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Interpolated inequalities between
exponential and Gaussian, Orlicz

hypercontractivity and isoperimetry

Franck Barthe, Patrick Cattiaux and Cyril Roberto

Abstract

We introduce and study a notion of Orlicz hypercontractive semi-
groups. We analyze their relations with general F -Sobolev inequal-
ities, thus extending Gross hypercontractivity theory. We provide
criteria for these Sobolev type inequalities and for related proper-
ties. In particular, we implement in the context of probability mea-
sures the ideas of Maz’ja’s capacity theory, and present equivalent
forms relating the capacity of sets to their measure. Orlicz hyper-
contractivity efficiently describes the integrability improving proper-
ties of the Heat semigroup associated to the Boltzmann measures
µα(dx) = (Zα)−1e−2|x|αdx, when α ∈ (1, 2). As an application we
derive accurate isoperimetric inequalities for their products. This
completes earlier works by Bobkov-Houdré and Talagrand, and pro-
vides a scale of dimension free isoperimetric inequalities as well as
comparison theorems.

1. Introduction

Sobolev type inequalities play an essential role in the study of the concen-
tration phenomenon for probability measures. They are also a powerful tool
to analyze the regularizing effects and the convergence to equilibrium of
their associated symmetric semigroups. In particular, several surveys deal
with the celebrated Poincaré (or spectral gap) inequality and the stronger
logarithmic-Sobolev inequality and provide striking applications [32], [4], [3],
[38], [33], [51].
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A concrete illustration can be given for the family of probability measures
on the real line

µα(dx) = (Zα)−1e−2|x|αdx, α > 0.

These measures and their products µ⊗n
α deserved particular attention in re-

cent years, where the focus was on dimension free properties. They enter
Talagrand’s work on the concentration phenomenon for product measures.
His study was continued by Ledoux [38], who strongly put forward the use
of the logarithmic Sobolev inequality for concentration, and more recently
by Bobkov and Houdré [17] who introduced L1-Sobolev type inequalities in
order to study the more delicate isoperimetric problem. We review the main
results concerning these measures and the associated semigroup (Pα

t )t≥0 gen-
erated by the operator Lα such that

Lαf =
1

2
f ′′ − α|x|α−1sign(x)f ′.

For α > 0 the measures µα verify a Weak Spectral Gap property intro-
duced by Aida and Kusuoka as shown in [47]. They satisfy the Spectral
Gap inequality exactly when α ≥ 1, and the logarithmic Sobolev inequality
if and only if α ≥ 2.

When α < 1 there is no dimension free concentration, because this prop-
erty requires exponential tails [52]. Oppositely, the measures enjoy very
strong properties when α > 2. The corresponding semigroup is ultracon-
tractive [35], meaning that for positive time it is continuous from L

2(µα)
to L

∞. The measures satisfy a dimension free Gaussian isoperimetric in-
equality [8, Theorem 9], and this is as bad as it gets by the Central Limit
Theorem. Recently, Bobkov and Zegarlinski [19] obtained concentration in-
equalities for these measures but for the �nα-distance on R

n. Their results
are based on appropriate modification of the logarithmic Sobolev inequality,
and show different behaviors for different values of α. This was not the case
when considering the Euclidean distance.

The range α ∈ [1, 2] presents very interesting properties. We start with
the Gaussian case, α = 2, which is best understood. Concentration of mea-
sure and isoperimetry in Gauss space are now classical (see e.g. [38, 7]). It is
remarkable that they are both dimension free. Recall that the isoperimetric
inequality asserts in particular that for A ⊂ R

n with µ⊗n
2 (A) = µ2((−∞, t])

one has for all h > 0,

(1.1) µ⊗n
2

(
A+ hBn

2

)
≥ µ2

(
(−∞, t+ h]

)
.

Here Bn
2 is the n-dimensional Euclidean ball. Taking limits one obtains that

among sets of given Gaussian measure, half-spaces have minimal Gaussian
boundary measure.
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On the other hand, the Gaussian measure has remarkable analytic prop-
erties: the corresponding Ornstein-Uhlenbeck semigroup is hypercontrac-
tive, as discovered by Nelson [45]. Gross proved that this fact is equivalent
to the logarithmic Sobolev inequality [31]. Let us also mention that the
Gaussian measure is the prototype of strictly log-concave measures. It was
a success of the Bakry-Emery formalism to allow the extension of most of
the previous results to abstract semigroups with positive curvature (see [6]
for logarithmic Sobolev inequalities and [7] for Gaussian isoperimetry and
an abstract version of the Levy-Gromov theorem).

The two sided exponential measure α = 1 is also well understood. Tala-
grand’s paper [52] provides the following very precise estimate: if A ⊂ R

n

verifies µ⊗n
1 (A) = µ1((−∞, t]) then for all h ≥ 0 it holds

µ⊗n
1 (A+ hBn

1 +
√
hBn

2 ) ≥ µ1((−∞, t+ h/K]),

where K is a universal constant and Bn
p = {x ∈ R

n;
∑n

i=1 |xi|p ≤ 1}. See
also [41, 55]. In a slightly weaker form, such a statement was recovered by
Bobkov and Ledoux [18], via a modified logarithmic Sobolev inequality which
is equivalent to Poincaré inequality. Thus products of measures on R

d with
a spectral gap satisfy a concentration inequality on the exponential model.
Moreover, Bobkov and Houdré [16] proved that µ⊗n

1 satisfies a dimension
free isoperimetric inequality of Cheeger. The proof relies on an L1 version
of the Poincaré inequality, and the statement can be rephrased as follows:
let A ⊂ R

n with µ⊗n
1 (A) = µ1((−∞, t]) then for all h ≥ 0

(1.2) µ⊗n
1

(
A+ hBn

2

) ≥ µ1

((
−∞, t+

h

2
√

6

])
.

This result completes the one of Talagrand. It is weaker for large values of h
but gives isoperimetric information as h goes to zero.

This paper provides a precise description of concentration and isoperime-
try for product of distributions which are intermediate between the expo-
nential and the Gaussian laws. This range is particularly relevant because
it contains all models of dimension free concentration and isoperimetric in-
equality, of high probabilistic importance. Indeed, as we briefly mentioned,
dimension free concentration requires exponential or faster tails, and cannot
be faster than Gaussian by the Central Limit Theorem.

Going back to our examples, let us present what is known for µα when
α ∈ (1, 2). The concentration phenomenon is already well described. Indeed,
Talagrand’s exponential inequality transfers to µα for any α>1 [53] and ensu-
res that

µ⊗n
α

(
A+ h1/αBn

α +
√
hBn

2

)
≥ 1 − 1

µ⊗n
α (A)

e−h/K

for every A ⊂ R
n and h > 0. In particular if α ∈ (1, 2) and µnα(A) ≥ 1/2

one gets that for h ≥ 1, µnα(A+ hBn
2 ) ≥ 1 − 2e−h

α/K .
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A functional approach to this fact was recently discovered by Lata�la and
Oleszkiewicz [36]. These authors established the following family of Sobolev
inequalities: there exists a universal constant C such that for all 1 < p < 2
it holds

(1.3)

∫
f2dµα −

(∫
|f |pdµα

) 2
p ≤ C(2 − p)2(1− 1

α
)

∫
(f ′)2dµα

for smooth enough f . For α = 2 these inequalities are due to Beckner
[13]. Inequalities (1.3) interpolate between Poincaré and log-Sobolev. They
enjoy the tensorisation property and imply dimension free concentration
with decay e−Kt

α
as expected. Obviously [36] was the starting point of

an extension of the log-Sobolev approach to concentration, encompassing
more general behaviors. Recently two of us simplified the proof of (1.3) and
characterized all measures on R satisfying the same property [12] (such a
criterion for log-Sobolev already existed, thanks to Bobkov and Götze [15]).
See [20] for other developments. Inequalities (1.3) above are part of a more
general family denoted Φ-Sobolev inequalities. A study of this family in
connection with some aspects of semi-group theory is done in [25].

The initial goal of this work is to obtain a precise dimension free isoperi-
metric inequality for µ⊗n

α when α ∈ (1, 2). Namely we want to prove that
there exists a constant C such that for all n ∈ N

(1.4) (µ⊗n
α )s(∂A) ≥ Cµ⊗n

α (A)
(

log
( 1

µ⊗n
α (A)

))1− 1
α

,

for all A such that µ⊗n
α (A) ≤ 1

2
, where µs(∂A) denotes the surface measure

of A (see section 8). This bound is known for α = 1 [16] and α = 2 [7]
and can be deduced from [14] in dimension 1. So (1.4) is exactly what is
expected. This result is stronger than the concentration result. Indeed it
implies that for all n and A ⊂ R

n with µ⊗n
α (A) = µα((−∞, t]) one has

µ⊗n
α

(
A+ hBn

2

) ≥ µα
(
(−∞, t+ h/K]

)
.

This interpolates between (1.2) and (1.1).
Inequality (1.4) will be shown in Theorem 46 as the achievement of a

somewhat intricate story. Actually, we prove much more and develop several
useful methods on the way. They should find a field of applications in the
study of empirical processes or in statistical physics.

Before describing the organization of the paper, let us explain that our
proof relies on a method initiated by Ledoux [37] and improved in [7]. It
can be summarized as follows: any integrability improving property of a
semigroup with curvature bounded from below provides isoperimetric in-
formation for the invariant measure. Hence our problem translates to a
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question on the semigroup (Pα
t )t≥0 for α ∈ (1, 2). However, a theorem of

Høegh-Krohn and Simon [34] shows that Pα
t is never continuous from L

2(µα)
to L

2+ε(µα). Since the L
p scale is too rough for our problem, we analyze

the regularizing properties in appropriate scales of Orlicz spaces and ask
whether the semigroup maps L

2(µα) into a smaller Orlicz space.
Section 2 contains the required elements on Orlicz spaces.
Section 3 presents a sufficient condition on the Young function τ for Qα

t

(a slightly modified Pα
t ) to map continuously L

2 into Lτ , for a fixed t. This
condition relies on the probabilistic representation of Pα

t (Girsanov transfor-
mation) and on martingale methods inspired by [35, 21]. Unfortunately the
method cannot reach the contraction property (only boundedness, simply
called τ -Orlicz hyperboundedness) and does not easily yield explicit bounds.
The criterion readily extends to certain perturbations of an ultracontractive
semi-group.

In order to get contraction results and explicit bounds, we build in Sec-
tion 4 the full analogue of Gross theory. Following [22] we start with the
analogue of a result by Høegh-Krohn and Simon (Theorem 4): if Pt0 is
continuous from L

2(µ) into Lτ (µ) then µ satisfies a defective logarithmic
Orlicz-Sobolev inequality. This is actually a particular F -Sobolev inequality
as studied in [57, 30] (the notion apparently goes back to Concordet). For
the |x|α Boltzmann measure µα, it is equivalent (see (4.8)) to the following
result of Rosen [49]: there exist A and B such that for

∫
f2e−2|y|αdy = 1,

(1.5)

∫
f2(y)

(
log+(|f(y)|)

)2(1− 1
α

)

e−2|y|αdy ≤ A

∫
|∇f |2e−2|y|αdy +B.

See Adams [1] for extensions and Zegarlinski [59] for an application of Rosen
type inequalities to the study for Gibbs measures with non-Gaussian tails.

Next we consider homogeneous F -Sobolev inequalities. One of our main
results is Theorem 6 where we obtain the equivalence between a F -Sobolev
inequality and the τq-Orlicz-hyperboundedness (or hypercontractivity) of
the whole semigroup for τq(x) := xpeqF (xp). Under a few assumptions on F ,
the time evolution of the regularizing effect is quantified. A weak form of
part of these results appeared in [30, Theorem 1.2 and Theorem 2.4]. These
authors proved that a particular tight F -Sobolev inequality is equivalent to
Orlicz-hyperboundedness for some time. Their motivation was a criterion
for the generator to have a non-empty essential spectrum (see [30, 57] for
connections with super-Poincaré inequalities). By Theorem 6, a tight F -
Sobolev inequality for a nonnegative F guarantees that the semigroup is
Orlicz-hypercontractive. We conclude this section by extending the well
known inequality of Rothaus [50]: under spectral gap assumption this allows
to turn certain defective F -Sobolev inequalities into tight ones.
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Section 5 provides a thorough study of Sobolev type inequalities. In the
Gaussian context the log-Sobolev inequality is canonical and has plenty of
remarkable properties: it tensorizes, provides concentration via Herbst ar-
gument, hypercontractivity and entropy decay along the semigroup. In our
more general setting, in particular for µα, α ∈ (1, 2), no such miracle hap-
pens. Several Sobolev inequalities are available. However none of them con-
centrates all good properties. This is why we undertake a precise study of
Beckner type inequalities, of homogeneous F -Sobolev inequalities and addi-
tive ϕ-Sobolev inequalities also called Φ-Entropy inequalities (wee shall not
discuss the latter in terms of exponential decay of Φ-entropy. See [25, 58]).
Our strategy is to provide each inequality with a simpler reduced form rela-
ting the measure of sets to their µ-capacity. This notion was alluded to by
the first and last-named authors in [12]. Here we use it systematically in the
spirit of Maz’ja [42]. Note that the probabilistic setting is delicate since con-
stant functions are equality cases in all our inequalities. Our approach is an
extension to any dimension of the criteria on the real line recently obtained
through Hardy inequalities [15, 12]. It provides new criteria and equivalences
between several Sobolev inequalities. A final figure summarizes the situation.

Section 6 deals with the consequences of generalized Beckner inequalities
for the concentration of measure. They are immediate from the method of
Lata�la-Oleszkiewicz, and where discussed independently by Wang [56]. Our
contribution here comes from our sharp criteria for these inequalities. In
particular we give general neat conditions for products of measures on R to
enjoy dimension free concentration with rate e−Φ(t) where Φ(t) is convex,
but less than t2. Under reasonable assumptions the criterion is satisfied by
the measure e−Φ(t)/Z itself, so the concentration is sharp. For other results
in connection with mass transportation, see also [58, 23, 29].

Section 7 illustrates all the previous results in the case of |x|α Boltzmann
measures. In this concrete situation we explain how to deal with the tech-
nical conditions involved. We also develop a perturbation argument similar
to the one of [21, section 4].

The final section deduces isoperimetric inequalities from semigroup hy-
perboundedness properties. The claimed infinite dimensional isoperimetric
bound (1.4) is derived. As a consequence a family of comparison theorems
is provided.

For sake of clarity we decided not to develop our argument in its full
generality. However, most of our results easily extend to more general situ-
ations, encompassing diffusion operators on Riemannian manifolds. This is
the case of the Gross-Orlicz theory, of the reductions to inequalities between
capacity and measure. The final isoperimetric lower bounds would work
when the curvatures of the generators is bounded from below.
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2. Orlicz hypercontractivity

In this section we discuss a weakened form of hypercontractivity and hyper-
boundedness, replacing L

p spaces by Orlicz spaces. We start with recalling
basic notions about these spaces. Some definitions are not the usual ones
used e.g. in the book by Rao and Ren [46].

In the sequel we consider a complementary pair (τ ∗, τ) of continuous and
even Young’s functions (i.e. τ ∗ is the Fenchel-Legendre dual function of τ ,
both being convex functions vanishing at the origin) satisfying

(2.1) lim
y→+∞

τ(y)

y2
= +∞ and lim

y→+∞
τ(y)

yp
= 0 for p > 2.

It follows that

(2.2) lim
y→+∞

τ ∗(y)

y2
= 0 and lim

y→+∞
τ ∗(y)

yp
= +∞ for p < 2.

We assume that τ and τ ∗ both satisfy the ∆2 condition (i.e. τ(2y) ≤ K τ(y)
for some K > 1 and y ≥ y1 ≥ 0, and a similar result for τ ∗ with possibly
different K∗ and y∗1). It follows that they both satisfy the ∇2 condition too
(i.e. 2l τ(y) ≤ τ(ly) for some l > 1 and y ≥ ȳ1 ≥ 0 and similarly for τ ∗ with
l∗ and ȳ∗1), see [46, p. 22, 23].

We also assume that the pair (τ, τ ∗) satisfies τ(0) = τ ∗(0) = 0. The space
Lτ (µ) is the space of measurable functions f such that

(2.3) Iτ (f)
def
=

∫
τ(|f |)dµ < +∞.

Thanks to the ∆2 property, Lτ and Lτ∗ are linear spaces. We shall use two
norms on each space,

Nτ (f)
def
= inf

{
u > 0; Iτ

(f
u

)
≤ τ(1)

}
,(2.4)

‖f‖τ def
= sup

{∫
|fg|dµ;Nτ∗(g) ≤ 1

}
,

with similar definitions for τ ∗. The first one is called the gauge or Luxemburg
norm.

Note that Nτ is unchanged when τ is multiplied by a positive constant.
Hence if there exists α > 0 such that α τ(1) + α τ ∗(1/α) = 1 , we may
consider the pair (η, η∗) where η = ατ . It is normalized in the sense that
η(1) + η∗(1) = 1. In particular if τ ′(1) exists and is positive, we may take
η = τ/τ ′(1). However, in general, this normalization is not assumed.
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With our definitions, and thanks to the regularity properties of τ and τ ∗ it
is known that for f ∈ Lτ and g ∈ Lτ∗ it holds (see [46, Proposition 1, p. 58])

Iτ

(
f

Nτ (f)

)
= τ(1) and Nτ (1I) = ‖1I‖τ = 1.

The analogue of Hölder’s inequality is
∫ |fg|dµ ≤ (τ(1)+τ ∗(1))Nτ (f)Nτ∗(g).

It implies that

(2.5) ‖f‖τ ≤ (τ(1) + τ ∗(1))Nτ(f).

The ∆2 condition ensures that (Lτ , Nτ ) is a reflexive Banach space with
dual space (Lτ∗ , ‖·‖τ∗) [46, Theorem 6, p. 105]. Also note that Nτ and ‖·‖τ
are equivalent (see [46, (18), p. 62 ]) and that the subset of bounded functions
is dense in Lτ . The same holds when we replace τ by τ ∗.

Finally remark that if Nτ (f) ≥ 1,

τ(1) = Iτ

( f

Nτ (f)

)
≤ 1

Nτ (f)
Iτ (f),

so that

(2.6) Nτ (f) ≤ max
(

1,
Iτ (f)

τ(1)

)
.

Conversely if f(x) ≥ Nτ (f)y1 (recall the definition of ∆2) then

τ(f(x)) = τ
(
Nτ (f)

f(x)

Nτ (f)

)
≤ K

log(Nτ (f))
log(2)

+1τ
( f(x)

Nτ (f)

)
.

It follows that

Iτ (f) ≤ τ(Nτ (f)y1) +K
log(Nτ (f))

log(2)
+1τ(1).

Remark 1. Our definitions of norms on Lτ are not standard. Our choice
ensures that the constant function 1I has norm one in all spaces. If we
replace τ(1) by 1 in the definition of Nτ we obtain the usual gauge norm
N1
τ . It is equivalent to Nτ . Indeed (2.6) implies

Nτ (f) ≤ max
(

1,
1

τ(1)

)
N1
τ (f),

and a similar argument yields N1
τ (f) ≤ max(1, τ(1))Nτ(f). Our definition

of ‖·‖τ does not coincide with the usual Orlicz norm [46, Definition 2, p. 58],
but it is natural by duality.
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We are ready to state our main definitions.

Definition 1 (Orlicz-hyperboundedness). We say that a µ-symmetric semi-
group (Pt)t≥0 is Orlicz-hyperbounded if there exist t > 0, and a Young func-
tion τ with

lim
y→+∞

τ(y)

y2
= +∞ and lim

y→+∞
τ(y)

yp
= 0 for p > 2,

such that Pt is a continuous mapping from L
2(µ) into Lτ (µ).

Definition 2 (Orlicz-hypercontractivity). We say that a µ-symmetric semi-
group (Pt)t≥0 is Orlicz-hypercontractive if there exist t > 0 and a Young
function τ as in Definition 1 such that Pt is a contraction from L

2(µ) into
(Lτ (µ), Nτ ). Equivalently Pt is a contraction from (Lτ∗(µ), ‖·‖τ∗) into L

2(µ).

Thanks to Jensen’s inequality, for all s > 0, Ps is a contraction in both
(Lτ (µ), Nτ ) and (Lτ∗(µ), ‖·‖τ∗) with norm 1, achieved by constant functions.
In particular if the contraction property in Definition 2 holds for t, it holds
for all s > t.

The next section gives a criterion for a semi-group to be Orlicz-hyper-
bounded.

