω∩Cρ(X0,t0),0<r<ρ/(2000δ0)

‖ν‖(∆(X, t, r) × [0, r]) <∞

and δ = δ(δ0, c).

Proof. We will only supply the proof in the case u solves the heat equation,
the case of a solution to the adjoint equation being treated similarly. Let
(X0, t0) ∈ ∂Ω ∩ [Rn × (0, T )] and let 2ρ = t

1/2
0 > 0. Let furthermore,

(X, t) ∈ ∂Ω∩Cρ(X0, t0) and R < ρ/(2000δ0). Note that we can without loss
of generality assume that δ0 > 1. By definition we need to prove that

ν(∆(X, t, R) × (0, R)) ≤ CRn+1

for a constant C independent of (X, t) and R. By assumption we know that
the square function estimate of Theorem 9 is valid and hence, as c−1δ(Y, s) ≤
u(Y, s),

n−1∑
i,j=0

∫
Cr(X̃,t̃)∩Ω

u2
yiyj

(Y, s)δ(Y, s) dY ds ≤ ĉrn+1

whenever (X̃, t̃) ∈ ∂Ω ∩ Cρ(X0, t0) and r < ρ/4.

In the following we consider points (X̃, t̃) ∈ ∂Ω ∩ Cρ(X0, t0), r < R and
we define

Γ = {Ar(X̃, t̃) + (0, 0, ρ) : ρ ∈ (−r2, r2)}.
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I.e., Γ is the line in the t-direction connecting the points Ar(X̃, t̃) and
Ar(X̃, t̃). By construction this line is contained in Ω and for all points
(Z̃, τ̃) ∈ Γ, δ(Z̃, τ̃ ) ≈ r. Let (X̂, t̃) = Ar(X̃, t̃) and let I denote the interval
(t̃− r2, t̃+ r2).

Let (Y, s) ∈ Ω with s ∈ I and recall that if (X̃, t̃) = (x̃0, x̃, t̃) then by
definition (X̂, t̃) = Ar(X̃, t̃) = (x̃0 + 100δ0r, x̃, t̃). Let ε ∈ (0, 100δ0). Using
the mean value theorem we can conclude that there exists β ∈ (ε, 100δ0)
such that

u(X̂, t̃) − u(x̃0 + εr, x̃, t̃) = 〈∇u(x̃0 + βr, x̃, t̃), e0〉(100δ0 − ε)r

where e0 is the unit vector in the x0-direction. Using Lemma 5, Lemma 6 and
the assumption that u behaves like the parabolic distance to the boundary
we also have that there exists a constant C = C(δ0) and α = α(δ0) such
that if ε << 100δ0 then

u(x̃0 + εr, x̃, t̃) ≤ Cεαδ(X̂, t̃).

Combining we can conclude that

〈∇u(x̃0 + βr, x̃, t̃), e0〉(100δ0 − ε)r ≥ C1(1 − C2ε
α)δ(X̂, t̃)

∼ C̃1(1 − C2ε
α)r

where the constants C1, C̃1 and C̃2 have the same dependence as the con-
stant C. If we let (X∗, t̃) := (x̃0 + βr, x̃, t̃) we have therefore proved that
|∇u(X∗, t̃)| ≥ C̃ for some universal constant C̃ and for a point (X∗, t̃) such
that δ(X∗, t̃) ∼ r. To continue we define, for Y ∈ Rn,

A(X∗, Y, t̃) = u(X∗, t̃) + 〈∇u(X∗, t̃), Y −X∗〉

and we let P denote the hyperplane {(Z, τ) : A(X∗, Z, t̃) = 0}. Note that
we can conclude, by construction, that A(X∗, Y, t̃) ≈ d({(Y, s)}, P ) for all
(Y, s) ∈ ∆(X̃, t̃, r). Using this we can start to estimate the Carleson measure.
By definition

ν(∆(X, t, R) × (0, R)) ≤
∫ R

0

∫
∆(X,t,R)

ξ(X̃, t̃, r)dσ(X̃, t̃) dr

where

ξ(X̃, t̃, r) = r−n−4

∫
∆(X̃,t̃,r)

d({(Y, s)}, P )2dσ(Y, s)
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and where P is the plane constructed. Using the deduction above

ξ(X̃, t̃, r) = r−n−4

∫
∆(X̃,t̃,r)

d({(Y, s)}, P )2dσ(Y, s)

≈ r−n−4

∫
∆(X̃,t̃,r)

A(X∗, Y, t̃)2dσ(Y, s)

≤ 2r−n−4

∫
∆(X̃,t̃,r)

A(X̂, Y, t̃)2dσ(Y, s)

+ 2r−n−4

∫
∆(X̃,t̃,r)

|A(X∗, Y, t̃) − A(X̂, Y, t̃)|2dσ(Y, s).