3. Orlicz hyperboundedness for |x|α and general Boltz-
mann measures

First we present our argument for the potential |x|α, α ∈ (1, 2). Actually
the method requires C2 regularity so we prefer to work with a well behaved
modification of the latter. For example we may consider the function uα
defined on R by

(3.1) uα(x) =

{ |x|α for |x| > 1
α(α−2)

8
x4 + α(4−α)

4
x2 + (1 − 3

4
α + 1

8
α2) for |x| ≤ 1.

It is easy to see that uα is C2, convex and bounded below by 1− 3
4
α+ 1

8
α2 > 0.

One can also check that |x|α ≤ uα(x) ≤ max(1, |x|α), for all x ∈ R. The
associated Boltzmann probability measure on R

n is defined as

(3.2) ν⊗nα (dx) = Z−n
α e−2

�n
i=1 uα(xi)dx = Z−n

α e−2Uα,n(x)dx

where Zα is the proper normalizing constant and Uα,n(x)
def
=
∑n

i=1 uα(xi).
For notational convenience we shall write Uα for Uα,n. Similarly the forth-
coming objects depend on the dimension n. This dependence will be recalled
through the notation ν⊗nα only.
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To the Boltzmann measure is associated a symmetric semi-group (Pα
t )t≥0

generated by the operator

Aα =
1

2
∆ −∇Uα · ∇.

One can show (see [51], [22, Section 7] or [21]) that the semi-group is given by

(3.3)
(
Pα
t h
)
(x) = eUα(x)

E
Px [h(Xt)e

−Uα(Xt)Mt],

where Px is the Wiener measure such that Px

(
X0 = x

)
= 1 (i.e. under Px,

X. is a n-dimensional Brownian motion starting from x) and Mt is defined as

(3.4) Mt = exp
(1

2

∫ t

0

(∆Uα − |∇Uα|2)(Xs)ds
)
.

In this section, we have chosen the probabilistic normalization of the Lapla-
cian 1

2
∆ in order to avoid extra variance on the Brownian motion.

Since eUα belongs to all L
p(ν⊗nα ) for p < 2, an almost necessary condi-

tion for Orlicz hypercontractivity is that Pα
t (eUα) belongs to some Lτ (ν

⊗n
α ).

In [21, Section 3], the “Well Method” of Kavian, Kerkyacharian and Roynet-
te [35] is pushed further and allows to estimate Pα

t (eUα) when α ≥ 2. In the
following, we extend this method to the case 1 < α < 2.

Theorem 1. Let α ∈ (1, 2) and n ≥ 1. Let τ be a Young function satisfying
τ(y) = y2 ψ(y) for some positive and non decreasing function ψ going to +∞
at infinity. Assume that ψ satisfies the ∆2 condition: there exists constants
k, y1 such that ψ(2y) ≤ kψ(y) provided y > y1. Let ν⊗nα be the Boltzmann
measure defined on R

n in (3.2).
Then Pα

t (eUα) belongs to Lτ (ν
⊗n
α ) if there exists a constant C < α2 such

that ∫
Rn

ψ(eUα(x))e−CtUα(x)2−2/α

dx < +∞.

The proof below can be used to get explicit bounds, depending on n.
Proof. First remark that Uα satisfies

(3.5)
1

2

(
|∇Uα|2(x) − ∆Uα(x)

)
≥ Gα(Uα(x)) − cα = Hα(Uα(x)),

with Gα(y) = α2

2
|y|2(1− 1

α
) and cα = n(1 + 1

2
α(α − 1)), with our choice of

uα for |x| ≤ 1. Since Gα is subbadditive, it is enough to prove the above
inequality in dimension n = 1. We leave the details to the reader. Note that
Hα admits an inverse H−1

α defined on [−cα; +∞) with values in R
+.
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For ε > 0 define the stopping time Tx as

(3.6) Tx = inf

{
s > 0;

1

2

(|∇Uα|2 − ∆Uα
)
(Xs) ≤ Hα

(
Uα(x) − ε

)}
.

Note that for all x ∈ R
n, Tx > 0 Px a.s. provided Uα(x)− ε ≥ 0 and that on

Tx < +∞,

(3.7) Uα(XTx) ≤ H−1
α

(1

2

(|∇Uα|2 − ∆Uα
)
(XTx)

)
≤ Uα(x) − ε.

Introducing the previous stopping time we get

E
Px [Mt] = E

Px [Mt1It<Tx ] + E
Px [Mt1ITx≤t] = A+B,

with

(3.8) A = E
Px [Mt1It<Tx ] ≤ exp

(− tHα(Uα(x) − ε)
)
,

and E
Px [Mt1ITx≤t]. In order to bound B from above we introduce the non-

positive quantity 1
2
(∆Uα − |∇Uα|2) − cα

B = E
Px [Mt1ITx≤t]

≤ ecαtEPx

[
exp
(∫ t

0

(1

2

(
∆Uα − |∇Uα|2

)− cα

)
(Xs)ds

)
1ITx≤t

]
≤ ecαtEPx

[
exp
(∫ Tx

0

(1

2

(
∆Uα − |∇Uα|2

)− cα

)
(Xs)ds

)
1ITx≤t

]
≤ ecαtEPx

[
exp
(∫ Tx

0

(1

2

(
∆Uα − |∇Uα|2

))
(Xs)ds

)
1ITx≤t

]
= ecαtEPx [MTx1ITx≤t].(3.9)

Note that Ns := e−Uα(Xs)Ms is a bounded Px martingale (this can be seen
by the Itô calculus). Hence, Doob Optional Stopping Theorem ensures that
E

PxNt∧Tx = EN0 = e−Uα(x). Thus

(3.10) E
Px [e−Uα(XTx)MTx1ITx≤t] ≤ E

Px

[
e−Uα(Xt∧Tx)Mt∧Tx

]
= e−Uα(x).

According to (3.7), e−Uα(XTx ) ≥ eεe−Uα(x), so that thanks to (3.10),

E
Px [MTx1ITx≤t] ≤ e−ε.

Combining this with (3.9) and using (3.8) we obtain

E
Px [Mt] ≤ e−tHα(Uα(x)−ε) + e−εecαt.
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Choosing ε = βUα(x) for some β < 1 the latter inequality becomes

(3.11) E
Px [Mt] ≤ ecαt

(
e−

t
2
α2
(
(1−β)Uα(x)

)2− 2
α

+ e−βUα(x)
)
,

where for |x| large, the dominating term is the first one since α < 2. Also
note that (3.5) yields Mt ≤ ecαt and the rough bound E

Px [Mt] ≤ ecαt.

Finally Pα
t (eUα) = eUαE

Px [Mt] belongs to Lτ (ν
⊗n
α ) provided∫

Rn

Pα
t (eUα)2ψ

(
Pα
t (eUα)

)
dν⊗nα < +∞.

This is equivalent to∫
Rn

E
Px [Mt]

2ψ
(
eUα(x)

E
Px [Mt]

)
dx < +∞.

Using the above bounds on E
Px [Mt] and the fact that the convergence is not

a problem on bounded sets, this is verified when∫
Rn

e−tα
2
(
(1−β)Uα(x)

)2− 2
α

ψ
(
eUα(x)ecαt

)
dx < +∞.

The ∆2 property of ψ gives the conclusion since when a ≥ 1 and b is large
ψ(ab) ≤ k1+log(a)/ log(2)ψ(b). �

As in [21, Theorem 2.8] we show that Pα
t (eUα) ∈ Lτ (ν

⊗n
α ) is also a suffi-

cient condition for τ -Orlicz hyperboundedness.

Theorem 2. Let τ be as in Theorem 1. Let t > 0. If Pα
t (eUα) ∈ Lτ (ν

⊗n
α )

then (Pα
s )s≥0 is τ -Orlicz hyperbounded.

Proof. Recall that thanks to (3.5), Mt ≤ ecαt. On the other hand, the
Brownian semi-group (Ps)s≥0 on R

n is ultracontractive and ‖Ps‖L2(dx)→L∞(dx)

= (4πs)−
n
4 (see [27]).

Now pick some smooth function f on R
n with compact support. Since

|f |e−Uα ∈ L
2(dx) and using the Markov property, for s > 0 and t > 0, it

holds

E
Px

[
Mt+s

(
e−Uα |f |)(Xt+s)

]
= E

Px

[
MtE

PXt

[
Ms

(
e−Uα |f |)(X ′

s)
] ]

≤ ecαsEPx

[
MtPs

(|f |e−Uα
)
(Xt)

]
≤ ecαs(4πs)−

n
4 ‖f‖

L2(ν⊗n
α )E

Px [Mt].

Hence Pt+s|f | ≤ ecαs(4πs)−
n
4 ‖f‖

L2(ν⊗n
α )Pt(e

Uα), and consequently

Nτ

(
Pt+s|f |

) ≤ ecαs(4πs)−
n
4Nτ

(
Pt(e

Uα)
)‖f‖

L2(ν⊗n
α ).

�
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Example 2. An appropriate choice in Theorem 1 is ψ(y) = exp
(
(log |y|)2− 2

α

)
for |y| large enough. According to Theorems 1 and 2, (Pα

t )t≥0 is then τ -Orlicz
hyperbounded for t > 1

α2 .

The previous scheme of proof extends without any change to the general
framework we have introduced. Let us describe the situation.

Let Pt be a µ-symmetric diffusion semi-group on a space E as described in
Section 1, with generator L. For V in the domain D(L) of L, we introduce
the general Boltzmann measure dνV = e−2V dµ and assume that νV is a
probability measure. Under some assumptions it is known that one can
build a νV -symmetric semi-group (PV

t )t≥0, via

(3.12) (PV
t h)(x) = eV (x)

E
Px

[
h(Xt)e

−V (Xt)Mt

]
,

with

Mt = exp
(∫ t

0

(
LV (Xs) − Γ(V, V )(Xs)

)
ds
)
.

In the general case these assumptions are denoted by (H.F) in [21]. Here we
have chosen the usual definition

Γ(V, V ) =
1

2

(
LV 2 − 2V LV

)
.

When E = R
n, L = ∆/2 and µ = dx each of the following conditions

(among others) is sufficient for (3.12) to hold:

(i) there exists some ψ such that ψ(x) → +∞ as |x| → +∞ and ∇V ·
∇ψ − ∆ψ is bounded from below,

(ii)

∫
|∇V |2dνV < +∞.

See e.g. [51, p.26], [21, (5.1)] for the first one, and [24] for the second one.

We introduce the analogue of (3.5):

Assumption (OB). We shall say that V satisfies Assumption OB, if

(i) V is bounded from below by a possibly negative constant d.

(ii) There exist c ∈ R, u0 > 0 and a function G : R
+ → R

+ such that
G(u) → +∞ as u → +∞ and G(u)/(u + 1) is bounded for u ≥ u0,
and such that for all x ∈ E,

Γ(V, V )(x) − LV (x) ≥ G(|V (x)|) − c.

Assumption OB ensures that the dominating term in the analogue of (3.11)
is the former for x large enough.
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Theorem 3. Let τ be as in Theorem 1. If (Pt)t≥0 is ultracontractive and V
satisfies Assumption OB, then the perturbed semi-group (PV

t )t≥0 is τ -Orlicz
hyperbounded as soon as for some C > 0∫

ψ(eV )e−CG(|V |)dµ < +∞.

Remark 3. Assumption OB appeared first in Rosen’s work with G(u) =

u2(1− 1
α

) [49, Theorem 1]. It was used to derive a variant of the logarithmic
Sobolev inequalities for the |x|α Boltzmann measures on R

n. Rosen proved
that his condition is in a sense optimal, see his Theorem 5. He did not
relate his inequality to continuity properties of the associated semi-group.
Furthermore, we think that the meaning of Assumption OB is enlightened
by our probabilistic approach. Rosen’s results and F -Sobolev inequalities
will be discussed in Section 7.

Remark 4. If E = R
n, L = ∆/2, µ = dx and V goes to infinity at infinity,

then the second condition in Assumption OB implies the existence of a
spectral gap, see e.g. [21, Proposition 5.3.(2)].

4. Gross theory for Orlicz hypercontractivity

We explore the relations between Orlicz hyperboundedness and Sobolev in-
equalities for the underlying measure. Since we do not a priori consider a
parametrized family of Orlicz functions, contrary to the family (Lp; p ≥ 2)
used in Gross theory, the extension of this theory to our framework is not
immediate.

In this section we assume that τ and τ ∗ are smooth and increasing on R
+,

hence one to one on R
+. When there is no ambiguity we denote the L

p(µ)
norm of f by ‖f‖p. We assume for simplicity that µ is a probability measure.
The framework is the one described in the introduction.

4.1. An Orlicz version of Høegh-Krohn and Simon Theorem

Høegh-Krohn and Simon [34] showed that a measure µ satisfies a possibly
defective logarithmic Sobolev inequality as soon as the corresponding semi-
group is continuous from L

2(µ) into L
p(µ) for some time and some p > 2.

A proof using semi-group techniques appears in [4, Theorem 3.6]. Another
proof is given in [22, Corollary 2.8].

We follow the route in [22] in order to derive a functional inequality
for an Orlicz hyperbounded semi-group. The starting point is the following
particular case of Inequality (2.4) in [22]: let D be a nice core algebra (in the
case of R

n we may choose the smooth compactly supported functions plus
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constants, see [22] for details). Let (Pt)t≥0 be a µ-symmetric semi-group.
Then for all t ≥ 0, for all non-negative f ∈ D with

∫
f2dµ = 1, and all

positive and bounded h,∫
f2 log h dµ ≤ t

2
E(f, f) + log

∫
fhPtfdµ.

If Pt maps L
2 into some (Lτ , Nτ ) with operator norm C, we obtain∫
f2 log h dµ ≤ t

2
E(f, f) + log (‖fh‖τ∗Nτ (Ptf))

≤ t

2
E(f, f) + logC + log ‖fh‖τ∗ ·

Choosing h such that the last term in the above sum is bounded, yields a
functional inequality reminding the logarithmic Sobolev inequality. A nat-
ural choice is

h(f) =
(τ ∗)−1(f2τ ∗(1))

|f | ,

for which Iτ∗(|f |h) =
∫
τ ∗(1)f2dµ = τ ∗(1). It follows that Nτ∗(fh) = 1 and

by (2.5) that ‖fh‖τ∗ ≤ τ(1) + τ ∗(1). We have shown

Theorem 4. Let t0 > 0. Let (Pt)t≥0 be a µ-symmetric semi-group. If Pt0
is continuous from L

2(µ) into (Lτ(µ), Nτ ) with operator norm C(t0, τ), then
for all f ∈ D the following defective logarithmic Orlicz Sobolev inequality
holds

(DLOSI) Entτ (f) ≤ aE(f, f) + b‖f‖2
2,

with a = t0
2
, b = log(C(t0, τ)) + log(τ(1) + τ ∗(1)) and

Entτ (f)
def
=

∫
f2 log

(
(τ ∗)−1(τ ∗(1)(f/‖f‖2)

2)

|f/‖f‖2|
)
dµ

provided the function

y 
→ y2 log

(
(τ ∗)−1(y2τ ∗(1))

|y|
)

can be continuously extended up to the origin. Here (τ ∗)−1 is the inverse
function of τ ∗ and not 1/τ ∗.

In particular if (Pt)t≥0 is τ -Orlicz hypercontractive and τ(1) + τ ∗(1) = 1,
(DLOSI) is tight i.e. becomes

(TLOSI) Entτ (f) ≤ aE(f, f).

Inequalities like (DLOSI) were already discussed in the literature, as a
particular F -Sobolev inequalities.
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Remark 5. In our setting (τ ∗)−1(y) >>
√
y. Hence Entτ (f) < +∞ is

stronger than L2-integrability

Example 6. If we formally replace τ(y) by yp for some p > 2, then (τ ∗)−1(y)
behaves like y1/q for the conjugate q of p. Hence we recover the usual loga-
rithmic Sobolev inequality as in the result by Høegh-Krohn and Simon.

Example 7. For the |x|α Boltzmann measures, the results of the previous
section (Example 2) and the above theorem provide an Orlicz Sobolev in-
equality. In this case we do not have a very explicit formula for Entτ , but
only an asymptotic behavior, i.e.

(4.1) log

(
(τ ∗)−1(y2τ ∗(1))

|y|
)

≈ (log |y|)2− 2
α ,

as y → +∞. See Example 13 in this section for details. Here a ≈ b means
that ca ≤ b ≤ Ca for some universal constant c and C.

The next section provides a converse to Theorem 4 in the framework of
general F -Sobolev inequalities.

4.2. A Gross-Orlicz Theorem

Our main result is Theorem 6 below. It gives the equivalence between the
homogeneous F -Sobolev inequality and the Orlicz hypercontractivity. This
extends the standard theorem of Gross [31].

Recall that the probability measure µ satisfies a log-Sobolev inequality
if there exists a constant CLS such that for any smooth enough function f ,

(4.2)

∫
f2 log

(
f2

µ(f2)

)
dµ ≤ CLS

∫
|∇f |2dµ,

where µ(f2) is a short hand notation for
∫
f2dµ and |∇f |2 stands for Γ(f, f).

The following theorem is the celebrated Gross Theorem ([31], see also [3])
relating this property to the hypercontractivity of the semi-group (Pt)t≥0.

Theorem 5 ([31]). Let µ be a probability measure. The following holds:

(i) Assume that µ satisfies a log-Sobolev inequality (4.2) with constant CLS,
then, for any function f , any q(0) > 1,

‖Ptf‖q(t) ≤ ‖f‖q(0),

where q(t) = 1 + (q(0) − 1)e4t/CLS .

(ii) Assume that for any function f ,

‖Ptf‖q(t) ≤ ‖f‖2

with q(t) = 1+e4t/c for some c > 0. Then the probability measure µ satisfies
a log-Sobolev inequality (4.2) with constant c.
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A natural extension of the log-Sobolev inequality is the homogeneous F -
Sobolev inequality. Let F : R

+ → R be a non-decreasing function satisfying
F (1) = 0. A probability measure µ satisfies an homogeneous F -Sobolev

inequality if there exist two constants CF and C̃F such that for any smooth
enough function f ,

(4.3)

∫
f2F

(
f2

µ(f2)

)
dµ ≤ CF

∫
|∇f |2dµ+ C̃F

∫
f2dµ.

If C̃F = 0 (resp. �= 0) the inequality is tight (resp. defective). We shall use
this terminology only when it is necessary.

We have the following result

Theorem 6 (Gross-Orlicz). Fix p > 1. Let F : R
+ → R be a C2 non-

decreasing function satisfying F (1) = 0. Define for all q ≥ 0, τq(x) :=
xpeqF (xp).

(i) Assume that

• there exists a non negative function k on R
+ such that for all q ≥ 0:

τ ′′q τq ≥ k(q)
4
τ ′q

2 (hence τq is a Young function),

• there exists a non negative function � on R
+ and a constant m ≥ 0

such that τq(x)F (xp) ≤ �(q)τq(x)F (τq(x)) + m, for all q ≥ 0 and all
x ≥ 0,

• the measure µ satisfies the homogeneous F -Sobolev inequality (4.3)

with constants CF and C̃F .

Then, for all non-decreasing C1 functions q : R
+ → R

+ with q(0) = 0 and

satisfying q′ ≤ k(q)
�(q)CF

, the following holds for all f ,

Nτq(t)
(Ptf) ≤ e

1
p
[mq(t)+ �CF

� q(t)
0 �(u)du]‖f‖p.

(ii) Conversely assume that there exist two non-decreasing functions,
q, r : R

+ → R
+, differentiable at 0, with q(0) = r(0) = 0, such that for

any f ,

(4.4) Nτq(t)
(Ptf) ≤ er(t)‖f‖p.

Then µ satisfies the following homogeneous F -Sobolev inequality: for all f
smooth enough∫

f2F

(
f2

µ(f2)

)
dµ ≤ 4(p− 1)

pq′(0)

∫
|∇f |2dµ+

pr′(0)

q′(0)

∫
f2dµ.
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Remark 8. Note that by our assumptions on τq, Nτq(t)
(f) is well defined.

Furthermore when m = 0 the previous result states that the Orlicz hy-
percontractivity is equivalent to the tight homogeneous F -Sobolev inequality
(C̃F = 0).

Proof. We follow the general line of the original proof by Gross [31], see
also [3]. It is based on differentiation.

Without loss of generality we can assume that f is non negative. Then,
for a general C1 non decreasing function q : R

+ → R
+ satisfying q(0) = 0,

let N(t) := Nτq(t)
(Ptf). For simplicity, we set T (x, p) := τp(x). Then, by

definition of the gauge norm (2.4) we have∫
T

(
Ptf

N(t)
, q(t)

)
dµ = 1 ∀t ≥ 0.

Thus, by differentiation, we get

N ′(t)
N2(t)

∫
Ptf∂1T

(
Ptf

N(t)
, q(t)

)
dµ =

1

N(t)

∫
LPtf∂1T

(
Ptf

N(t)
, q(t)

)
dµ

+q′(t)
∫
∂2T

(
Ptf

N(t)
, q(t)

)
dµ,

or equivalently, if g := Ptf
N(t)

,

(4.5)
N ′

N

∫
g ∂1T (g, q)dµ =

∫
Lg ∂1T (g, q)dµ + q′

∫
∂2T (g, q)dµ.

Here ∂1 and ∂2 are short hand notations for the partial derivative with
respect to the first and second variable respectively.

Let us start with the proof of the second part (ii) of the Theorem. For
simplicity, assume that N(0) = ‖f‖p = 1. Take t = 0 in the latter equality
gives

pN ′(0)

∫
fpdµ = p

∫
Lf · fp−1dµ+ q′(0)

∫
fpF (fp)dµ,

because g(0) = f , ∂1T (f, q(0)) = pfp−1 and ∂2T (f, q(0)) = fpF (fp) (recall
that q(0) = 0 and N(0) = 1). Using the integration by parts formula∫

Lf · φ(f)dµ = − ∫ |∇f |2φ′(f)dµ, we get

p

∫
Lf · fp−1dµ = −p(p− 1)

∫
|∇f |2fp−2dµ =

−4(p− 1)

p

∫
|∇fp/2|2dµ.

Now, it follows from the bound (4.4) that N ′(0) ≤ r′(0)‖f‖p. This implies

pr′(0)‖f‖p
∫
fpdµ ≥ −4(p− 1)

p

∫
|∇fp/2|2dµ+ q′(0)

∫
fpF (fp)dµ.

Since ‖f‖p = 1, this achieves the proof of (ii).
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The proof of part (i) is more technical. By a simple computation one
can check that x∂1T (x, q) = pT (x, q) + pqx2pF ′(xp)eqF (xp). Since F is non
decreasing and g ≥ 0, we get when N ′(t) ≥ 0

N ′

N

∫
g∂1T (g, q)dµ ≥ pN ′

N

∫
T (g, q)dµ =

pN ′

N
.

On the other hand, using once again the integration by parts formula
∫

Lf ·
φ(f)dµ = − ∫ |∇f |2φ′(f)dµ, and our assumption on τq,∫

Lg∂1T (g, q)dµ = −
∫

|∇g|2∂11T (g, q)dµ

≤ −k(q)

∫
|∇g|2∂1T (g, p)2

4T (g, p)
dµ

= −k(q)

∫
|∇
√
T (g, q)|2dµ.

Next, ∂2T (x, q) = T (x, q)F (xp) ≤ �(q)T (x, q)F (T (x, q)) +m by hypothesis.
Thus, (4.5) becomes

pN ′

N
≤ −k(q)

∫
|∇
√
T (g, q)|2dµ+ �(q)q′

∫
T (g, q)F (T (g, q))dµ +mq′.

Note that the right hand side of this inequality contains the three terms ap-
pearing in the homogeneous F -Sobolev inequality (4.3) applied to

√
T (g, q)

(recall that
∫

(
√
T (g, q))2dµ = 1). In consequence, applying the homoge-

neous F -Sobolev inequality (4.3) to
√
T (g, q) gives

pN ′

N
≤ q′(m+ C̃F �(q)) + [−k(q) + q′�(q)CF ]

∫
|∇
√
T (g, q)|2dµ.

If q′ ≤ k(q)
CF �(q)

, it follows that pN ′
N

≤ q′(m + C̃F �(q)). This we proved when

N ′(t) ≥ 0. It is obviously true when N ′(t) < 0. Thus by integration

N(t) ≤ N(0)e
1
p
[mq(t)+ �CF

� q(t)
0 �(u)du].

Noting that N(0) = ‖f‖p achieves the proof. �
Remark 9. Since the homogeneous F -Sobolev inequality (4.3) recover the

log-Sobolev inequality (4.2) (with F = log and C̃F = 0), it is natural to ask
whether the previous Theorem recover the classical Gross Theorem or not.

So, take F = log. Then, τq(x) = xp(q+1),

∂

∂q
τq(x) = pτq(x) log(x) =

1

q + 1
τq(x)F (τq(x)),
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and thus, we can choose �(q) = 1
q+1

and m = 0. Moreover, it is easy to see

that τ ′′q τq = p(q+1)−1
p(q+1)

τ ′q
2 ≥ p−1

p
τ ′q

2, hence k(q) = 4p−1
p

. Applying the Theorem,

we get that if µ satisfies a log-Sobolev inequality (4.2) with constant CLS
(C̃F = 0), then, for any function f and any t ≥ 0,

‖Ptf‖p(q̃(t)+1) ≤ ‖f‖p,

where q̃(t) = −1 + e
4

(p−1)t
pCLS . The function p(q̃(t) + 1) = pe

4
(p−1)t
pCLS is less than

q(t) = 1 + (p− 1)e4t/CLS of Theorem 5.

Let us make some additional remarks on the hypotheses of the Theorem.

Remark 10. Let mF := |minx∈(0,1) xF (x)| and assume that mF < ∞. With
our choice of τq(x) in the Theorem, one can choose l ≡ 1 and m = mF in
order to have τq(x)F (xp) ≤ �(q)τq(x)F (τq(x)) +m.

Moreover, if F is non negative, then mF = 0. Thus, in that particu-
lar case, the previous Theorem states that the Orlicz hypercontractivity is
equivalent to the tight homogeneous F -Sobolev inequality.

Remark 11. The condition τq(x)F (xp) ≤ �(q)τq(x)F (τq(x)) +m is technical.
It comes from our choice of τq = xpeqF (xp). In view of the proof of Theorem 6
the most natural choice for τq would be the solution of{

∂
∂q
τq(x) = τq(x)F (τq(x))

τ0(x) = xp .

Unfortunately, it is not explicit in general. This is why we preferred the
expression xpeqF (xp) which has the same asymptotics when x tends to infinity.

Remark 12. The hypothesis τ ′′q τq ≥ k(q)
4
τ ′q

2 can be read as: τ
1− k(q)

4
q is a convex

function. Note that if xF ′(x) → 0 and xF ′′(x) → 0 when x → 0, τ
1− k(q)

4
q

is no more convex if k(q) > 4(p− 1)/p. Thus, we cannot hope for a better

exponent than k(q) = 4(p− 1)/p (i.e. 1 − k(q)
4

= 1
p
).

Now, we give a sufficient condition, involving F , insuring that τq satisfies
that condition.

Proposition 7. Let F : R
+ → R be a C2 non decreasing function satisfying

F (1) = 0. Fix p > 1. Define for all q ≥ 0, τq(x) = xpeqF (xp). Assume that
there exists a constant k ≤ 4(p− 1)/p such that for any x ≥ 0,

xF ′′(x) + (2 +
p− 1

p
− k

2
)F ′(x) ≥ 0,

Then, for any q ≥ 0, τq satisfies τ ′′q τq ≥ k
4
τ ′q

2.
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Proof. Note that for q = 0 the conclusion is clearly true. Suppose q > 0.
It is not difficult to check that for all x > 0,

τ ′′q (x)τq(x)

τ ′q
2(x)

= 1 +
1

p

−1 + q(p− 1)xpF ′(xp) + pqx2pF ′′(xp)
(1 + qxpF ′(xp))2

.

Thus, it is enough to prove that for any x > 0,

−1

p
− k

4
+ 1 +

(
q(p− 1)

p
− 2q

(
k

4
− 1

))
xF ′(x)

+qx2F ′′(x) −
(
k

4
− 1

)
q2x2F ′(x)2) ≥ 0.

Note that −1
p
≥ k

4
− 1 because k ≤ 4(p− 1)/p, hence, it is sufficient to have(

q(p− 1)

p
− 2q

(
k

4
− 1

))
xF ′(x) + qx2F ′′(x) −

(
k

4
− 1

)
q2x2F ′(x)2 ≥ 0.

Since x > 0, k
4
− 1 ≤ 0 and F ′(x)2 ≥ 0, it is satisfied when(

p− 1

p
− 2

(
k

4
− 1

))
F ′(x) + xF ′′(x) ≥ 0

which is our condition. This achieves the proof. �

4.3. τ -Entropy and F -Sobolev inequalities

In the previous two subsections we put forward two relations between F -Sobo-
lev inequalities and τ -hyperboundedness properties. On one hand we showed
that τ -hyperboundedness implies an F -Sobolev inequality with

F (y2) = log

(
(τ ∗)−1(y2τ ∗(1))

|y|
)
.

On the other hand our analogue of Gross Theorem shows that an F -Sobo-
lev inequality implies Orlicz hyperboundedness with say τ(y) = y2eF (y2).
The goal of this paragraph is to show that these two relations are almost
the same.

First, for τ(y) = y2ψ(y) = y2eF (y2) as above, it is easily seen that

(τ ∗)−1(y) =
√

2yη(y),

where η goes to +∞ at infinity. Furthermore (see [46, Proposition 1 (ii)
p.14]), for all y > 0

(4.6) y ≤ τ−1(y)(τ ∗)−1(y) ≤ 2y.
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We apply the latter to y = τ(z) to get (ψ(τ−1(z)))
1
2 ≤ √

2η(z) from the left-

hand inequality. Since τ−1 is a non decreasing function and τ−1(z) ≥ cεz
1
2
−ε

for all 1
2
> ε > 0 for some cε, we certainly have

√
2η(z) ≥ (ψ(cεz

1
2
−ε))

1
2 .

Hence provided

(4.7) ψ(y) ≥ dε
(
ψ(y

2
1−2ε )

)kε ,

for some positive kε and dε, we get that at least for large |y| (using condi-
tion ∇2), log(ψ(y)) ≤ Kε log(η(y)). Also note that (4.6) furnishes

η(z) ≤
√

2ψ(τ−1(z)) ≤
√

2ψ(
√
z) ≤ C

√
ψ(z) ,

for z large enough. Hence under (4.7) and for large |y|, there exists two
constant c and C such that c log(ψ) ≤ log(η) ≤ C log(ψ). In addition

log

(
(τ ∗)−1(y2τ ∗(1))

|y|
)

≈ log
(
η(τ ∗(1)y2)

)
,

so that for |y| large enough

log

(
(τ ∗)−1(y2τ ∗(1))

|y|
)

≈ log
(
ψ(cy2)

)
where we recall that a ≈ b if there exist some universal constants c1, c2 such
that c1a ≤ b ≤ c2a.

Finally note that for a defective F -Sobolev inequality we may replace F
by F̃ that behaves like F at infinity, up to the modification of both constants
CF and C̃F in (4.3). Hence provided ψ satisfies (4.7) we may choose

F = log(ψ) or F = log(η).

Example 13. Consider the |x|α Boltzmann measure. According to Example
2, Theorem 4 and the above discussion above, there exist A and B such that
for
∫
f2e−2|y|αdy = 1,

(4.8)

∫
f2(y)

(
log+(|f(y)|)

)2(1− 1
α

)

e−2|y|αdy ≤ A

∫
|∇f |2e−2|y|αdy +B.

The latter is exactly the inequality shown by Rosen in [49, Theorem 1]. His
proof relies on Sobolev inequalities in R

n and results on monotone opera-
tors. Of course F = (log+)β does not satisfy the regularity assumptions in
Theorem 6, so that we cannot apply it. But smoothing this function, we
may obtain similar inequalities. This will be discussed in Section 7.

Example 14. We may take F (y) = G(log(y)) in the general setting of The-
orem 3, provided, in addition to assumption OB, G satisfies

∫
e−qG(|V |)dµ <

+∞, for some q > 0, and conditions ∆2 and ∇2.
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4.4. From hyperboundedness to hypercontractivity

Most of the interesting properties of hyperbounded semi-groups are in fact
consequences of their possible hypercontractivity. It is well known that
a defective log-Sobolev inequality and a Poincaré inequality together are
equivalent to a tight log-Sobolev inequality. We shall finish this section
with the proof of a similar statement for F -Sobolev inequalities (we refer to
section 5.4 for additional results).

The first statement is straight forward

Lemma 8. Let µ be a probability measure on R
n. Let F : (0,+∞) → R be

C2 on a neighborhood of 1. Assume that F (1) = 0 and that every smooth
function f satisfies ∫

f2F

(
f2∫
f2dµ

)
≤
∫

|∇f |2dµ.

Then for every smooth function g

(4F ′(1) + 2F ′′(1))

∫ (
g −
∫
gdµ

)2

dµ ≤
∫

|∇g|2dµ.

In other words, setting Φ(x) = xF (x), if Φ′′(1) > 0 one has CP (µ) ≤
1/(2Φ′′(1)) where CP (µ) denotes the Poincaré constant.

Proof. We apply the F -Sobolev inequality to f = 1+εg where g is bounded
and

∫
gdµ = 0 and we let ε to zero. �

Conversely, we first prove an analogue of Rothaus inequality [50]:

Lemma 9 (Rothaus-Orlicz inequality). For any bounded function f , denote
by f̃ the centered f−∫ fdµ. If F is C2 on (0,+∞) with F (1) = 0 and satisfies
(i) F is concave non decreasing, goes to infinity at +∞,
(ii) uF ′(u) is bounded by K(F ).

Then it holds∫
f2F

(
f2

µ(f2)

)
dµ ≤

∫
f̃2F

(
f̃2

µ(f̃2)

)
dµ+ CRot(F )‖f̃‖2

2.

Proof. We follow the proof in [4]. Again it is enough to prove the result
for functions f written as f = 1 + tg for some bounded function g such that∫
gdµ = 0 and

∫
g2dµ = 1. We introduce

u(t)=
f2

µ(f2)
=

(1 + tg)2

1 + t2
, logA(t)=F (u(t) + ε2), logA=F (g2 + ε2),
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for some ε > 0 and define

ϕ(t) =

∫
f2F

(
f2

µ(f2)
+ ε2

)
dµ−

∫
f̃2F

(
f̃2

µ(f̃2)
+ ε2

)
dµ

=

∫
(1 + tg)2 logA(t)dµ− t2

∫
g2 logAdµ.

The variable ε is introduced in order to avoid problems near 0. Simple
calculations yield

ϕ′(t) =

∫ (
2g(1 + tg) logA(t) − 2tg2 logA+ (1 + tg)2A

′(t)
A(t)

)
dµ,

and

ϕ′′(t) =

∫ (
2g2 log

A(t)

A
+ 4g(1 + tg)

A′(t)
A(t)

+(1 + tg)2A
′′(t)A(t) − A′2(t)

A2(t)

)
dµ.

It is then easy to see that ϕ(0) = F (1 + ε2) and ϕ′(0) = 0. Thanks to
Taylor-Lagrange formula,

ϕ(t) = F (1 + ε2) +
t2

2
ϕ′′(s),

for some s. Hence what we need is an upper bound for the second derivative,
since t2 = ‖f̃‖2

2.
On one hand one has for all t

log
A(t)

A
= F (u(t) + ε2) − F (g2 + ε2) ≤ 0

if u(t) ≤ g2, and

log
A(t)

A
= F (u(t) + ε2) − F (g2 + ε2) ≤ F ′(g2 + ε2)(u(t) − g2),

if u(t) > g2 since F ′ is non-increasing.
Note that u(t) − g2 = (1 + 2tg − g2)/(1 + t2) ≤ 1. For |g| ≥ 1 we get

that u(t) − g2 ≤ g2. Thus, in this case, log(A(t)/A) ≤ K(F ). For |g| < 1,
u(t) − g2 ≤ 1 yields that∫

2g2 log
A(t)

A
dµ ≤

∫
|g|<1,

u(t)>g2

2g2 log
A(t)

A
dµ+

∫
|g|≥1,

u(t)>g2

2g2 log
A(t)

A
dµ

≤
∫

|g|<1,

u(t)>g2

2g2F ′(g2 + ε2)(u(t) − g2)dµ+ 2K(F )

≤ 4K(F ).



Interpolated inequalities 1017

On the other hand,

A1 =

∫ (
4g(1 + tg)

A′(t)
A(t)

− (1 + tg)2

(
A′(t)
A(t)

)2 )
dµ ≤ 4.

Indeed define

Z =

(∫
(1 + tg)2

(
A′(t)
A(t)

)2

dµ

) 1
2

and remark that, just using Cauchy-Schwarz and
∫
g2dµ = 1, A1 ≤ 4Z−Z2

which is less than 4.
It remains to control the final term A2 =

∫
(1 + tg)2A

′′(t)
A(t)

dµ. This term
may be written in terms of F , namely

A2 =

∫
(1 + tg)2

[
u′2(t)

(
F ′′ + F ′2)(u(t) + ε2) + u′′(t)F ′(u(t) + ε2)

]
dµ.

Since F ′′ ≤ 0 we only look at terms involving F ′. Note that

u′(t) =
2(1 + tg)(g − t)

(1 + t2)2

and

(1 + tg)2u′′(t) = 2u(t)
[(3t2 − 1) + 2gt(t2 − 1) − g2(3t2 − 1)

(1 + t2)2

]
.

According to assumption (ii),

(1 + tg)2u′2(t)F ′2(u(t) + ε2) = u(t)2F ′2(u(t) + ε2)
4(g − t)2

(1 + t2)2

≤ K2(F )
4(g − t)2

(1 + t2)2
≤ 8K2(F )(1 + g2)

while

(1 + tg)2u′′(t)F ′(u(t) + ε2)

≤ 2K(F )
[ 3t2 + 1

(1 + t2)2
+

2|g|t(t2 + 1)

(1 + t2)2
+ g2 (3t2 + 1)

(1 + t2)2

]
≤ 6K(F )(1 + |g| + g2) ≤ 12K(F )(1 + g2).

Integrating with respect to µ yields thatA2 is uniformly bounded from above,
with a bound that does not depend on ε. It remains to let ε go to 0. �
Remark 15. Remark that a smoothed version of F = (log+)2(1− 1

α
) will satisfy

the hypotheses of the Lemma, for 1 ≤ α ≤ 2 (see section 7).
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Remark 16. Using the notations in the previous subsection, we have seen
conditions for F = log(η) to be an appropriate choice. In this case using the
fact that y 
→ √

yη(y) is concave and non decreasing, it is easy to check that
y2(η′′/η)(y) ≤ 3/4 and y(η′/η)(y) ≤ (1/2)

√
y. Though we are not exactly in

the situation of the Lemma one can however check with more efforts that a
similar statement for Entτ is available.

To conclude this section we may state

Theorem 10. Let µ be a probability measure on a set E and (Pt)t≥0 a
µ-symmetric semi-group. Let F be as in Lemma 9. If µ satisfies a defective
F -Sobolev inequality and a Poincaré inequality, i.e.∫

f2F

(
f2

µ(f2)

)
dµ ≤ CF

∫
|∇f |2dµ+ C̃F

∫
f2dµ,

and ∫ (
f −

∫
fdµ

)2

dµ ≤ CP (F )

∫
|∇f |2dµ,

then µ satisfies a tight F -Sobolev inequality, more precisely∫
f2F

(
f2

µ(f2)

)
dµ ≤ C ′

F

∫
|∇f |2dµ

with C ′
F = CF + CP (F )(C̃F + CRot(F )).

Proof. Using the notation f̃ as in the previous Lemma, we have∫
f2F

(
f2

µ(f2)

)
dµ ≤

∫
f̃2F

(
f̃2

µ(f̃2)

)
dµ+ CRot(F )‖f̃‖2

2

≤ CFE(f̃ , f̃) + (C̃F + CRot(F ))‖f̃‖2
2

≤ (
CF + CP (F )(C̃F + CRot(F ))

)E(f, f). �

5. Sobolev inequalities

A measure µ on R
n satisfies a logarithmic Sobolev inequality for the usual

Dirichlet form if there exists a constant C > 0 such that for every smooth
function ∫

f2 log

(
f2∫
f2dµ

)
dµ ≤ C

∫
|∇f |2dµ.

The latter can be rewritten as∫
f2 log f2dµ−

(∫
f2 dµ

)
log

(∫
f2 dµ

)
≤ C

∫
|∇f |2dµ,
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and also as

lim
p→2−

∫
f2dµ− (∫ |f |pdµ) 2

p

2 − p
≤ 2C

∫
|∇f |2dµ.