In fact we decompose the term on the second line in the last display one
step further and get

ξ(X̃, t̃, r) ≤ 2r−n−4

∫
∆(X̃,t̃,r)

A(X̂, Y, s)2dσ(Y, s)

+ 2r−n−4

∫
∆(X̃,t̃,r)

|A(X̂, Y, t̃) −A(X̂, Y, s)|2dσ(Y, s)

+ 2r−n−4

∫
∆(X̃,t̃,r)

|A(X∗, Y, t̃) − A(X̂, Y, t̃)|2dσ(Y, s).

Let (Y, s) ∈ ∆(X̃, t̃, r) with s ∈ I. Using Taylor’s formula,

u(Y, s) = u(X̂, s) + 〈∇u(X̂, s), Y − X̂〉 +

∫ Y

X̂

〈D2u(Z, s), Z − Y 〉dl.

Here the last integral is interpreted as the second directional derivative of u
taken along the line segment l from (X̂, s) to (Y, s) (with Z on l). Using the
fact that u = 0 on ∂Ω, Taylor’s formula as above and Schwarz’s inequality
we get for all s ∈ I,

|A(X̂, Y, s)|2 ≤ cr

∫ Y

X̂

δ(Z, s)2

n−1∑
i,j=0

u2
zizj

(Z, s)dl.

Furthermore, using the mean value theorem in calculus and interior esti-
mates for derivatives of second order of solutions to the heat equation we
can conclude that if (Y, s) ∈ ∆(X̃, t̃, r), then

|A(X̂, Y, t̃) −A(X̂, Y, s)|2 ≤ c r−n
∫
C2r(X̂,t̃)

δ(Z, s)2
n−1∑
i,j=0

u2
zizj

(Z, s)dZds.
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Left is to estimate |A(X∗, Y, t̃) − A(X̂, Y, t̃)|. But again using Taylor’s for-
mula, Schwarz’s inequality and replacing pointwise estimates by averages we
get, if (Y, s) ∈ ∆(X̃, t̃, r),

|A(X∗, Y, t̃) − A(X̂, Y, t̃)|2 ≤ cr

∫ X̂

X∗
δ(Z, t̃)2

n−1∑
i,j=0

u2
zizj

(Z, t̃)dl∗

≤ cr−n
∫
C110δ0r

(X̃,t̃)

δ(Z, s)2

n−1∑
i,j=0

u2
zizj

(Z, s)dZds

where l∗ is the line from (X∗, t̃) to (X̂, t̃). Continuing our previous deduction,
using simple arguments, we find that

ξ(X̃, t̃, r) ≤ cr−n−3

∫
C110δ0r

(X̃,t̃)

δ(Z, s)2
n−1∑
i,j=0

u2
zizj

(Z, s)dZds.

Hence

ν(∆(X, t, R) × (0, R)) ≤
∫ R

0

∫
∆(X,t,R)

ξ(X̃, t̃, r)dσ(X̃, t̃) dr.

Using the expression for ξ(X̃, t̃, r) we obtain, after interchanging the order
of integration, that the right-hand side in the last expression is dominated,
for some small γ > 0, by

c

∫
C200δ0R

(X,t)

δ(Z, s)2

n−1∑
i,j=0

u2
zizj

(Z, s) [

∫ ∞

γδ(Z,s)

r−2dr] dZds

= c

∫
C200δ0R

(X,t)

δ(Z, s)
n−1∑
i,j=0

u2
zizj

(Z, s) dZds ≤ cRn+1.

This completes the proof. �
Consider a parabolic cube Cρ(X, t) ⊂ Rn+1 for some (X, t) ∈ Rn+1. In

the following we let Ĉρ(X, t) denote the projection of Cρ(X, t) onto Rn−1×R

and if Ωψ = {(x0, x, t) ∈ R × Rn−1 × R : x0 > ψ(x, t)}, ψ is assumed to be
Lip(1,1/2), then we let γψ = γ, νψ = ν be defined, see the definitions above
Definition 5, with respect to the graph {(ψ(x, t), x, t) : (x, t) ∈ Rn}.

In order to prove Theorem 4 we will also need the following theorem,
Theorem 11, and we note that Theorem 4 follows by combining Lemma 8,
Theorem 10 and Theorem 11 in a standard argument based on a partition
of unity.
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Theorem 11 Let Ω ⊂ Rn+1 be a local Lip(1,1/2) domain with constant δ0,
(X0, t0) ∈ ∂Ω∩[Rn×(0, T )], ρ̂ > 0 and assume that Cρ(X0, t0) ⊂ [Rn×(0, T )],
ρ = 100ρ̂, and

Ω ∩ Cρ(X0, t0) = {(x0, x, t) ∈ R × Rn−1 × R : x0 > A(x, t)} ∩ Cρ(X0, t0),

∂Ω ∩ Cρ(X0, t0) = {(x0, x, t) ∈ R × Rn−1 × R : x0 = A(x, t)} ∩ Cρ(X0, t0).