Each of these forms naturally leads to considering more general inequalities.
We present them before studying their properties in details. We shall say
that µ satisfies a homogeneous F -Sobolev inequality when every smooth
function satisfies

(5.1)

∫
f2F

(
f2∫
f2dµ

)
dµ ≤

∫
|∇f |2dµ.

i.e., in this section we only consider the tight F -Sobolev inequality intro-
duced in (4.3).

The measure µ is said to verify an additive ϕ-Sobolev inequality when
for all f ’s

(5.2)

∫
f2ϕ
(
f2
)
dµ−

(∫
f2dµ

)
ϕ

(∫
f2dµ

)
≤
∫

|∇f |2dµ.

Finally we consider the following generalization of Beckner’s inequality: for
every smooth f

(5.3) sup
p∈(1,2)

∫
f2dµ− (∫ |f |pdµ) 2

p

T (2 − p)
≤
∫

|∇f |2dµ.

This property was introduced by Beckner [13] for the Gaussian measure and
T (r) = r. It was considered by Lata�la and Oleszkiewicz [36] for T (r) = C ra.
A recent independent paper by Wang [56] studies the general case and gives
correspondences between certain homogeneous F -Sobolev inequalities and
generalized Beckner-type inequalities (and actual equivalences for T (r) =
C ra).

5.1. First remarks, tightness and tensorisation

Using the homogeneity property, Inequality (5.1) above equivalently asserts
that for every smooth function f with

∫
f2dµ = 1, one has

∫
f2F (f2)dµ ≤∫ |∇f |2dµ. It is then obvious that when µ verifies an additive ϕ-Sobolev

inequality as (5.2) then it satisfies a homogeneous F -Sobolev inequality with
F = ϕ− ϕ(1).

Inequality (5.1) is tight (it is an equality for constant functions) whenever
F (1) = 0. Inequalities (5.2) and (5.3) are tight by construction. Big differ-
ences appear about tensorisation. The homogeneous F -Sobolev inequality
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need not tensorise in general. The generalized Beckner inequality (5.3) has
the tensorisation property. This is established in [36] as a consequence of
the following

Lemma 11. Let Φ : [0,∞) → R having a strictly positive second derivative
and such that 1/Φ′′ is concave. Let (Ω1, µ1), (Ω2, µ2) be probability spaces.
Then for any non-negative random variable Z defined on the product space
(Ω, µ) = (Ω1 × Ω2, µ1 ⊗ µ2) with finite expectation one has

EµΦ(Z) − Φ(EµZ) ≤ Eµ (Eµ1Φ(Z)−Φ(Eµ1Z)+Eµ2Φ(Z)−Φ(Eµ2Z)) .

When Φ(x) = xϕ(x) satisfies the hypothesis of the lemma, one can prove
that the corresponding additive ϕ-Sobolev inequality tensorises, even for
very general Dirichlet forms. In our case, we can use the properties of the
square of the gradient to prove the tensorisation property for arbitrary Φ.

Lemma 12. Consider for i = 1, 2 probability spaces (Rni , µi). Assume that
for i = 1, 2 and every smooth function f : R

ni → R one has

(5.4)

∫
Φ
(
f2
)
dµi − Φ

(∫
f2dµi

)
≤
∫

|∇f |2dµi,

then the measure µ1 ⊗ µ2 enjoys exactly the same property.

Proof. Let f : R
n1+n2 → R. We start with applying Inequality (5.4) in the

second variable. This gives∫
Φ(f2)dµ1dµ2 =

∫ (∫
Φ(f2(x, y))dµ2(y)

)
dµ1(x)

≤
∫ (

Φ

(∫
f2(x, y)dµ2(y)

)
+

∫
|∇yf |2(x, y)dµ2(y)

)
dµ1(x)

=

∫
Φ(g2)dµ1 +

∫
|∇yf |2dµ1dµ2,

where we have set g(x) =
√∫

f2(x, y)dµ2(y). Next we apply (5.4) on the

first space to g. Note that
∫
g2dµ1 =

∫
f2dµ1dµ2 and that by the Cauchy-

Schwartz inequality

|∇g|2(x) =

∣∣∫ f(x, y)∇xf(x, y)dµ2(y)
∣∣2∫

f2(x, y)dµ2(y)
≤
∫

|∇xf |2(x, y)dµ2(y).

Thus we get that
∫

Φ(g2)dµ1 ≤ Φ
(∫

f2dµ1dµ2

)
+
∫ |∇xf |2dµ1dµ2. Combin-

ing this with the former inequality yields the claimed Φ-Sobolev inequality
on the product space. �
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5.2. The notion of capacity of a set with respect to a probability
measure

There exists a wide variety of Sobolev-type inequalities in the literature.
It is natural to analyze connections between them. To do so, one tries to
define for each inequality an equivalent “reduced inequality”, in such a way
that it is easy to decide equivalences on the reduced forms. For example
it is known that Sobolev inequalities involving the L

1-norm of the gradient
are equivalent to isoperimetric inequalities. There exists a corresponding
tool for Sobolev inequalities involving L

2-norms (and even L
p-norms) of

gradients: capacities. We refer to the book of Maz’ya [42] for more details.
The classical electrostatic capacity of a set A ⊂ R

n is

Cap(A)
def
= inf

{∫
|∇f(x)|2dx; f|A = 1 and f has compact support

}
where from now on the functions appearing in the infimum are locally Lip-
schitz. The usual L

2-Sobolev inequalities on R
n can be reduced to an in-

equality relating the capacity of sets to their volume. This was extended to
more general measures and inequalities (see [42]). However, if one replaces
the dx in the latter formula by dν(x) where ν is a finite measure, then
the above capacity is zero. The appropriate notion was introduced in [12].
We recall it after a few definitions. Let ν be an absolutely continuous mea-
sure on R

n. Let A ⊂ Ω be Borel sets, we write

Capν(A,Ω)
def
= inf

{∫
|∇f |2dν; f|A ≥ 1 and f |Ωc = 0

}
= inf

{∫
|∇f |2dν; 1IA ≤ f ≤ 1IΩ

}
,

where the equality follows from an easy truncation. If µ is a probability
measure on R

n, then we set for A with µ(A) ≤ 1/2

Capν(A, µ)
def
= inf

{∫
|∇f |2dν; f|A ≥ 1 and µ(f = 0) ≥ 1

2

}
= inf

{
Capν(A,Ω);A ⊂ Ω and µ(Ω) ≤ 1

2

}
.

If µ is absolutely continuous, then since Capν(A,Ω) is non-increasing in Ω,

Capν(A, µ) = inf

{
Capν(A,Ω);A ⊂ Ω and µ(Ω) =

1

2

}
.

We write Capµ(A) for Capµ(A, µ).
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The reduction of an L
2-Sobolev inequality to an inequality between ca-

pacity and measure of sets is done via level-sets decomposition. For com-
pleteness we illustrate this on the simplest possible inequality (see [42]).

Proposition 13. Let µ, ν be absolutely continuous measures on R
n and let

Ω ⊂ R
n. Let C denote the smallest constant so that every locally Lipschitz

function vanishing on Ωc verifies∫
f2dµ ≤ C

∫
|∇f |2dν.

Then B ≤ C ≤ 4B, where B is the smallest constant so that for all A ⊂ Ω
one has µ(A) ≤ B Capν(A,Ω).

Remark 17. The constant 4 in the above result is best possible, and is ob-
tained by using a result of page 109 in [42]. We shall prove the result with
a worse constant. We follow a simplified proof, written in page 110 of this
book (this paragraph contained a small mistake which we correct below).

Proof. The fact that B ≤ C is obvious from the definition of capacity. The
other bounds requires level-sets decomposition. First note that replacing f
by |f | makes the inequality tighter. So we may restrict to f ≥ 0 vanishing
outside Ω. Let ρ > 1 and consider for k ∈ Z, Ωk = {f2 ≥ ρk}. Then∫

f2dµ ≤
∑
k∈Z

ρk+1µ({ρk ≤ f2 < ρk+1})

=
∑
k∈Z

ρk+1
(
µ(Ωk) − µ(Ωk+1)

)
=
ρ− 1

ρ

∑
k∈Z

ρk+1µ(Ωk).

We estimate the latter measures as follows:

µ(Ωk) ≤ BCapν(Ωk,Ω) ≤ B

∫
|∇gk|2dν,

where we have set gk = min

(
1,
(

f−ρ(k−1)/2

ρk/2−ρ(k−1)/2

)
+

)
. Indeed this function is 1

on Ωk and vanishes outside Ωk−1 so outside Ω. Note that∫
|∇gk|2dν =

∫
Ωk−1\Ωk

|∇f |2
(ρk/2 − ρ(k−1)/2)2

dν +

∫
f=ρk/2

|∇f |2
(ρk/2 − ρ(k−1)/2)2

dν.

Since f is locally Lipschitz, the sets {f = ρk/2} ∩ {∇f �= 0} are Lebesgue
negligible. So the latter integral vanishes (in the rest of the paper, similar
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arguments are sometimes needed but we omit them). Thus∫
f2dµ ≤ ρ− 1

ρ
B
∑
k

ρ2

(
√
ρ− 1)2

∫
Ωk−1\Ωk

|∇f |2dν

≤ Bρ

√
ρ+ 1√
ρ− 1

∫
|∇f |2dν.

The best choice of ρ leads to a constant (11 + 5
√

5)/2 < 11.1. �
Remark 18. Let us mention another possible reduction of Sobolev type in-
equalities to inequalities of the form R(Ω) ≥ ψ(µ(Ω)) where R(Ω) is the
infimum over functions f with compact support in Ω of

∫ |∇f |2dν/ ∫ f2dµ
(Rayleigh quotient). See e.g. [5, 26] where the focus is on infinite measures.
Note that by Proposition 13 this criterion amounts to inequalities of the
form

µ(A)ψ(µ(Ω)) ≤ Capν(A,Ω)

for A ⊂ Ω. Here the interest is in the behavior of the capacity in terms
of the outer set. We shall be rather interested in estimates of the form
G(ν(A)) ≤ Capν(A,Ω), that is in the dependence on the measure of the
inner sets. These two approaches are rather different, and seem to be efficient
in different settings.

Remark 19. Proposition 13 appears as a n-dimensional version of the gener-
alized Hardy inequality (see Muckenhoupt [44]), which asserts that the best
A so that every smooth f on R with f(0) = 0 one has∫ +∞

0

f2dµ ≤ A

∫ +∞

0

f ′2dν,

verifies B ≤ A ≤ 4B where B = supx>0 µ([x,+∞))
∫ x
0
ρ−1
ν , and ρν is the den-

sity of the absolute continuous part of ν. Note that Capν([x,+∞), [0,∞)) =
(
∫ x

0
ρ−1
ν )−1, so B is the smallest constant so that

µ([x,+∞)) ≤ BCapν([x,+∞), [0,∞))

for all x > 0. This criterion is simpler than the one in n dimensions, because
one can reduce to non-decreasing functions, for which level sets are half-lines.

Remark 20. It is shown in [12] that the Poincaré constant of a measure
µ verifies C/2 ≤ CP ≤ KC where C is the best constant in: µ(A) ≤
CCapµ(A, µ) for all A with µ(A) < 1/2, and K is a universal constant.
Proposition 13 shows that one can take K = 4.
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5.3. A criterion for general Beckner-type inequalities

The aim of this section is to give a sharp criterion for inequalities of the
form (5.3). Since they appear as a collection of Sobolev inequalities, the
first step consists in finding a criterion for each Sobolev inequality. This
was done by the first and last-named authors in the case of measures on the
line. We present here a slightly weaker but more convenient formulation of
Theorem 11 in [12] and its extension to arbitrary dimension.

Theorem 14. Let p ∈ (1, 2), µ, ν be Borel measures on R
n, with µ(Rn) = 1

and dν(x) = ρν(x)dx. Let C be the optimal constant such that for every
smooth f : R

n → R one has

(5.5)

∫
f2dµ−

(∫
|f |pdµ

) 2
p

≤ C

∫
|∇f |2dν.

Then 1
2
B(p) ≤ C ≤ 20B(p), where B(p) is the optimal constant so that

every Borel set A ⊂ R
n with µ(A) ≤ 1/2 satisfies

µ(A)

(
1 −
(

1 +
1

µ(A)

) p−2
p

)
≤ B(p)Capν(A, µ).

If n = 1, one has 1
2

max(B−(p), B+(p)) ≤ C ≤ 20 max(B−(p), B+(p)) where

B+(p) = sup
x>m

µ([x,+∞))

(
1 −
(

1 +
1

µ([x,∞))

) p−2
p

)∫ x

m

1

ρν
,

B−(p) = sup
x<m

µ((−∞, x])

(
1 −
(

1 +
1

µ((−∞, x])

) p−2
p

)∫ m

x

1

ρν
,

and m is a median of µ.

Proof. The one dimensional result follows from [12, Theorem 11 and Re-
mark 12] which involve 1 + 1/(2µ([x,∞)). In order to derive the result
presented here we have used the following easy inequality, valid for y ≥ 2,
and p ∈ (1, 2),

(5.6)
1 − (1 + y)

p−2
p

1 − (1 + y/2)
p−2

p

≤ log 3

log 2
.

Note that the left hand side is monotonous in y and p.
We turn to the n-dimensional part of the theorem. We use three lemmas

from [12] which we recall just after this proof. We start with the lower bound
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on the constant C. Assume that the Sobolev inequality (5.5) is satisfied for
all functions. Let A ⊂ R

n with µ(A) ≤ 1/2, and let f : R
n → R be locally

Lipschitz, with f ≥ 1IA and µ(f = 0) ≥ 1/2. Denote S = {x; f(x) �= 0}. By
Inequality (5.5) and Lemma 16, one has

C

∫
|∇f |2dν ≥ sup

{∫
f2gdµ; g : R

n→ (−∞, 1),

∫
(1 − g)

p
p−2dµ ≤ 1

}
.

In the latter supremum, the values of g on {f = 0} have no incidence on the
integral, but they have an incidence on the constraint. So the supremum is
achieved for g’s being −∞ on {f = 0}. Thus

C

∫
|∇f |2dν ≥ sup

{∫
S

f2gdµ; g : S → (−∞, 1),

∫
S

(1 − g)
p

p−2dµ ≤ 1

}
≥ sup

{∫
S

f2gdµ; g : S → [0, 1),

∫
S

(1 − g)
p

p−2dµ ≤ 1

}
≥ sup

{∫
1IAg1ISdµ; g : S → [0, 1),

∫
(1 − g)

p
p−2 1ISdµ ≤ 1

}
= µ(A)

(
1 −
(

1 +
1 − µ(S)

µ(A)

) p−2
p

)
,

where we have used f ≥ 1IA and Lemma 17 for the measure dQ = 1ISdµ.
Since µ(S) ≤ 1/2 and this is valid for any f larger than 1 on A and vanishing
for probability 1/2 one gets

µ(A)

(
1 −
(

1 +
1

2µ(A)

) p−2
p

)
≤ CCapν(A, µ).

One concludes with Inequality (5.6).
Next we prove the upper bound on C. Let f be a locally Lipschitz

function. Let m be a median of the law of f under µ. Set F = f − m,
Ω+ = {f > m}, Ω− = {f < m}, F+ = F1IΩ+ and F− = F1IΩ− . Note that
µ(Ω+), µ(Ω−) ≤ 1/2. We define the class of functions I by

I =

{
g : R

n → [0, 1);

∫
(1 − g)

p
p−2dµ ≤ 1 + (p− 1)

p
p−2

}
.

Combining Lemmas 15 and 16 and observing that F 2 = F 2
+ + F 2

− gives∫
f2dµ−

(∫
|f |pdµ

) 2
p

≤
∫
F 2dµ− (p− 1)

(∫
|F |pdµ

) 2
p

≤ sup
g∈I

∫
(F 2

+ + F 2
−)gdµ

≤ sup
g∈I

∫
F 2

+gdµ + sup
g∈I

∫
F 2
−gdµ.
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Applying Proposition 13 with the measures g dµ and dν (it is crucial here
that g ≥ 0) gives

∫
F 2

+gdµ ≤ 4Bg

∫ |∇F+|2dν, where

Bg := sup
A⊂Ω+

∫
1IAgdµ

Capν(A,Ω+)
≤ sup

µ(A)≤ 1
2

∫
1IAgdµ

Capν(A, µ)
≤ sup

µ(A)≤ 1
2

sup
{∫

1IAgdµ; g ∈ I}
Capν(A, µ)

= sup
µ(A)≤ 1

2

µ(A)

(
1 −
(

1 + (p−1)
p

p−2

µ(A)

) p−2
p

)
Capν(A, µ)

≤ 5B(p).

In the preceding lines we have used Lemma 17 and the inequality

1 −
(

1 + x(p− 1)
p

p−2

) p−2
p ≤ 5

(
1 − (1 + x)

p−2
p

)
, x ≥ 2, p ∈ (1, 2),

which follows from Remark 12 of [12]. We have shown that

sup
g∈I

∫
F 2

+gdµ ≤ 20B(p)

∫
|∇F+|2dν.

Adding up with a similar relation for F− leads to∫
f2dµ−

(∫
|f |pdµ

) 2
p

≤ 20B(p)

(∫
|∇F+|2dν +

∫
|∇F−|2dν

)
= 20B(p)

∫
|∇f |2dν.

�
We list the three lemmas from [12] that we used in the previous proof.

Lemma 15. Let p ∈ (1, 2). Let f : X → R be square integrable function on
a probability space (X,Q). Then for all a ∈ R one has∫

f2dQ−
(∫

|f |pdQ
) 2

p

≤
∫

(f − a)2dQ− (p− 1)

(∫
|f − a|pdQ

) 2
p

.

Lemma 16. Let ϕ be a non-negative integrable function on a probability
space (X,P ). Let A > 0 and a ∈ (0, 1), then∫

ϕdP − A

(∫
ϕadP

) 1
a

= sup

{∫
ϕgdP ; g : X → (−∞, 1) and

∫
(1 − g)

a
a−1dP ≤ A

a
a−1

}
≤ sup

{∫
ϕgdP ; g : X → [0, 1) and

∫
(1 − g)

a
a−1dP ≤ 1 + A

a
a−1

}
.
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Lemma 17. Let a ∈ (0, 1). Let Q be a finite measure on a space X and let
K > Q(X). Let A ⊂ X be measurable with Q(A) > 0. Then

sup

{∫
X

1IAgdQ; g : X → [0, 1) and

∫
X

(1 − g)
a

a−1dQ ≤ K

}
= Q(A)

(
1 −
(

1 +
K −Q(X)

Q(A)

)a−1
a

)
.

Theorem 14 readily implies a sharp criterion for inequalities generalizing
the ones of Beckner and Lata�la-Oleszkiewicz.

Theorem 18. Let T : [0, 1] → R
+. Let µ, ν be a Borel measures on R

n,
with µ(Rn) = 1 and dν(x) = ρν(x)dx. Let C be the optimal constant such
that for every smooth f : R

n → R one has

(5.7) sup
p∈(1,2)

∫
f2dµ− (∫ |f |pdµ) 2

p

T (2 − p)
≤ C

∫
|∇f |2dν.

Define the function

T̃ (x) = sup
p∈(1,2)

1 − x
p−2

p

T (2 − p)
.

Then 1
2
B(T ) ≤ C ≤ 20B(T ), where B(T ) is the smallest constant so that

every Borel set A ⊂ R
n with µ(A) < 1/2 satisfies

µ(A)T̃

(
1 +

1

µ(A)

)
≤ B(T )Capν(A, µ).

If the dimension n = 1, then

1

2
max(B+(T ), B−(T )) ≤ C ≤ 20 max(B+(T ), B−(T )),

where

B+(T ) = sup
x>m

µ([x,+∞))T̃

(
1 +

1

µ([x,+∞))

)∫ x

m

1

ρν
,

B−(T ) = sup
x>m

µ((−∞, x])T̃

(
1 +

1

µ((−∞, x])

)∫ m

x

1

ρν
,

and m is a median of µ.

Under fairly reasonable assumptions, the following lemma gives a sim-
ple expression of T̃ in terms of T . In particular the lemma and the theorem
recover the criterion for the Lata�la-Oleszkiewicz on the real line and extends
it to any dimension.
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Lemma 19. Let T : [0, 1] → R+ be non-decreasing. Then, for any X ≥ e,

sup
p∈(1,2)

1 −X
p−2

p

T (2 − p)
≥ 1

3T
(

1
logX

) .
If one also assumes that x 
→ T (x)/x is non-increasing, then for X ≥ e

sup
p∈(1,2)

1 −X
p−2

p

T (2 − p)
≤ 1

T
(

1
logX

) .
Proof. Let b = 2−p

p
and note that 2 − p = 2b

b+1
≤ 2b. Since T is non-

decreasing, one has

sup
p∈(1,2)

1 −X
p−2

p

T (2 − p)
= sup

b∈(0,1)

1 − e−b logX

T
(

2b
b+1

) ≥ sup
b∈(0,1/2)

1 − e−b logX

T (2b)

≥ 1 −√
e

T
(

1
logX

) ,
by choosing b = 1/(2 logX) ≤ 1/2. Finally 1 −√

e � 0.393 ≥ 1
3
.

For the second assertion, let b = 2−p
p

∈ (0, 1), c = b logX and note that

2 − p = 2b
b+1

≥ b. Since T is non-decreasing,

sup
p∈(1,2)

1 −X
p−2

p

T (2 − p)
= sup

b∈(0,1)

1 − e−b logX

T
(

2b
b+1

) ≤ sup
b∈(0,1)

1 − e−b logX

T (b)

≤ max

⎡⎣ sup
c∈(0,1]

1 − e−c

T
(

c
logX

) , sup
c∈(1,logX)

1 − e−c

T
(

c
logX

)
⎤⎦ .

Recall that T (x)/x is non-increasing. So for c ∈ (0, 1], T (c/ logX) ≥
cT (1/ logX). Hence,

sup
c∈(0,1]

1 − e−c

T
(

c
logX

) ≤ 1

T
(

1
logX

) sup
c∈(0,1]

1 − e−c

c
=

1

T
(

1
logX

) .
When c ≥ 1, one has T

(
c

logX

)
≥ T

(
1

logX

)
since T is non-decreasing. Thus

sup
c∈(1,logX)

1 − e−c

T
(

c
logX

) ≤ 1

T
(

1
logX

) sup
c>1

(1 − e−c) ≤ 1

T
(

1
logX

) .
This achieves the proof. �
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5.4. Homogeneous F -Sobolev inequalities

In the next statement, we show how to derive special homogeneous F -Sobo-
lev inequalities, which ignore the behavior of functions close to their average.
Such inequalities appear in the work of Wang. Let us also note that any
behavior of F at infinity may occur.

Theorem 20. Let D > 0 and ρ > 1. Let F : [0,+∞) → [0,+∞) be a non-
decreasing function. Assume that F (x) = 0 if x ≤ 2ρ. Let µ be a probability
measure on R

n such that every A ⊂ R
n with µ(A) ≤ 1/(2ρ) < 1/2

µ(A)F

(
ρ

µ(A)

)
≤ DCapµ(A).

Then for every smooth f : R
n → R one has∫

f2F

(
f2∫
f2dµ

)
dµ ≤ D

(
ρ√
ρ− 1

)2 ∫
|∇f |2dµ.

Proof. For k ≥ 1, set Ωk = {x; f2(x) ≥ 2ρkµ(f2)}. Chebyshev inequality
gives µ(Ωk) ≤ 1/(2ρk). Next, since F vanishes on [0, 2ρ]∫

f2F

(
f2∫
f2dµ

)
dµ ≤

∑
k≥1

∫
Ωk\Ωk+1

f2F

(
f2∫
f2dµ

)
dµ

≤
∑
k≥1

µ(Ωk)2ρ
k+1µ(f2)F (2ρk+1).

Since k ≥ 1 and F is non-decreasing, we have

µ(Ωk)F (2ρk+1) ≤ µ(Ωk)F

(
ρ

µ(Ωk)

)
≤ DCapµ(Ωk).

Let us consider the function

hk = min

(
1,

(
|f | −√2ρk−1µ(f2)√

2ρkµ(f2) −√2ρk−1µ(f2)

)
+

)
,

it is equal to 1 on Ωk and zero outside Ωk−1. Since for k ≥ 1, µ(Ωk−1) ≤ 1/2,
hk vanishes with probability at least 1/2. Thus

Capµ(Ωk) ≤
∫

|∇hk|2dµ =

∫
Ωk−1\Ωk

|∇f |2dµ
2ρk−1

(√
ρ− 1

)2
µ(f2)

.
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Combining these estimates gives∫
f2F

(
f2∫
f2dµ

)
dµ ≤ D

∑
k≥1

2ρk+1µ(f2)Capµ(Ωk)

≤ D

(
ρ√
ρ− 1

)2 ∫
|∇f |2dµ.

�
In the following we briefly study homogeneous F -Sobolev inequalities

which are tight but do not ignore the values of functions close to their L
2-

norm. In this case the behavior of F at 1 is crucial. We have already seen in
Lemma 8 of Section 4.4 that when F (1) = 0 and x 
→ xF (x) has a positive
second derivative at 1, then the homogeneous F -Sobolev inequality implies
a spectral inequality. Besides, if a measure satisfies a Poincaré inequality,
and a tight homogeneous F -Sobolev inequality which ignores small values
of functions, then one can modify F on small values in an almost arbitrary
way:

Lemma 21. Let D > 0 and ρ > 1. Let F : [0,+∞) → R be a non-decreasing
function, such that F = 0 on [0, 2ρ). Let µ be a probability measure on R

n

with Poincaré constant CP < ∞ and such that every smooth function f on
R
n satisfies ∫

f2F

(
f2∫
f2dµ

)
dµ ≤ D

∫
|∇f |2dµ.

Let F̃ : [0,+∞) → R be non-decreasing such that F̃ (1) = 0, F̃ is C2 on

[0, 2ρ] and F̃ (x) = F (x) for x ≥ 2ρ. Set Φ(x) = xF̃ (x). Then for every
smooth f : R

n → R one has∫
f2F̃

( f2∫
f2dµ

)
dµ ≤

(
(1 +

√
2ρ)2CP

(
max
[0,2ρ]

Φ′′
)

+
+D

)∫
|∇f |2dµ.

Proof. Note that Φ(1) = 0 and Φ′(1) = F̃ ′(1) ≥ 0. We introduce the
function Φ1(x) = Φ(x)−Φ(1)−Φ′(1)(x− 1). Without loss of generality, we
consider a function f ≥ 0 with

∫
f2dµ = 1. One has

(5.8)

∫
Φ(f2)dµ =

∫
Φ1(f

2)dµ =

∫
f2≤2ρ

Φ1(f
2)dµ+

∫
f2>2ρ

Φ1(f
2)dµ.

For the first term, using Taylor’s formula and 0 ≤ f ≤ √
2ρ, we obtain

Φ1(f
2) ≤

(
max
[0,2ρ]

Φ′′
)

(f2 − 1)2

2
≤ (1 +

√
2ρ)2

2

(
max
[0,2ρ]

Φ′′
)

+

(f − 1)2.
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Therefore∫
f2≤2ρ

Φ1(f
2)dµ ≤ (1 +

√
2ρ)2

2

(
max
[0,2ρ]

Φ′′
)

+

∫
(f − 1)2dµ

can be upper-bounded thanks to the Poincaré inequality. Indeed∫
(f − 1)2dµ =

∫ (
f − µ(f2)

1
2

)2

= 2

(∫
f2dµ−

∫
f dµ

(∫
f2dµ

) 1
2

)

≤ 2

(∫
f2dµ−

(∫
fdµ

)2
)

≤ 2CP

∫
|∇f |2dµ.

The second term in (5.8) is easily handled by our hypothesis. Indeed, since
Φ′(1) ≥ 0∫

f2>2ρ

Φ1(f
2)dµ ≤

∫
f2>2ρ

Φ(f2)dµ ≤
∫
f2F (f2)dµ ≤ D

∫
|∇f |2dµ.

�
Finally, we show that an homogeneous F -Sobolev inequality implies an

inequality between capacity and measure. We believe that the result should
be true in more generality.

Theorem 22. Let µ be a probability measure on R
n. Let F : R

+ → R
+ be a

non-negative non-decreasing function such that there exists λ ≥ 4 such that
for x ≥ 2, F (x)/x is non-increasing and F (λx) ≤ λF (x)/4. Assume that
for every smooth function, one has∫

f2F

(
f2

µ(f2)

)
dµ ≤ D

∫
|∇f |2dµ,

then for all A ⊂ R
n with µ(A) ≤ 1

2
it holds

µ(A)F

(
1

µ(A)

)
≤ 4λDCapµ(A).

Proof. Let A be a set of measure less than 1/2. In order to estimate its
capacity, we may consider non-negative functions g ≥ 1IA and µ(g = 0) ≥
1/2. For k ∈ Z we consider the function

gk = min

((
g − 2k

√
µ(g2)

)
+
, 2k
√
µ(g2)

)
.



1032 F. Barthe, P. Cattiaux and C. Roberto

We also set Ωk = {x; g(x) ≥ 2k
√
µ(g2)}. Note that on Ωk+1, g

2
k is constantly

22kµ(g2) and that
∫
g2
kdµ ≤ µ(Ωk)2

2kµ(g2). Therefore, applying the F -Sobo-
lev inequality (with F ≥ 0) to gk yields

D

∫
|∇g|2dµ ≥ D

∫
|∇gk|2dµ ≥

∫
Ωk+1

g2
kF

(
g2
k

µ(g2
k)

)
dµ

≥ µ(Ωk+1)2
2kµ(g2)F

(
1

µ(Ωk)

)
.

Setting ak = µ(Ωk) and C = D
∫ |∇g|2dµ/µ(g2), we have for k ∈ Z

22kak+1F (1/ak) ≤ C.

Lemma 23 guarantees that 22kakF (1/ak) ≤ λC for every k with ak > 0,
that is

22kµ(g2)µ(Ωk)F

(
1

µ(Ωk)

)
≤ λD

∫
|∇g|2dµ.

We choose the largest k with 2k
√
µ(g2) ≤ 1. Thus 2k+1

√
µ(g2) > 1 and

A ⊂ Ωk. In particular 2 ≤ 1/µ(Ωk) ≤ 1/µ(A), so these ratios are in the
range where x 
→ F (x)/x is non-increasing. Combining these remarks with
the above inequality yields

1

4
µ(A)F

(
1

µ(A)

)
≤ λD

∫
|∇g|2dµ.

Since this is valid for every g ≥ 1IA and vanishing on a set of measure at
least 1/2, we have shown that µ(A)F (1/µ(A)) ≤ 4λDCapµ(A). �

The next lemma was inspired by the argument of Theorem 10.5 in [5].

Lemma 23. Let F : [2,+∞) → [0,+∞) be a non-decreasing function such
that x → F (x)/x is non increasing and there exists λ ≥ 4 such that for all
x ≥ 2 one has F (λx) ≤ λF (x)/4. Let (ak)k∈Z be a non-increasing (double-
sided) sequence of numbers in [0, 1/2]. Assume that for all k ∈ Z with ak > 0
one has

22kak+1F

(
1

ak

)
≤ C,

then for all k ∈ Z with ak > 0 one has

22kakF

(
1

ak

)
≤ λC.
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Proof. Discarding trivial cases where F (1/ak) is always zero, we observe
that the sequence 22kF (1/ak) tends to +∞ when k tends to +∞, and tends
to zero when k tends to −∞. So we define k0 as the largest integer such
that 22kF (1/ak) ≤ 2C. Let k ≤ k0, then 2C ≥ 22kF (1/ak) ≥ 22kF (2) since
ak ≤ 1/2 and F is non-decreasing. Moreover since F (t)/t is non-increasing,
we also have

22(k+1)ak+1F

(
1

ak+1

)
≤ 22(k+1)F (2)/2.

Combining these two inequalities yields

22(k+1)ak+1F

(
1

ak+1

)
≤ 4C ≤ λC,

so the claimed result is established for k ≤ k0 + 1. For larger values we
proceed by induction. Let k ≥ k0 + 1, for which the conclusion holds. If
ak+1 = 0 we have nothing to prove. Otherwise the hypothesis of the lemma
gives

1

ak+1

≥
22kF

(
1
ak

)
C

.

Since k > k0 we know that the term on the right is larger than 2. Using the
fact that t ≥ 2 
→ F (t)/t is non-increasing, we obtain

ak+1F

(
1

ak+1

)
≤ C

22kF
(

1
ak

)F
⎛⎝22kF

(
1
ak

)
C

⎞⎠ .

Next, by the induction hypothesis for k this is bounded from above by

C

22kF
(

1
ak

)F ( λ

ak

)
≤ C

22k
· λ

4

where we have used F (λt) ≤ λF (t)/4. So we have shown

ak+1F

(
1

ak+1

)
≤ 2−2k−2λC,

and the conclusion is valid for k + 1. �
Remark 21. The alternative reduction of Sobolev type inequalities to esti-
mates on the Rayleigh quotient (see Remark 18) turns out to work better
for homogeneous F -Sobolev inequalities. See Proposition 2.2 in [26], dealing
with measures of infinite mass, but the proof of which extends to our setting.
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Remark 22. Applying Theorem 22 to the function F = 1I[2,+∞) and λ = 4
shows the following. If for every function one has∫

f2≥2µ(f2)

f2dµ ≤ C

∫
|∇f |2dµ

then for all A ⊂ R
n with µ(A) ≤ 1/2, one has µ(A) ≤ 16CCapµ(A).

By Remark 20, the measure µ satisfies a Poincaré inequality with constant
CP (µ) ≤ 64C.

The converse implication also holds. Assume that µ satisfies, for all f ,
Varµ(f) ≤ CP (µ)

∫ |∇f |2dµ. Without loss of generality, we consider f ≥ 0.

If f2 ≥ 2µ(f2) then by Cauchy-Schwarz one has f ≥ √
2µ(f) and conse-

quently (f − µ(f))2 ≥ (1 − 1/
√

2)2f2.

Hence Varµ(f) ≥ (1−1/
√

2)2
∫
f2≥2µ(f2)

f2dµ and the Poincaré inequality

implies∫
f2≥2µ(f2)

f2dµ ≤
(

1 − 1√
2

)−2

CP (µ)

∫
|∇f |2dµ ≤ 12CP (µ)

∫
|∇f |2dµ.

As a conclusion, Poincaré inequality enters the framework of homoge-
neous F -Sobolev inequalities and is equivalent to∫

f21f2≥2µ(f2)dµ ≤ C

∫
|∇f |2dµ

(up to the constants). Note that the number 2 is crucial in our argument.

Remark 23. Let us present a convenient variant of Theorem 22. Assume
that µ satisfies a Poincaré inequality and a F -Sobolev inequality as in The-
orem 22. If F verifies the assumptions F (x)/x non-increasing and F (λx) ≤
λF (x)/4 only for x ≥ x0 > 2 then one can however conclude with a
similar inequality between capacity and measure. To see this, introduce
a function F̃ on R

+ with F̃ (x) := F (x) for x ≥ x0, F̃ (x) := F (x0) for

x ∈ [2, x0], F̃ (1) = 0 and F̃ is C2 and non-decreasing on [0, x0]. Then by

Lemma 21, µ satisfies a homogeneous F̃ -Sobolev inequality, and F̃ satisfies
the assumptions of Theorem 22. Therefore one obtains an inequality of the
form µ(A)F̃ (1/µ(A)) ≤ KCapµ(A). In particular if µ(A) ≤ 1/x0 one has
µ(A)F (1/µ(A)) ≤ KCapµ(A).

5.5. Additive φ-Sobolev inequalities

We present an extension of a method developed by Miclo and Roberto [43]
for logarithmic Sobolev inequalities. Throughout this section, we work with
a function Φ(x) = xϕ(x), where ϕ : (0,+∞) → R is non-decreasing, contin-
uously differentiable. We assume that Φ can be extended to 0. For x, t > 0
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we define the function

Φt(x) = Φ(x) − Φ(t) − Φ′(t)(x− t) = x(ϕ(x) − ϕ(t)) − tϕ′(t)(x− t).

We start with two preliminary statements about Φ-entropies. The first one
is classical and easy, and we skip its proof (see also Lemma 3.4.2 in [3]). For
short, we write µ(g) for

∫
gdµ.

Lemma 24. For every function f ,∫
Φ(f2) dµ− Φ

(∫
f2dµ

)
=

∫
Φµ(f2)(f

2)dµ.

When Φ is convex, one has∫
Φ(f2) dµ− Φ

(∫
f2dµ

)
= inf

t>0

∫
Φt(f

2)dµ.

Lemma 25. Let the function ϕ be non-decreasing and concave. Assume
that there exists γ ≥ 0 such that yϕ′(y) ≤ γ for all y > 0. Then for every
t > 0 and every x ∈ [0, 2t] one has

Φt2(x2) ≤ 9γ(x− t)2.

Proof. The concavity of ϕ ensures that ϕ(x2) ≤ ϕ(t2)+ϕ′(t2)(x2−t2). This
yields

Φt2(x2) ≤ ϕ′(t2)(x2 − t2)2 = (x− t)2ϕ′(t2)(x+ t)2

≤ (x− t)2ϕ′(t2)(3t)2 ≤ 9γ(x− t)2,

where we have used x ≤ 2t. �
Theorem 26. Let ϕ be a non-decreasing, concave, C1 function on (0,+∞)
with ϕ(8) > 0. Assume that there exist constants γ,M such that for all
x, y > 0 one has

xϕ′(x) ≤ γ and ϕ(xy) ≤M + ϕ(x) + ϕ(y).

Let µ be a probability measure on R
n satisfying a Poincaré inequality with

constant CP and the following relation between capacity and measure: there
exists D > 0 such that for all A ⊂ R

n with µ(A) < 1/4

µ(A)ϕ

(
2

µ(A)

)
≤ DCapµ(A),

then for every smooth function one has∫
Φ(f2) dµ− Φ

(∫
f2dµ

)
≤
(

18γ CP + 24
(

1 +
M

ϕ(8)

)
D

)∫
|∇f |2dµ,

where as usual Φ(x) = xϕ(x).
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Proof. Without loss of generality, we may consider f ≥ 0. Set t = (µ(f2))
1
2 .

Then∫
Φ(f2)dµ− Φ

(∫
f2dµ

)
=

∫
Φt2(f2)dµ

=

∫
f2≤4µ(f2)

Φt2(f2)dµ+

∫
f2>4µ(f2)

Φt2(f2)dµ.(5.9)

The first term is bounded from above thanks to Lemma 25, indeed∫
f2≤4µ(f2)

Φt2(f
2)dµ =

∫
f∈[0,2t]

Φt2(f
2)

≤ 9γ

∫
f∈[0,2t]

(
f − µ(f2)

1
2

)2

dµ ≤ 9γ

∫ (
f − µ(f2)

1
2

)2

= 18γ

(∫
f2dµ−

∫
fdµ

(∫
f2dµ

) 1
2

)

≤ 18γ

(∫
f2dµ−

(∫
f dµ

)2
)

≤ 18γCP

∫
|∇f |2dµ,

where we have used Cauchy-Schwartz and the Poincaré inequality for µ.
The second term in (5.9) is estimated as follows∫

f2>4µ(f2)

Φt2(f
2)dµ =

∫
f2>4µ(f2)

[
f2
(
ϕ(f2) − ϕ

(
µ(f2)

))
−µ(f2)ϕ′

(
µ(f2)

)(
f2 − µ(f2)

)]
dµ

≤
∫
f2>4µ(f2)

f2
(
ϕ(f2) − ϕ

(
µ(f2)

))
dµ

≤
∫
f2>4µ(f2)

f2

(
ϕ

(
f2

µ(f2)

)
+M

)
dµ.

We conclude by applying Theorem 20 with ρ = 2, F (x) = 0 if x ≤ 4, and
F (x) = ϕ(x) +M if x > 4. Since for µ(A) ≤ 1/4 one has

µ(A)F

(
2

µ(A)

)
= µ(A)ϕ

(
2

µ(A)

)⎛⎝1 +
M

ϕ
(

2
µ(A)

)
⎞⎠

≤ D

(
1 +

M

ϕ(8)

)
Capµ(A),

we obtain∫
f2>4µ(f2)

Φt2(f
2)dµ ≤ 4(

√
2 + 1)2D

(
1 +

M

ϕ(8)

)∫
|∇f |2dµ.

�
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Remark 24. As already explained, the Poincaré constant of the measure µ
is bounded above by 4B where B is the best constant such that every set A
with µ(A) ≤ 1/2 verifies µ(A) ≤ BCapµ(A). If ϕ(4) > 0, one has

D := sup
µ(A)≤1/2

µ(A)ϕ(2/µ(A))

Capµ(A)
≥ ϕ(4) sup

µ(A)≤1/2

µ(A)

Capµ(A)
= ϕ(4)B.

So CP ≤ 4D/ϕ(4). In particular, if D < +∞, then µ satisfies an additive
φ-Sobolev inequality.