Define
ψ(x, t) = φ(x, t)A(x, t), (x, t) ∈ Rn−1 × R,

where φ ∈ C∞
0 (Ĉ2ρ̂(X0, t0)), φ ≡ 1 on Ĉ3ρ̂/2(X0, t0). Let

Ωψ = {(x0, x, t) ∈ R × Rn−1 × R : x0 > ψ(x, t)}.
If

δ := sup
(X,t)∈∂Ω∩C10ρ̂(X0,t0),0<r<10ρ̂

‖νA‖(∆(X, t, r) × [0, r]) <∞

for some δ > 0, then

δψ := sup
(X,t)∈∂Ωψ ,r>0

‖νψ‖(∆(X, t, r) × [0, r]) <∞,

and ‖Dt
1/2ψ‖∗ <∞.

Proof. That δψ <∞ implies ‖Dt
1/2ψ‖∗ <∞ is proved in [8, p. 287-292] and

hence we only need to prove that if δ < ∞ then δψ < ∞. In fact the latter
statement is more or less trivial but we include a proof for the convenience
of the reader. We furthermore note that in the following we do not have to
keep track of the dependence of the constants appearing in our deductions,
explicitly and at each instance, as we only want to prove finiteness of δψ.
Therefore, in the following C > 0 will be a generic constant depending on n,
δ0, ρ̂ and the supremum of |A|, |φxi|, |φxixj | and |φt| over the set Ĉ2ρ̂(X0, t0).

Defining, for r > 0, (x̂, t̂) ∈ Rn, with Cr(x̂, t̂) = {(y, s) ∈ Rn : |yi − x̂i| <
r, |t̂− s| < r2 },

κψ(x̂, t̂, r) = r−(n+3) inf
L

∫
Cr(x̂,t̂)

|ψ(y, s) − L(y)|2 dyds

where the infimum is over all linear functions of y (only) we can conclude,
by arguing as in [8, formula (2.3)-(2.5)], that

C−1 κψ(x̂, t̂, r) ≤ γψ(X̂, t̂, r) ≤ Cκψ(x̂, t̂, r),

for r > 0, (x̂, t̂) ∈ Rn and for a constant C > 0. Here (X̂, t̂) = (x̂0, x̂, t̂). Note
that κψ(x̂, t̂, r) = 0 for all r > 0 and (x̂, t̂) such that Ĉ2ρ̂(X0, t0)∩Cr(x̂, t̂) = ∅.
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Hence we can assume that Ĉ2ρ̂(X0, t0) ∩ Cr(x̂, t̂) �= ∅. We now consider a

number of cases. Firstly we assume that (x̂, t̂) ∈ Ĉ4ρ̂(X0, t0) and consider
the cases r ≤ 2ρ̂ and r > 2ρ̂. We claim that in case r ≤ 2ρ̂ then

κψ(x̂, t̂, r) ≤ C[r2 + κA(x̂, t̂, r)].

To prove this claim we let L1(y) = φ(x̂, t̂)+L2(y), L2(y) = 〈∇zφ(x̂, t̂), (y−x̂)〉
and decompose φ(y, s)A(y, s) = φ1(y, s) + φ2(y, s) + φ3(y, s) where

φ1(y, s) = (φ(y, s)− L1(y))A(y, s),

φ2(y, s) = 〈∇zφ(x̂, t̂), (y − x̂)〉(A(y, s) −A(x̂, t̂)),

φ3(y, s) = A(x̂, t̂)L2(y) + φ(x̂, t̂)A(y, s).

If L(y) is an arbitrary linear functions of y then

|φ(y, s)A(y, s)− φ(x̂, t̂)L(y) − A(x̂, t̂)L2(y)|2

≤ C

[
|φ1(y, s)|2 + |φ2(y, s)|2 + |φ(x̂, t̂)|2|A(y, s)− L(y)|2

]
.

Hence, using that φ is infinitely differentiable, the anisotropic scaling of the
parabolic cube Cr(x̂, t̂), Taylor’s formula and the Lip(1,1/2) property of A
we can conclude that the claim is true. Therefore,

κψ(x̂, t̂, r) ≤ C[r2 + kA(x̂, t̂, r)] ≤ C[r2 + γA(X̂, t̂, r)].

Furthermore, in case r > 2ρ̂ we get, using Taylor’s formula, for φ, with
respect to a point outside of the support of φ, but located at most 4ρ̂ away
from any point in the set Cr(x̂, t̂), and taking L ≡ 0,

κψ(x̂, t̂, r) ≤ r−(n+3)

∫
Cr(x̂,t̂)

|ψ(y, s)|2 dyds ≤ C

(
ρ̂

r

)n+3

.