Remark 25. As already mentioned, the additive ϕ-Sobolev inequality has the
tensorisation property. If it is valid for a measure µ (with second moment)
then it is true for its product measures, and by a classical application of the
Central Limit Theorem it holds for the Gaussian measure. For the latter it
is known that the logarithmic Sobolev inequality, viewed as an embedding
result, is optimal. So ϕ cannot grow faster than a logarithm. Note that
both hypothesis on ϕ assumed in Theorem 26 imply that ϕ is at most a
logarithm.

Next we present an improved criterion for measures on the real line.

Theorem 27. Let Φ be a continuous convex function on [0,∞), with Φ(x) =
xϕ(x) for x > 0. Assume that ϕ is non-decreasing, concave, and C1 on
(0,+∞) with ϕ(8) > 0. Assume that there exist constants γ,M such that
for all x, y > 0 one has

xϕ′(x) ≤ γ and ϕ(xy) ≤M + ϕ(x) + ϕ(y).

Let µ be a probability measure on R, with density ρµ, and median m. Let

D+ = sup
x>m

µ([x,+∞))ϕ

(
2

µ([x,+∞))

)∫ x

m

1

ρµ

D− = sup
x<m

µ((−∞, x])ϕ

(
2

µ((−∞, x])

)∫ m

x

1

ρµ

B+ = sup
x>m

µ([x,+∞))

∫ x

m

1

ρµ

B− = sup
x<m

µ((−∞, x])

∫ m

x

1

ρµ
,

and B = max(B+, B−), D = max(D+, D−). Then for every smooth function∫
Φ(f2)dµ− Φ

(∫
f2dµ

)
≤
(

144γB + 24
(

1 +
M

ϕ(8)

)
D

)∫
f ′2dµ.
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Proof. The argument is a refinement of the proof of Theorem 26. We ex-
plain the points which differ. Without loss of generality we consider a non-
negative function f on R. We consider the associated function g defined by

g(x) = f(m) +

∫ x

m

f ′(u)1If ′(u)>0du if x ≥ m

g(x) = f(m) +

∫ x

m

f ′(u)1If ′(u)<0du if x < m.

Set t = (µ(g2))
1
2 . Then Lemma 24 ensures that∫

Φ(f2) dµ− Φ

(∫
f2dµ

)
≤
∫

Φt2(f
2)dµ

=

∫
f2≤4µ(g2)

Φt2(f
2)dµ+

∫
f2>4µ(g2)

Φt2(f2)dµ.(5.10)

For the first term, we use Lemma 25∫
f2≤4µ(g2)

Φt2(f2)dµ =

∫
f∈[0,2t]

Φt2(f
2)

≤ 9γ

∫
f∈[0,2t]

(
f − µ(g2)

1
2

)2

dµ ≤ 9γ

∫ (
f − µ(g2)

1
2

)2

dµ

≤ 18γ

∫
(f − g)2dµ+ 18γ

∫ (
g − µ(g2)

1
2

)2

dµ.

Next observe that∫
(f − g)2dµ

=

∫ +∞

m

(∫ x

m

[f ′ − f ′1If ′>0]
)2

dµ(x) +

∫ m

−∞

(∫ x

m

[f ′ − f ′1If ′<0]
)2

dµ(x)

=

∫ +∞

m

(∫ x

m

f ′1If ′≤0

)2

dµ(x) +

∫ m

−∞

(∫ x

m

f ′1If ′≥0

)2

dµ(x)

≤ 4B+

∫ +∞

m

f ′21If ′≤0dµ+ 4B−

∫ m

−∞
f ′21If ′≥0dµ

where the last inequality relies on Hardy inequality (see Remark 19). As in
the proof of Theorem 26,∫ (

g − µ(g2)
1
2

)2

dµ ≤ 2CP

∫
g′2dµ

= 2CP

(∫ +∞

m

f ′21If ′>0dµ+

∫ m

−∞
f ′21If ′<0dµ

)
,

and we also use the fact that the Poincaré constantCP of µ satisfies CP ≤ 4B.
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Combining the previous three estimates gives∫
f2≤4µ(g2)

Φt2(f2) dµ ≤ 144γB

∫
f ′2dµ.

Now we evaluate the second term in equation (5.10): since Φt(x) ≤ x(ϕ(x)−
ϕ(t)) for x ≥ t,∫

f2>4µ(g2)

Φt2(f2) dµ ≤
∫
f2>4µ(g2)

f2
(
ϕ(f2) − ϕ

(
µ(g2)

))
dµ

≤
∫
g2>4µ(g2)

g2
(
ϕ(g2) − ϕ

(
µ(g2)

))
dµ

≤
∫
g2>4µ(g2)

g2

(
ϕ

(
g2

µ(g2)

)
+M

)
dµ

where we have used g ≥ f ≥ 0 and the fact that ϕ is non-decreasing.
At this stage, we apply the decomposition into level sets performed in the
proof of Theorem 20, once on (m,+∞) and once on (−∞,m). Note that
the function g being non-increasing before m and non-decreasing after, the
level sets appearing in the proof are of the form (−∞, x], x < m, and
[x,+∞), x > m for which the µ-capacity is controlled by the hypothesis of
the theorem. �

The previous two theorems apply to logarithmic Sobolev inequality when
ϕ(x) = log(x), this is how Miclo and Roberto recovered the sufficiency part
of the Bobkov-Götze criterion. The next result gives an application to tight
versions of Rosen’s inequality.

Theorem 28. Let β ∈ (0, 1]. Let µ be a probability measure on R
n. Assume

that one of the following hypotheses holds:
(i) There exists a constant D so that every A ⊂ R

n with µ(A) ≤ 1/2 satisfies

µ(A) logβ
(

1 +
2

µ(A)

)
≤ DCapµ(A).

(ii) The dimension n = 1, µ has density ρµ. Let m be a median of µ and

D+ = sup
x>m

µ([x,+∞)) logβ
(

1 +
2

µ([x,+∞))

)∫ x

m

1

ρµ

D− = sup
x<m

µ((−∞, x]) logβ
(

1 +
2

µ((−∞, x])

)∫ m

x

1

ρµ
.

Assume that D = max(D+, D−) is finite.
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Then for every smooth f : R
n → R one has∫

f2 logβ
(
1 + f2

)
dµ−

(∫
f2dµ

)
logβ

(
1 +

∫
f2dµ

)
≤ KD

∫
|∇f |2dµ,

where one can take K = 96 in case (i) and K = 168 in case (ii).

Proof. In view of Theorems 26, 27 and Remark 24 all we have to do is to
check a few properties of Φβ(x) = xϕβ(x) where ϕβ(x) = logβ(1 + x). We
insist on the more significant ones. The function ϕβ is increasing, and since
β ≤ 1 it is also concave. From the obvious relation

log(1 + xy) ≤ log
(

(1 + x)(1 + y)
)
≤ log(1 + x) + log(1 + y), x, y > 0

and the sub-additivity of x 
→ xβ for β ∈ (0, 1] we deduce that ϕβ(xy) ≤
ϕβ(x)+ϕβ(y). Finally we check the differential properties. Direct calculation
gives

xϕ′
β(x) = βx

logβ−1(1 + x)

1 + x
≤ β

(
x

1 + x

)β
≤ β ≤ 1,

where we have used (1 + x) log(1 + x) ≥ x for x ≥ 0. Finally, Φβ is concave
since

Φ′′
β(x) =

β logβ−2(1 + x)

(1 + x)2
((2 + x) log(1 + x) + (β − 1)x)

is non-negative due to (2 + x) log(1 + x) ≥ (1 + x) log(1 + x) ≥ x. �

5.6. A summary

In Figure 1 we summarize the various implications between the inequalities
studied in this section. We hope that it will help the reader to have an
overview of the picture.

First remark that thanks to Lemma 19, in Figure 1, if T : [0, 1] → R+ is
non-decreasing and x 
→ T (x)/x non-increasing, then for x ≥ e

1

3T (1/ log x)
≤ ψ(x) = sup

p∈(1,2)

1 − x
p−2

p

T (2 − p)
≤ 1

T (1/ log x)
.

Assumption (H1, see Theorem 20). F : [0,+∞) → R is a non-decreasing
function satisfying F ≡ 0 on [0, 2ρ) for some ρ > 1. Finally F (x) = ψ(x/ρ)
for x ≥ 2ρ and λ = 1/(2ρ).

Assumption (H2, see Theorem 21). F : [0,+∞) → R is a non-decreasing
function satisfying F (1) = 0 and F is C2 on [0, 2ρ]. The measure µ satisfies
a Poincaré inequality. Finally F (x) = ψ(x/ρ) for x ≥ 0 and λ = 1/(2ρ).
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Beckner-type inequality (T ) (5.3)

⇐==
⇒ See Theorem 18.

ψ(x) = sup
p∈(1,2)

1 − x
p−2

p

T (2 − p)
, λ =

1

2

∀A such that µ(A) ≤ λ, Capµ(A) ≥ Cψµ(A)ψ( 1
µ(A)

)

⇐=
= Under assumptions

(H1) or (H2) on F
⇐

=
=

Under assumption
(H3) on F

⇐=
=

=
=

=
=

=
=

=

Under assumption
(H4) on φHomogenous F -Sobolev inequality (5.1)

Additive ϕ-Sobolev inequality (5.2)

⇐
=

= F =ϕ−ϕ(1)

⇐=
= Under assumption

(H5) on F

Poincaré inequality ⇐==
Under (H6)

on ϕ

⇐==
(Take p = 1)

Poincaré inequality

⇐==
⇒ See Remark 20.

ψ(x) ≡ 1, λ =
1

2

Figure 1: The various implications.

Assumption (H3, see Theorem 22). F : [0,+∞) → R is a non-decreasing
function such that there exists a constant γ > 4 such that for x ≥ 2,
x 
→ F (x)/x is non-increasing and F (γx) ≤ γF (x)/4. Then, ψ = F and
λ = 1/2.

Assumption (H4, see Theorem 26). The function ϕ is non-decreasing, con-
cave and C1 on (0,+∞) with ϕ(8) > 0. Furthermore, there exists two con-
stants M and γ such that for any x, y > 0 one has

xϕ′(x) ≤ γ and ϕ(xy) ≤M + ϕ(x) + φ(y).

The measure µ satisfies a Poincaré inequality. Finally ϕ(x) = ψ(x/2) and
λ = 1/4.
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Assumption (H5, see Lemma 8). F : [0,+∞) → R is a C2 function on a
neighborhood of 1, F (1) = 0 and if Φ(x) := xF (x), Φ′′(1) > 0.

Assumption (H6). ϕ : [0,+∞) → R is a C2 function on a neighborhood
of 1. Let Φ(x) := xϕ(x). The same proof as in Lemma 8 gives that µ
satisfies a Poincaré inequality if Φ′′(1) > 0.

6. Concentration of measure and generalized Beckner-
Lata�la-Oleszkiewicz inequality

Recall that a probability measure µ on R
n satisfies a generalized Beckner

inequality if there is a constant CT such that for any smooth function f ,

(6.1) sup
p∈(1,2)

∫
f2dµ− (∫ |f |pdµ) 2

p

T (2 − p)
≤ CT

∫
|∇f |2dµ.

Here T : [0, 1] → R
+ is non decreasing, positive on (0, 1] and T (0) = 0. This

section explores the concentration results implied by such a property.
Herbst argument, see [28, 39, 3], derives Gaussian concentration for mea-

sures µ satisfying a log-Sobolev inequality along the following lines: let h be
a 1-Lipschitz function. Applying the inequality to exp(λh/2) provides the
next differential inequality for the Laplace transform H(λ) =

∫
exp(λh) dµ

λH ′(λ) −H(λ) logH(λ) ≤ CLS
4
λ2H(λ).

Here CLS is the log-Sobolev constant. It can be explicitly solved and gives
the sub-Gaussian bound H(λ) ≤ exp(λµ(h)+(CLS/4)λ2). This easily yields
concentration.

In the case of a Poincaré inequality, this Laplace transform method
works [2], but provides an induction inequality for the function H. This
approach was performed by Lata�la and Oleszkiewicz for their inequality
(i.e. (6.1) with T (u) = u2(1− 1

α
), 1 < α < 2). See [36], where optimization

over p is crucial. As also noted in [56], their argument extends as it is to
general T . It yields

Proposition 29. Let T : [0, 1] → R
+ be a non decreasing function such that

T (0) = 0 and positive elsewhere. Define θ(x) = 1/T ( 1
x
) for x ∈ [1,∞). let

µ be a probability measure on R
n and assume that there exists a constant

CT ≥ 0 such that for any smooth function f satisfies Inequality (6.1). Then
any 1-Lipschitz function h : R

n → R verifies
∫ |h|dµ <∞, and

(i) for any t ∈ [0,
√
T (1)],

µ({x : h(x) − µ(h) ≥ t
√
CT}) ≤ e−

t2

3T (1) ,
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(ii) for any t ≥√T (1),

µ({x : h(x) − µ(h) ≥ t
√
CT}) ≤ e−

√
2 supy≥1{t

√
θ(y)−y}.

Proof. We follow the argument of [36]. If H(λ) = µ(eλh) is the Laplace
transform of a 1-Lipschitz function h, Inequality (6.1) for f = exp(λh/2)
gives

H(λ) −H
(p

2
λ
)2/p

≤ CT
4
T (2 − p)λ2H(λ).

Then, by induction, we get (see [56]) for any λ < 2/
√
CTT (2 − p),

µ
(
eλ(h−µ(h))

) ≤ (1 − CT
4
T (2 − p)

)−2/(2−p)
.

Chebyshev inequality ensures that for any p ∈ [1, 2) and λ < 2/
√
CTT (2 − p),

(6.2) µ({x : h(x) − µ(h) ≥ t
√
CT}) ≤ e−λt

√
CT

(
1 − CTλ

2

4
T (2 − p)

)− 2
2−p

.

For t < 2
√
T (1), we set p = 1 and λ = t

T (1)
√
CT

in the latter inequality.

We get

µ({x : h(x) − µ(h) ≥ t
√
CT}) ≤ e−

t2

T (1)

(
1 − t2

4T (1)

)−2

.

In particular, for t <
√
T (1) we have 1 − t2

4T (1)
≥ e−

t2

3T (1) . Thus,

µ({x : h(x) − µ(h) ≥ t
√
CT}) ≤ e−

t2

3T (1) .

For the second regime, choose λ such that 1 − CTλ
2

4
T (2 − p) = 1

2
. It follows

from (6.2) that for any p ∈ (1, 2)

µ({x : h(x) − µ(h) ≥ t
√
CT}) ≤ e

−
√

2t√
T (2−p)

+ 2 ln 2
2−p .

Note that 2 ln 2 ≤ √
2. Thus, if y := 1

2−p , we get

−
√

2t√
T (2 − p)

+
2 ln 2

2 − p
≤ −

√
2

{
t√

T (2 − p)
− 1

2 − p

}
= −

√
2{t
√
θ(y) − y}.

One concludes the proof by optimizing in p ∈ (1, 2) or equivalently in y ∈
(1,∞). �

The next statement provides an application of the latter result to concen-
tration with rate e−Φ(t) for a general convex Φ. When Φ(t) = tα, α ∈ (1, 2),
it reduces to the result by Lata�la and Oleszkiewicz.
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Corollary 30. Let Φ : R
+ → R

+ be an increasing convex function, with

Φ(0) = 0. Define θ(x) =
(
Φ′(Φ−1(x))

)2
for x ∈ R

+ and T (x) = 1/θ( 1
x
) for

x ∈ R
+ \ {0}, T (0) = 0. Here Φ′ is the right derivative of Φ. Let µ be a

probability measure on R
n and assume that there exists a constant CT such

that it satisfies the generalized Beckner inequality (6.1). Then, for any 1-
Lipschitz function h : R

n → R,
∫ |h| <∞ and for any t ≥√T (1)∨2Φ−1(1),

µ({x : h(x) − µ(h) ≥ t
√
CT}) ≤ e−

√
2Φ( t

2).

Proof. Thanks to Proposition 29, it is enough to bound supy≥1{t
√
θ(y)−y}

from below. By assumption t ≥ 2Φ−1(1), so Φ(t/2) ≥ 1. It follows that for
y = Φ(t/2),

sup
y≥1

{t
√
θ(y) − y} ≥ t

√
θ(Φ(t/2)) − Φ(t/2) = tΦ′(t/2) − Φ(t/2).

Since Φ is convex and Φ(0) = 0, one has xΦ′(x) ≥ Φ(x) for all x ≥ 0. Hence,
supy≥1{t

√
θ(y) − y} ≥ Φ(t/2). �

Theorem 18 of Section 5 provides a criterion for a measure on the line to
satisfy a generalized Beckner inequality. Under mild assumptions, and if one
is not interested in estimating the constant, the condition may be further
simplified.

Proposition 31. Let V : R → R be a C1 function. Assume that dµ(x) =
Z−1
V e−V (x)dx is a probability measure. Let T : [0, 1] → R

+ be non-decreasing
with T (0) = 0 and positive elsewhere. Assume that x 
→ T (x)/x is non-
increasing. Define θ(x) = 1/T (1/x) for x ∈ [1,∞). Furthermore, assume
that

(i) there exists a constant A > 0 such that for all |x| ≥ A, V is C2 and
sign(x)V ′(x) > 0,

(ii) lim
|x|→∞

V ′′(x)

V ′(x)2
= 0,

(iii) lim sup
|x|→∞

θ(V (x) + log |V ′(x)| + logZV )

V ′(x)2
<∞.

Then µ satisfies the following Beckner-type inequality: there exists a constant
CT ≥ 0 such that for any smooth function f ,

sup
p∈(1,2)

∫
f2dµ− (∫ |f |pdµ) 2

p

T (2 − p)
≤ CT

∫
f ′2dµ.
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Proof. The proof is similar to the one of [12, Proposition 15]. Let m be a
median of µ. Under Hypotheses (i) and (ii), when x tends to ∞, one has
(see e.g. [3, chapter 6])∫ x

m

eV (t)dt ∼ eV (x)

V ′(x)
and

∫ ∞

x

e−V (t)dt ∼ e−V (x)

V ′(x)
.

Thus, for x ≥ m,

µ([x,∞))

T

(
1

log(1+ 1
µ([x,∞))

)

) ∫ x

m

ZV e
V (t)dt ∼ ZV

θ(V (x) + log V ′(x) + logZV )

V ′(x)2
.

By Hypothesis (iii), this quantity is bounded on [A′,∞) for some A′. Since
the left hand side is continuous in x ∈ [m,A′], it is bounded on (m,∞). It
follows from Lemma 19 that the quantity B+(T ) defined in Theorem 18 is
finite. Similarly B−(T ) < +∞. We conclude with Theorem 18. �

The latter results provide a very general condition for dimension free con-
centration. Starting with an increasing convex concentration rate Φ : R

+ →
R

+ with Φ(0) = 0, we introduce the function T (x) = 1/(Φ′(Φ−1(x)))2. Un-
der the additional assumption that

√
Φ is concave, we know that T (x)/x is

non-increasing. Therefore, under the assumptions of Proposition 31, a prob-
ability measure dµ(x) = Z−1

V e−V (x)dx on R satisfies the Beckner inequality
with function T . By the tensorisation property, the measures µ⊗n verify
the same inequality and by Corollary 30, they satisfy a dimension free con-
centration inequality with rate e−

√
2 Φ(t/2). Note that our condition about√

Φ is quite natural since, by the Central Limit Theorem, a dimension free
concentration inequality has at most a Gaussian rate.

The next application of our criterion provides the best expected concen-
tration rate for certain log-concave distributions.

Corollary 32. Let Φ : R
+ → R

+ be an increasing convex function with
Φ(0) = 0 and consider the probability measure dµ(x) = Z−1

Φ e−Φ(|x|) dx. As-
sume that Φ is C2 on [Φ−1(1),∞) and that

√
Φ is concave.

Then there exits c > 0 such that for all n ≥ 1, every 1-Lipschitz function
h : R

n → R is µ⊗n-integrable and satisfies

µ⊗n({x : h(x) − µ⊗n(h) ≥ t
√
c}) ≤ e−

√
2Φ( t

2)

provided

t ≥ 2Φ−1(1) ∨ 1/(Φ′(Φ−1(1))).
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Proof. Set θ(u) = (Φ′(Φ−1(u)))2 and T (u) = 1/θ(1/u) for u > 0. The hy-
potheses on Φ ensure that T is non-decreasing and T (u)/u is non-increasing.
We check below that µ satisfies a Beckner-type inequality with rate func-
tion T . By the above argument this implies the claimed concentration in-
equality for products. Let us check that V (x) = Φ(|x|) satisfies the three
conditions in Proposition 31. By symmetry it is enough to work on R

+.
Condition (i) is obvious. Condition (ii) is easily checked. Indeed since√

Φ is concave, its second derivative is non-positive when it is defined. So
for large x we have Φ′′/Φ′2 ≤ 1/(2Φ). So lim+∞ Φ = +∞ implies that
lim+∞ Φ′′/Φ′2 = 0.

Now we prove that Condition (iii) of the latter proposition is verified.
Our aim is to bound from above the quantity

K(x) :=
θ(Φ(x) + log Φ′(x) + logZΦ)

Φ′(x)2
.

By concavity of
√

Φ, Φ′2/Φ is non-increasing. Thus for x ≥ Φ−1(1), one has
Φ′(x)2 ≤ Φ′(Φ−1(1))2Φ(x). Hence for x large enough log Φ′(x) + logZΦ ≤
Φ(x), and K(x) ≤ θ(2Φ(x))/Φ′(x)2.

Since Φ is convex, the slope function (Φ(x) − Φ(0))/x = Φ(x)/x is non-
decreasing. Comparing its values at x and 2x shows that 2Φ(x) ≤ Φ(2x).
Thus θ(2Φ(x)) ≤ Φ′(2x)2 and for x large enough K(x) ≤ Φ′(2x)2/Φ′(x)2. As

Φ′2/Φ is non-increasing we know that Φ′(2x)2 ≤ Φ(2x)
Φ(x)

Φ′(x)2. On the other

hand,
√

Φ being concave, the slope function
√

Φ(x)/x is non-increasing so√
Φ(2x) ≤ 2

√
Φ(x). Finally for x large

K(x) ≤ Φ′(2x)2

Φ′(x)2
≤ Φ(2x)

Φ(x)
≤ 4.

The proof is complete. �
Remark 26. The hypotheses of Corollary 32 are simple but could be more
general. It is plain from Proposition 31 that we need the convexity assump-
tions only for large values. The argument can be adapted to show that the
measures with potential Φ(x) = |x|α log(1 + |x|)β with 1 < α < 2 and β ≥ 0
satisfy a dimension free concentration inequality with decay e−CΦ(t).

Remark 27. Other concentration results for products of log-concave mea-
sures on the line follow from Talagrand exponential inequality, see [54, The-
orem 2.7.1, Proposition 2.7.4]. They involve a different notion of enlarge-
ment depending on the log-concave density itself. However, they imply an
analogue of Corollary 32, under the similar assumption that Φ(

√
t) is sub-

additive.
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7. Examples

In this section we study fundamental examples, starting with |x|α Boltz-
mann’s measures in relation with Beckner’s type inequalities. We shall show
in particular how to get dimension free inequalities.

7.1. |x|α Boltzmann’s measures

In this subsection we are looking at the probability measures dν⊗nα (x) =∏n
i=1 Z

−1
α e−2uα(x)dxi on R

n, where as in section 3, 1 < α < 2 and

(7.1) uα(x) =

{ |x|α for |x| > 1
α(α−2)

8
x4 + α(4−α)

4
x2 + (1 − 3

4
α + 1

8
α2) for |x| ≤ 1.

We will study two kind of F functionals, starting from the capacity-measure
point of view. For each of them we give functional inequalities and derive
hypercontractivity (or hyperboundedness) property satisfied by the semi-
group.

The first function of interest for us is

Fα : R
+ → R

x 
→ (log(1 + x))2(1− 1
α

) − (log 2)2(1− 1
α

).(7.2)

Note that it is a C2 non-decreasing function satisfying Fα(1) = 0. It is
negative for x < 1 and positive for x > 1.

The second function of interest is

F̃α : R
+ → R

x 
→
{

0 if x ∈ [0, 2ρ]

(log(x))2(1− 1
α

) − (log 2ρ)2(1− 1
α

) if x ≥ 2ρ
,(7.3)

where ρ > 1 is a fixed parameter. Note that F̃α is continuous but not C2.
On the other hand, it is always non-negative.

Proposition 33. Let 1 < α < 2. Let Fα and F̃α defined in (7.2) and (7.3)
respectively. Denote by ν⊗nα = ⊗n

i=1να,i the product measure of n copies of
dνα(x) = Z−1

α e−2uα(x)dx.

Then, there exist two constants C = C(α) and C̃ = C̃(α, ρ) such that for
any integer n, for any smooth enough function f : R

n → R,∫
f2Fα

(
f2

ν⊗nα (f2)

)
dν⊗nα ≤ C

∫
|∇f |2dν⊗nα ,

and ∫
f2F̃α

(
f2

ν⊗nα (f2)

)
dν⊗nα ≤ C̃

∫
|∇f |2dν⊗nα .
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Proof. We start with Fα. Fix n = 1. Then 0 is a median of να. When x
tends to infinity, it is easy to check that∫ x

0

e2uα(t)dt ∼ e2x
α

2αxα−1
and

∫ ∞

x

e−2uα(t)dt ∼ e−2xα

2αxα−1
.

It follows that the two constants D+ and D− introduced in Theorem 28 with
β = 2(1− 1

α
) are finite. Then, we conclude by Theorem 28 that there exists

a constant Cα such that for every function f on R,∫
f2 logβ

(
1 + f2

)
dνα −

(∫
f2dνα

)
logβ

(
1 +

∫
f2dνα

)
(7.4)

≤ Cα

∫
|∇f |2dνα.

Then, for any integer n, by Lemma 12 the latter inequality holds for ν⊗nα in
R
n. Finally, applying the inequality to f2/ν⊗nα (f2) gives the expected result.

The case of F̃α is a bit more difficult. Let β = 2(1− 1
α

) and T (x) = |x|β.
It is easy to check that the hypotheses of Proposition 31 are satisfied (for

Φ = 2uα) and thus that there exists a constant C̃ = C̃(α) such that for any
function f : R → R,

sup
p∈(1,2)

∫
f2dνα −

(∫ |f |pdνα) 2
p

(2 − p)β
≤ C̃

∫
|∇f |2dνα.

Now, by tensorisation property (see [36]), the same inequality holds for ν⊗nα
with the same constant C̃ (independent of n). Thus, by Theorem 18 together
with Lemma 19 (recall that T (x) = |x|β), it follows that for any integer n,
any Borel set A ⊂ R

n with ν⊗nα (A) ≤ 1/2,

ν⊗nα (A)

(
log(1 +

1

ν⊗nα (A)
)

)β
≤ 2C̃Capν⊗n

α
(A).

Now, for any x ≥ 2ρ, F̃α(ρx) ≤ (log(1 + x))β. Therefore, for any Borel set
A ⊂ R

n with ν⊗nα (A) ≤ 1/(2ρ),

ν⊗nα (A)F̃α

(
ρ

ν⊗nα (A)

)
≤ 2C̃Capν⊗n

α
(A).

The expected result follows from Theorem 20. This achieves the proof. �
Remark 28. It is not difficult to check that

0 < inf
α∈(1,2)

C(α) < sup
α∈(1,2)

C(α) < +∞.

This means that the constant C(α) appearing in Proposition 33 can be
chosen independently of α ∈ (1, 2). This uniformity will be useful for appli-
cations.
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Corollary 34. Let 1 < α < 2. Let Fα defined in (7.2). Denote by ν⊗nα =
⊗n
i=1να,i the product measure of n copies of the probability measure dνα(x) =

Z−1
α e−2uα(x)dx. Define for any q ≥ 0, any x ≥ 0, τ

(α)
q (x) = x2eqFα(x2).

Then, there exists a universal constant C such that for any integer n,
any function f : R

n → R and any t ≥ 0,

N
τ
(α)
q(t)

(Ptf) ≤ e
C
2
t‖f‖2

where q(t) = Ct and NΦ(g) := inf{λ :
∫

Φ(g/λ)dν⊗nα ≤ 1}.
Proof. The result is a direct consequence of Theorem 6, using Proposi-
tion 33 and Lemma 35 below. �
Lemma 35. Let 1 < α < 2. Let Fα defined in (7.2). Define for any q ≥ 0,

any x ≥ 0, τ
(α)
q (x) = x2eqFα(x2). Then,

(i) For any x ≥ 0, any q ≥ 0,

(τ (α)
q )′′τ (α)

q ≥ 5 − (4/α)

4
(τ (α)
q )′

2 ≥ 1

4
(τ (α)
q )′

2
,

(ii) for any x ≥ 0, any q ≥ 0,

τ (α)
q (x)F (x2) ≤ τ (α)

q (x)F (τ (α)
q (x)) + 1.

Proof. Let β = 2(1 − 1
α

). Then 0 < β < 1. It is easy to check that for any
x > 0,

−xF
′′
α(x)

F ′
α(x)

=
x(1 − β + log(1 + x))

(1 + x) log(1 + x)
≤ 2 − β.

We conclude the proof of point (i) applying Proposition 7 (note that 2+ 1
2
−

5−(4/α)
2

= 2 − β).
Note that mFα := |minx∈(0,1) xFα(x)| ≤ 1. Hence, using remark 10

concludes the proof of point (ii). �
The analogue of Corollary 34 for F̃α is a bit harder due to differentiation

problem at x = 2ρ. The result is the following:

Corollary 36. Let 1 < α < 2. Let F̃α defined in (7.3). Denote by ν⊗nα =
⊗n
i=1να,i the product measure of n copies of the probability measure dνα(x) =

Z−1
α e−2uα(x)dx. Define for any q ≥ 0, any x ≥ 0, τ̃

(α)
q (x) = x2eq

�Fα(x2).

Then, there exists a constant C̃ = C̃(α, ρ) such that for any integer n,
any function f : R

n → R and any t ≥ 0,

N�τ (α)
q(t)

(Ptf) ≤ ‖f‖2

where q(t) = C̃t and NΦ(g) := inf{λ :
∫

Φ(g/λ)dν⊗nα ≤ 1}.
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Proof. Let g be a C∞ non-negative function with compact support in [−1, 0]
and such that

∫
g(y)dy = 1. For any ε > 0 define gε(x) = 1

ε
g(x

ε
) and note

that F̃α ∗ gε(x) :=
∫
F̃α(x− y)gε(y)dy is a C∞ function.

Define for any ε > 0, any q ≥ 0, τ̃
(α)
q,ε (x) = x2eq

�Fα∗gε(x2).

Thanks to Lemma 37 below, F̃α∗gε satisfies the hypothesis of Theorem 6,
uniformly in n. Thus, by Theorem 6 there exists two constants C̃ = C̃(α, ρ)

and C̃ ′ = C̃ ′(α, ρ) (maybe different from those one of Lemma 37) such that
for any integer n, any function f : R

n → R and any t ≥ 0,

N�τ (α)
q(t),ε

(Ptf) ≤ e
1
2
( �Fα(2ρ+ε)+ε �C′)t‖f‖2.

Then, it is easy to verify that for any function f , any t, when ε tends to 0,

N�τ (α)
q(t),ε

(Ptf) → N�τ (α)
q(t)

(Ptf) and e
1
2
( �Fα(2ρ+ε)+ε �C′)t → 1.

This achieves the proof. �

Lemma 37. Let 1 < α < 2. Let F̃α defined in (7.3). Denote by ν⊗nα =
⊗n
i=1να,i the product measure of n copies of dνα(x) = Z−1

α e−2uα(x)dx. Define

for any q ≥ 0, any x ≥ 0, τ̃
(α)
q (x) = x2eq

�Fα(x2).

Let g be a C∞ non-negative function with compact support in [−1, 0]

and such that
∫
g(y)dy = 1. Define gε(x) = 1

ε
g(x

ε
), and F̃α ∗ gε(x) :=∫

F̃α(x−y)gε(y)dy for any ε > 0, and for any q ≥ 0, τ̃
(α)
q,ε (x) = x2eq

�Fα∗gε(x2).
Then,
(i) for any ε > 0 and any q ≥ 0,

(τ̃ (α)
q,ε )′′τ̃ (α)

q,ε ≥ 3 − 2(2 − α)/(α log(2ρ))

4
(τ̃ (α)
q,ε )′

2
.

(ii) For any ε > 0 small enough, any q ≥ 0, and any x ≥ 0,

F̃α ∗ gε(x2) ≤ F̃α ∗ gε(τ̃ (α)
q,ε (x)).

(iii) There exist two constants C̃ = C̃(α, ρ) and C̃ ′ = C̃ ′(α, ρ) such that for
any integer n, any function f : R

n → R and any ε > 0 small enough,∫
f2F̃α ∗ gε

( f2

ν⊗nα (f2)

)
dν⊗nα ≤ C̃

∫
|∇f |2dν⊗nα

+(F̃α(2ρ+ ε) + εC̃ ′)
∫
f2dν⊗nα .
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Proof. Let β = 2(1 − 1
α

).
We start with (i). The result is obviously true for x ≤ 2ρ. For x > 2ρ,

an easy computation gives

−xF̃
′′
α(x)

F̃ ′
α(x)

=
1 − β + log x

log x
≤ 1 +

1 − β

log(2ρ)
= 1 +

2 − α

α log 2ρ
.

Thus, by Lemma 38 below we get that for any ε > 0, any x ≥ 0,

x(F̃α ∗ gε)′′(x) +

(
1 +

2 − α

α log 2ρ

)
(F̃α ∗ gε)′(x) ≥ 0.

The result follows from Proposition 7.

For (ii) note that for any ε ≤ 2ρ − 1, F̃α ∗ gε ≡ 0 on [0, 1]. Thus the
result becomes obvious thanks to Remark 12.

Next we deal with (iii). First note that F̃α ∗ gε ≡ 0 on [0, 2ρ− ε]. Then,

for x ∈ [2ρ− ε, 2ρ], since F̃α is non-decreasing,

F̃α ∗ gε(x) =

∫
{−ε≤y≤0}

F̃α(x− y)gε(y)dy ≤ F̃α(2ρ+ ε).

Finally, for x > 2ρ, since F̃ ′
α is non-increasing,

F̃α ∗ gε(x) = F̃α(x) +

∫
{−ε≤y≤0}

(F̃α(x− y) − F̃α(x))gε(y)dy

≤ F̃α(x) + ε max
{x≤z≤x+ε}

F̃ ′
α(z)

≤ F̃α(x) + εF̃ ′
α(2ρ+),

where we have set

F̃ ′
α(2ρ+) := lim

x→2ρ+
F ′
α(x) =

α− 1

αρ
(log 2ρ)

α−2
α .

Hence, for any integer n, for any function f : R
n → R and any ε > 0 small

enough,∫
f2F̃α ∗ gε

( f2

ν⊗nα (f2)

)
dν⊗nα ≤

∫
f2F̃α

( f2

ν⊗nα (f2)

)
dν⊗nα

+(F̃α(2ρ+ ε) + εF̃ ′
α(2ρ+))

∫
f2dν⊗nα .

The claimed result follows from Proposition 33, with C̃ ′ = α−1
αρ

(log 2ρ)
α−2

α .
�
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Lemma 38. Let F : R+ → R
+ be a continuous non-decreasing function

such that F ≡ 0 on [0, 2ρ], for some ρ > 1, and F > 0 on (2ρ,∞). Assume
that F is C2 on (2ρ,∞) and that limx→2ρ+ F

′(x) and limx→2ρ+ F
′′(x) exist.

Furthermore, assume that F ′′ ≤ 0 on (2ρ,∞).
Let g be a C∞ non-negative function with compact support in [−1, 0] and

such that
∫
g(y)dy = 1. Define gε(x) = 1

ε
g(x

ε
) for any ε > 0.

Assume that for some λ > 0, F satisfies for all x �= 2ρ

xF ′′(x) + λF ′(x) ≥ 0.

Then, for any ε > 0 small enough, any x ≥ 0,

(7.5) x(F ∗ gε)′′(x) + λ(F ∗ gε)′(x) ≥ 0.

Here, F ∗ gε(x) :=
∫
F (x− y)gε(y)dy.

Proof. Note that for any ε > 0, F ∗ gε is a C∞ function. Fix ε ∈ (0, 2ρ).
If x ∈ (0, 2ρ− ε), then it is easy to check that F ∗ gε(x) = 0. Thus (7.5)

holds for any x ∈ (0, 2ρ− ε) and by continuity for any x ∈ [0, 2ρ− ε).
Now fix x ∈ (2ρ,∞) and note that for any y ∈ supp(gε) ⊂ [−ε, 0],

x− y > 2ρ. Thus F ′(x− y) and F ′′(x− y) are well defined. It follows that

x(F ∗ gε)′′(x) + λ(F ∗ gε)′(x) =

∫ [
xF ′′(x− y) + λF ′(x− y)

]
gε(y)dy.

Since F ′′ ≤ 0 and y ≤ 0, xF ′′(x − y) ≥ (x − y)F ′′(x − y). Hence, the left
hand side of the latter inequality is bounded below by∫ [

(x− y)F ′′(x− y) + λF ′(x− y)
]
gε(y)dy ≥ 0

by our assumption on F . Thus (7.5) holds for any x > 2ρ and it remains the
case x ∈ [2ρ−ε, 2ρ]. By continuity, it is enough to deal with x ∈ (2ρ−ε, 2ρ).

Fix x ∈ (2ρ − ε, 2ρ). Choose h such that x + h < 2ρ and note that if
x− y ≤ 2ρ, then F (x− y) = 0. Hence,∫

F (x− y + h) − F (x− y)

h
gε(y)dy =∫

−ε≤y<−(2ρ−x)

F (x− y + h) − F (x− y)

h
gε(y)dy +

∫
−(2ρ−x)≤y≤0

F (x− y + h)

h
gε(y)dy.

The second term in the latter equality is non-negative because F is non-
negative. It follows by Lebesgue Theorem that

(F ∗ gε)′(x) ≥
∫
{−ε≤y<−(2ρ−x)}

F ′(x− y)gε(y)dy.
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The same holds for (F ∗ gε)′′(x) because F ′ is non-negative. Now, as in the
previous argument, by our hypothesis on F , x(F ∗ gε)′′(x) + λ(F ∗ gε)′(x) is
bounded below by∫

{−ε≤y<−(2ρ−x)}

[
xF ′′(x− y) + λF ′(x− y)

]
gε(y)dy

≥
∫
{−ε≤y<−(2ρ−x)}

[
(x− y)F ′′(x− y) + λF ′(x− y)

]
gε(y)dy ≥ 0.

�

7.2. A general perturbation argument

In Section 3 we discussed a perturbation argument in order to prove the
hyperboundedness of P

(α)
t the semi group associated to να. In the previous

subsection we recovered and improved these results by using the capacity-
measure approach and the Gross-Orlicz theory. We shall below show that
one can also derive the results in Proposition 33 by a perturbation argument
on Fα-Sobolev inequalities (see [21, section 4] for a similar argument for usual
log-Sobolev inequalities). The argument can be easily generalized to other
situations, but we shall not develop a complete perturbation theory here.

Recall that Lebesgue measure on R
n satisfies a family of F = log+

Sobolev inequalities i.e. for all η > 0 and all f belonging to L
1(dx)∩L

∞(dx)
such that

∫
f2 dx = 1

(7.6)

∫
f2 log+ f

2dx ≤ 2η

∫
|∇f |2dx+ 2 +

n

2
log

(
1

πη

)
,

see e.g. [27] Theorem 2.2.4. In the sequel we denote by c(η) the constant in
(7.6).

Set β = 2(1 − 1
α

) which is less than 1. According to Lemma 47 in the

next section Fα(x) = logβ(1 + x) − logβ(2) ≤ log x for x ≥ 1. Since Fα(x) is
non positive for x ≤ 1, it follows

(7.7)

∫
f2Fα(f2)dx ≤

∫
f2 log+ f

2dx.

Let V be smooth and satisfying the conditions stated in Section 3. De-
note by νV (dx) = e−2V dx the associated Boltzmann measure and introduce
g = eV f . Remark that

∫
g2dνV = 1. According to (7.6) and (7.7), a simple

calculation yields∫
g2Fα

(
g2e−2V

)
dνV ≤ 2η

∫
|∇g|2dνV + c(η)

+ 2η

∫
g2
(
∆V − |∇V |2) dνV .(7.8)
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Since β < 1, (A+B)β ≤ Aβ +Bβ for positive A and B. Hence if V ≥ 0

logβ(1 + g2e−2V ) + logβ(e2V ) ≥ logβ(e2V + g2) ≥ logβ(1 + g2),

while for V ≤ 0

logβ(1 + g2e−2V ) + logβ(e2|V |) ≥ logβ(1 + g2e−2V ) ≥ logβ(1 + g2).