Finally we note it follows, by reusing the last argument, that the estimate

κψ(x̂, t̂, r) ≤ C(ρ̂/r)n+3

is also true in the case (x̂, t̂) /∈ Ĉ4ρ̂(X0, t0) and r > 2ρ̂.

To complete the proof we let (z, τ) ∈ Rn and ρ̃ > 0. Splitting the domain
of integration, based on the analysis above, we see that∫ ρ̃

0

∫
Cρ̃(z,τ)

λ−1κψ(x̂, t̂, λ)dx̂ dt̂ dλ ≤ C[1 + δ] ρ̃n+1

where δ is the the localized Carleson norm of νA as defined in the statement
of the theorem. Hence we can conclude that δψ < ∞ and the proof is
complete. �
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3. Proof of Theorem 1

In this section we will prove Theorem 1. First from the assumptions in
Theorem 1 it follows that Theorem 4 is valid, i.e., for each (X0, t0) ∈ ∂Ω ∩
[Rn×(0, T )] there exists a function A(x, t) such that after a possible rotation
in the space variables,

Ω ∩ Cρ(X0, t0) = {(x0, x, t) ∈ R × Rn−1 × R : x0 > A(x, t)} ∩ Cρ(X0, t0),

∂Ω ∩ Cρ(X0, t0) = {(x0, x, t) ∈ R × Rn−1 × R : x0 = A(x, t)} ∩ Cρ(X0, t0),

where 2ρ = t
1/2
0 and A(x, t) fulfills the regularity conditions, for some con-

stants a1, a2, stated in Definition 3. We can therefore use the results of [11]
to conclude that

lim
(Y,s)→(X,t)

|∇YG(Y, s)| =
dω̂

dσ
(X, t) = λ

|X|
2t

non-tangentially for almost every (X, t) ∈ ∂Ω ∩ [Rn × (0, T )].

Again using the results of [11] on the Lp-solvability of the Dirichlet prob-
lem for some p > 1 one can show that each component of ∇G can be realized
as a Poisson integral and it follows by an appropriate approximation argu-
ment (see [13, p. 359-360]) that if t1 and t2 are such that 0 < t1 < t2 < T ,
then

λ

2

∫ t2

t1

(∫
∂Ωt

|X|dσt(X)

)
dt

t
=

∫
Ωt1

G(Y, t1)dY −
∫

Ωt2

G(Y, t2)dY.

This equality is simply a consequence of our knowledge of the boundary
values of |∇G(Y, s)| and partial integration. Note that∫

Ωt1

G(Y, t1)dY ≤
∫

Rn

W (Y, t1)dY = 1.

If we let t1 → 0 in the identity above we can therefore conclude that

λ

2

∫ t2

0

(∫
∂Ωt

|X|dσt(X)

)
dt

t
+

∫
Ωt2

G(Y, t2)dY ≤ 1

for all t2 ∈ (0, T ]. Recall that for λ > 0

L(λ) = {(X, t) : W (X, t) = λ}, D(λ) = {(X, t) : W (X, t) > λ}.
Furthermore for t > 0

Lt(λ) = L(λ) ∩ {(X, τ) : τ = t}, Dt(λ) = D(λ) ∩ {(X, τ) : τ = t}.



534 J. L. Lewis and K. Nyström

Arguing as in [13, p.360-361] we can conclude that there exists λ0 and t2
such that λ ≥ λ0, G ≥W − λ0 in Ω ∩ [Rn × (0, t2)] and, for all t ∈ (0, t2),

min
X∈∂Ωt

|X| ≥ max
X∈Lt(λ0)

|X|.

Using this and the inequality above we can therefore conclude that

λ0

2

∫ t2

0

(∫
Lt(λ0)

|X|dσλ0,t(X)

)
dt

t
+

∫
Dt2(λ0)

(W (Y, t2) − λ0)dY

≤ λ

2

∫ t2

0

(∫
∂Ωt

|X|dσt(X)

)
dt

t
+

∫
Ωt2

G(Y, t2)dY ≤ 1.

Here equality only holds if

G ≡W − λ0 in Ω ∩ [Rn × (0, t2)] and λ0 = λ.

By a simple calculation using the divergence theorem

λ0

2

∫ t2

0

(∫
Lt(λ0)

|X|dσλ0,t(X)

)
dt

t
+

∫
Dt2 (λ0)

(W (Y, t2) − λ0)dY = 1.

Hence equality must hold and G ≡W −λ in Ω∩ [Rn× (0, T )] and the proof
of Theorem 1 is complete.
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