It follows that∫
g2Fα(g2)dνV ≤ 2η

∫
|∇g|2dνV + c(η)

+

∫
g2
(
logβ(e2|V |) + 2η

(
∆V − |∇V |2)) dνV .(7.9)

Now we introduce the convex conjugate function Hα of x 
→ xFα(x). Using
the Young’s inequality

xy ≤ εxFα(x) +Hα(y/ε)

in (7.9) we obtain∫
g2Fα(g2)dνV ≤ 2η

1 − ε

∫
|∇g|2dνV + c(η, ε)(7.10)

+
1

1 − ε

∫
Hα

(
(1/ε)

(
(2|V |)β + 2η

(
∆V − |∇V |2))) dνV .

We have thus obtained

Theorem 39. Let νV (dx) = e−2V dx be a Boltzmann measure defined for a
smooth V as in Section 3. Denote by Hα the convex conjugate of x 
→ xFα(x).
Assume that

(i) there exist some ξ > 0 and some λ > 0 such that∫
Hα

(
[(2 + ξ)|V |]β + λ[∆V − |∇V |2]) dνV < +∞,

(ii) νV satisfies a Poincaré inequality.

Then the conclusions of Proposition 33 for Fα are still true replacing να
by νV . As a consequence the conclusions of Corollary 34 are also still true.

Both conditions (i) and (ii) are satisfied when V satisfies assumption OB

in Section 3 with G(y) = c|y|2(1− 1
α

) for some c and V goes to infinity at
infinity.
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Proof. Inequality (7.10) and hypothesis (i) ensure that νV satisfies a de-
fective homogeneous Fα Sobolev inequality. It is easily seen that Fα fulfills
the hypotheses of the Rothaus-Orlicz Lemma 9. Hence (ii) and Theorem 10
allow to tight the homogeneous Fα-Sobolev inequality. Since

logβ(1 + g2) ≤ logβ
(

1 +
g2∫
g2

)
+ logβ

(
1 +

∫
g2
)

Inequality (7.4) holds when we replace να by νV . Hence we may use the
tensorisation property as in Proposition 33 to end the proof.

Finally (i) is clearly implied by OB, while (ii) follows from Remark 4. �
Again the situation is more delicate when dealing with F̃α.

8. Isoperimetric inequalities

In this section we show that the Orlicz-hypercontractivity property implies
isoperimetric inequalities. These results are more precise than the concen-
tration inequalities derived in Section 6 via the Beckner type inequalities.
Let us recall the basic definitions. Let µ be a Borel measure on R

n. For a
measurable set A ⊂ R

n we define its µ-boundary measure as

µs(∂A) = lim inf
h→0+

µ(Ah) − µ(A)

h
,

where Ah = {x ∈ R
n, d(x,A) ≤ h} = A+ hBn

2 is the h-enlargement of A in
the Euclidean distance (here Bn

2 = {x ∈ R
n; |x| ≤ 1}). The isoperimetric

function (or profile) of a probability measure on R
n is

Iµ(a) = inf{µs(∂A); µ(A) = a}, a ∈ [0, 1].

We shall write Iµk for the isoperimetric function of the product measure (on
R
nk the enlargements are for the Euclidean distance, that is the �2 combi-

nation of the distances on the factors). Finally we set Iµ∞ := infk≥1 Iµk .
We follow Ledoux’s approach of an inequality by Buser [37] bounding

from below the Cheeger constant of a compact Riemannian manifold in
terms of its spectral gap and of a lower bound on its curvature. Ledoux
also deduced a Gaussian isoperimetric inequality from a logarithmic Sobolev
inequality. The argument was extended to the framework of Markov diffu-
sion generators by Bakry and Ledoux [7]. Moreover these authors obtained
dimension free constants. The following result is a particular case of [7, In-
equality (4.3)]. It allows to turn hypercontractivity properties into isoperi-
metric inequalities.
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Theorem 40. Let µ be a probability measure on R
n with dµ(x) = e−V (x)dx

with V ′′ ≥ 0. Let (Pt)t≥0 be the corresponding semi-group with generator
∆ −∇V.∇. Then for every t ≥ 0 and every smooth and bounded function,
one has

‖f‖2
2 − ‖Pt/2f‖2

2 ≤
√

2t ‖f‖∞
∫

|∇f |dµ.

In particular (applying this to approximations of characteristic functions)
for any Borel set A ⊂ R

n one has

µ(A) − ‖Pt/21IA‖2
2 ≤

√
2tµs(∂A).

Remark 29. If one only assumes that V ′′ ≥ −R · Id for R > 0 then the
statement is valid with an additional factor (2tR/(1 − exp(−2tR)))1/2 on
the right-hand side. This factor is essentially a constant when t ≤ 1/R.

In order to exploit this result we need the following two lemmas.

Lemma 41. Let the measure µ and the semi-group (Pt)t≥0 be as before.
Let τ be a Young function, and assume that for all f ∈ L

2(µ) one has
Nτ (Ptf) ≤ C‖f‖2. Then for every Borel subset A of R

n one has ‖Pt1IA‖2 ≤
Cµ(A)τ−1

(
τ(1)
µ(A)

)
, where τ−1 stands for the reciprocal function of τ .

Proof. Since Pt is symmetric for µ, one gets by duality that Pt maps
the dual of (Lτ (µ), Nτ ) into L

2(µ) with norm at most C. So for every A,
‖Pt1IA‖2 ≤ C‖1IA‖τ∗ . Recall that the latter norm is

‖1IA‖τ∗ = sup

{∫
A

gdµ;

∫
τ(g)dµ ≤ τ(1)

}
= sup

{∫
A

gdµ;

∫
A

τ(g)dµ ≤ τ(1)

}
= µ(A)τ−1

( τ(1)

µ(A)

)
.

Indeed Jensen inequality yields
∫
A
τ(g) dµ

µ(A)
≥ τ

(∫
A
g dµ
µ(A)

)
, which is tight

for g = 1IAτ
−1(τ(1)/µ(A)). �

Lemma 42. Let F : R
+ → R be a non-decreasing function with F (1) = 0,

and continuous on [1,+∞). Consider for q, x ≥ 0, the function τq(x) =
x2eqF (x2). Assume there exists constants c1, c2 such that for all x ≥ 1 one
has F (x) ≤ c1 log x and F (x2) ≤ c2F (x). Then for all q ∈ [0, 1/c1] one has

τ−1
q (y) ≤ √

y e
− q

2c2
F (y)

, y ≥ 1.
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Proof. Set Θ(x) = exp(−qF (x)/(2c2)). Setting y = τq(x), x ≥ 1 the
claimed inequality can be rephrased as:

x ≤ τq(x)
1
2 Θ(τq(x)) = xe

q
2
F (x2)e

− q
2c2

F (x2 exp(qF (x2)))
, x ≥ 1.

This is equivalent to F (x2 exp(qF (x2))) ≤ c2F (x2). The latter follows from
the hypotheses: for q ≤ 1/c1, F (x2 exp(qF (x2))) ≤ F (x2+2qc1) ≤ F (x4) ≤
c2F (x2). �

Theorem 43. Let µ be a probability measure on R
n with dµ(x) = e−V (x)dx

and V ′′ ≥ 0. Assume that the corresponding semi-group (Pt)t≥0 with genera-
tor ∆−∇V ·∇ satisfies for every t ∈ [0, T ] and every function in L

2(Rn, µ),

Nτkt
(Ptf) ≤ C‖f‖2,

where k > 0, C ≥ 1 and for q ≥ 0, x ∈ R, τq(x) = x2 exp(qF (x2)). Here
F : [0,∞) → R is non-decreasing and satisfies F (1) = 0, and for x ≥ 1,
F (x) ≤ c1 log x, F (x2) ≤ c2F (x). Then if A ⊂ R

n has small measure in
the sense that F (1/µ(A)) ≥ c2 log(2C2)/min(kT, 1/c1) one has the following
isoperimetric inequality:

µs(∂A) ≥ 1

4

(
k

c2 log(2C2)

) 1
2

µ(A)F

(
1

µ(A)

) 1
2

.

The symmetric inequality holds for large sets: if

F

(
1

1 − µ(A)

)
≥ c2 log(2C2)

min(kT, 1/c1)
,

then

µs(∂A) ≥ 1

4

(
k

c2 log(2C2)

) 1
2

(1 − µ(A))F

(
1

1 − µ(A)

) 1
2

.

Proof. We combine the above results and choose an appropriate value of
the time parameter. If t ≤ min(2T, 2/(kc1) then

µs(∂A) ≥ µ(A) − ‖Pt/21IA‖2
2√

2t

≥
µ(A) −

(
Cµ(A)τ−1

kt/2

(
1

µ(A)

))2

√
2t

≥ µ(A)
1 − C2 exp

(
− kt

2c2
F
(

1
µ(A)

))
√

2t
.

At this point we wish to choose t so that 1
2

= C2 exp
(− kt

2c2
F
(

1
µ(A)

))
. This is

compatible with the

F (1/µ(A)) ≥ c2 log(2C2)/min(kT, 1/c1).
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Under this condition, this value of time yields the claimed isoperimetric
inequality for small sets. For large sets note that applying the functional
inequality of Theorem 40 to suitable approximations of the characteristic
function of Ac gives

√
2tµs(∂A) ≥ µ(Ac)−‖Pt/21IAc‖2

2, so the study of small
sets apply. �
Remark 30. Under the weaker assumption V ′′ ≥ −R for R > 0 we have
similar results with constants depending on R.

Remark 31. Under specific assumptions on F we have shown that Capµ(A) ≥
µ(A)F (1/µ(A)) for all A implies continuity of the semigroup in the Orlicz
scale τq(x) = x2 exp(qF (x2)), which implies, at least for small sets, µs(∂A) ≥
Kµ(A)

√
F (1/µ(A)). Note the analogy between these relations and also the

inequality

µs(∂A) ≥ Cap(1)
µ (A) := inf

{∫
|∇f |dµ; f ≥ 1IA andµ(f = 0) ≥ 1/2

}
.

The previous theorem provides a lower bound on the isoperimetric profile
for small and large values of the measure only. We deal with the remaining
values, away from 0 and 1, by means of Cheeger’s inequality. The dimen-
sion free version of Buser’s inequality for diffusion generator, contained in
the work of Bakry and Ledoux allows to derive Cheeger’s inequality from
Poincaré inequality.

Theorem 44. Let µ be a probability measure on R
n with dµ(x) = e−V (x)dx

and V ′′ ≥ 0. Assume that the corresponding semi-group (Pt)t≥0 with gener-
ator ∆ −∇V · ∇ satisfies the following Poincaré inequality: for all f

λ

∫
(f − µ(f))2dµ ≤

∫
|∇f |2dµ.

Then for every Borel set A ⊂ R
n one has

µs(∂A) ≥ 1 − e−1

√
2

√
λµ(A)(1 − µ(A)).

The argument is written in the setting of Riemannian manifolds in [40,
Theorem 5.2]. We sketch the proof for completeness.

Proof. The spectral gap inequalities classically implies the exponential
decay of the norm of Pt on the space of zero mean. Therefore

‖Pt/21IA‖2
2 = ‖Pt/2µ(A)‖2

2 + ‖Pt/2(1IA − µ(A))‖2
2

≤ µ(A)2 + e−λt‖1IA − µ(A)‖2
2 = µ(A)2 + e−λtµ(A)(1 − µ(A)).

By Theorem 40, one has√
2tµs(∂A) ≥ (1 − e−λt)µ(A)(1 − µ(A)).

Choosing t = 1/λ concludes the proof. �
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Finally we apply the previous results to infinite products of the measures:

mα(dx) =
exp(−|x|α)

2Γ(1 + 1/α)
dx, x ∈ R

For technical reasons, we also consider the measures να defined in section 7
up to the irrelevant constant 2. They also have a log-concave density, but
more regular. The isoperimetric function of a symmetric log-concave density
on the line (with the usual metric) was calculated by Bobkov [14]. He showed
that half-lines have minimal boundary among sets of the same measure.
Since the boundary measure of (−∞, t] is given by the density of the measure
at t, the isoperimetric profile is easily computed. They are readily compared
to the functions

Lα(t) = min(t, 1 − t) log1− 1
α

(
1

min(t, 1 − t)

)
.

We omit the details, some of them are written in [9].

Lemma 45. There are constants k1, k2 such that for all α ∈ [1, 2], t ∈ [0, 1]
one has

k1Lα(t) ≤ Imα(t) ≤ k2Lα(t),

k1Lα(t) ≤ Iνα(t) ≤ k2Lα(t).

Our goal is to show the following infinite dimensional isoperimetric in-
equality.

Theorem 46. There exists a constant K > 0 such that for all α ∈ [1, 2]
and t ∈ [0, 1], one has

Iν∞α (t) ≥ KLα(t).

Since Iν∞α ≤ Iνα ≤ k2Lα, we have, up to a constant, the value of the
isoperimetric profile of the infinite product.

Proof. As shown in Corollary 34 of Section 7 the semi-group associated to
ν⊗nα is Orlicz-hyperbounded. Thus we may apply Theorem 43 with F = Fα
defined in (7.2) and get an isoperimetric inequality for small and large sets,
with constants independent of the dimension n. This step requires to check
a few properties of the function Fα. They are established in the following
Lemma 47. More precisely there are constants K1,K2 > 0 independent of α
and n such that, denoting β(α) = 2(1 − 1/α)

(8.1) Iν⊗n
α

(t) ≥ K1 min(t, 1− t)
[
logβ(α)

(
1 +

1

min(t, 1 − t)

)
− logβ(α)(2)

] 1
2
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provided (
logβ(α)

(
1 +

1

min(t, 1 − t)

)
− logβ(α)(2)

) 1
2

≥ K2.

We can prove (8.1) in the remaining range as well. Indeed, it is plain that

sup
x>0

να([x,+∞))

∫ x

0

1

ρνα

≤M,

so that the measures (να)α∈[1,2] satisfy a Poincaré inequality with a uniform
constant. The latter inequality has the tensorisation property, so the mea-
sures ν⊗nα also share a common Poincaré inequality. By Theorem 44, there
exists a constant K3 > 0 such that for all n, all α ∈ [1, 2] and all t ∈ [0, 1]

(8.2) Iν⊗n
α

(t) ≥ K3 min(t, 1 − t).

Since the exponential measure has a spectral gap, the latter argument re-
proves, with a slightly worse constant, the result of [16]. Now assume that

logβ(α)

(
1 +

1

min(t, 1 − t)

)
− logβ(α)(2) < K2

2 ,

then

Iν⊗n
α

(t) ≥ K3

K2
min(t, 1 − t)K2

≥ K3

K2
min(t, 1−t)

[
logβ(α)

(
1+

1

min(t, 1−t)
)
− logβ(α)(2)

] 1
2

.

So Inequality (8.1) is valid for all t ∈ [0, 1] provided one replaces K1 by

K4 := min
(
K1,

K3

K2

)
.

Finally, the uniform Cheeger inequality (8.2), implies that

1

K3

Iν⊗n
α

(t) ≥ logβ(α)/2(2) min(t, 1 − t).

Adding up this relation to

1

K4
Iν⊗n

α
(t) ≥ min(t, 1−t)

[
logβ(α)

(
1+

1

min(t, 1−t)
)
− logβ(α)(2)

] 1
2

≥ min(t, 1 − t)

[
logβ(α)/2

(
1 +

1

min(t, 1 − t)

)
− logβ(α)/2(2)

]
yields the claimed inequality. This manipulation was important in order to
get a non-trivial inequality when α tends to 1, i.e. when β(α) tends to 0. �
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The following technical result was used in the above proof.

Lemma 47. Let β ∈ [0, 1] then for all x ≥ 1 one has

logβ(1 + x) − logβ(2) ≤ log x,(8.3)

logβ(1 + x2) − logβ(2) ≤ 8
(
logβ(1 + x) − logβ(2)

)
.(8.4)

Proof. Note that (8.3) is an equality for x = 1. It is enough to prove the
inequality between derivatives, that is

β
logβ−1(1 + x)

(1 + x)
≤ 1

x
for x ≥ 1.

If x ≥ e−1 then logβ−1(1+x) ≤ 1 and the inequality is obvious. If x < e−1,
then logβ(1 + x) ≤ 1, therefore

β
logβ−1(1 + x)

(1 + x)
≤ 1

(1 + x) log(1 + x)
≤ 1

x
.

Next we address (8.4). One easily checks that for A ≥ B ≥ 1 the map

β > 0 
→ Aβ − 1

Bβ − 1

is non-decreasing. Applying this to

A = log(1 + x2)/ log(2) and B = log(1 + x)/ log(2)

shows that it is enough to prove (8.4) for β = 1. Let x ≥ 1, since 1 + x2 ≤
(1 + x)2 one has

log(1+x2)− log(2) ≤ 2 log(1+x)− log(2) = 2 (log(1 + x) − log(2))+log(2).

If x ≥ 3 then log(1 + x) − log(2) ≥ log(2) and the claimed inequality is
proved. For x ∈ (1, 3], we use the fundamental relation of calculus. It
provides t1 ∈ (1, 9) and t2 ∈ (1, 3) with

log(1 + x2) − log(2) = (x2 − 1)
1

1 + t1
≤ 2(x− 1)

and log(1 + x) − log(2) = (x− 1)
1

1 + t2
≥ (x− 1)/4.

So the ratio is bounded from above by 8. A smarter choice than 3 would
give a better result. �
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Remark 32. According to Theorem 39 the conclusion of Theorem 46 is still
true with the same Lα when replacing να by νV , provided V is convex and
the hypotheses in Theorem 39 are fulfilled.

We conclude the paper with consequences of Theorem 46. The first one
is a comparison theorem. It could be stated in a more general framework of
metric probability spaces satisfying a smoothness assumption (see e.g. [10]).
For simplicity we write it in the setting of Riemannian manifolds where
the definition of isoperimetric profile given in the beginning of the section
applies.

Theorem 48. Let (X, d, µ) be a Riemannian manifold, with the geodesic
metric, and a probability measure which has a density with respect to the
volume. On the product manifold we consider the geodesic distance, which is
the �2 combination of the distances on the factors. There exists a universal
constant K > 0 such that if for some c > 0, γ ∈ [0, 1

2
] and all t ∈ [0, 1]

one has

Iµ(t) ≥ cmin(t, 1 − t) logγ
(

1

min(t, 1 − t)

)
,

then for all n ≥ 1, t ∈ [0, 1] one has

Iµ⊗n(t) ≥ c

K
min(t, 1 − t) logγ

(
1

min(t, 1 − t)

)
.

Remark 33. This provides a scale of infinite dimensional isoperimetric in-
equalities. Both ends of the scale where previously known. A standard
argument based on the central limit theorem shows that if µ is a measure
on R with second moment then infn Iµ⊗n is dominated by a multiple of the
Gaussian isoperimetric function, which is comparable to

min(t, 1 − t) log1/2
( 1

min(t, 1 − t)

)
.

On the other hand an argument of Talagrand [52] shows that the weakest
possible dimension free concentration result for µ implies that it has at most
exponential tails. The isoperimetric function of the exponential density is
min(t, 1−t). So the above scale covers the whole range of infinite isoperimet-
ric inequalities. Of course finer scales could be obtained from our methods,
with more effort.

Remark 34. A similar statement was proved in [11] for the case when the
distance on the product space is the �∞ combination of the distances on the
factors (i.e. the maximum). This case was much easier due to the product
structure of balls in the product space. Also, this notion leads to bigger
enlargement, and the scale of infinite dimension behavior was larger, the
values γ ∈ [0, 1] being allowed.
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Proof of Theorem 48. The hypothesis implies that

Iµ ≥ c

k2

Iνα for α = 1/(1 − γ) ∈ [1, 2].

Theorem 10 in [10] asserts that among measures having the same concave
isoperimetric behavior, the even log-concave one minimizes the isoperimetric
profile for the product measures, see also [48]. So we have

Iµ⊗n ≥ c

k2

Iν⊗n
α
.

By the previous results Iν⊗n
α

≥ KLα and the proof is complete. �

The second consequence that we wish to put forward deals with the
measures

dmα(x) =
exp(−|x|α)

2Γ(1 + 1/α)
dx, α ∈ [1, 2].

It shows that among sets of prescribed measure for m⊗n
α in R

n, coordinate
half-spaces have enlargements of minimal measure, up to a universal factor.
The result was known for α ∈ 1, 2.

Theorem 49. There exists a universal constant K such that for every α ∈
[1, 2], n ≥ 1 and every Borel set A ⊂ R

n, if m⊗n
α (A) = mα((−∞, t]) then

for h ≥ 0,

m⊗n
α

(
A+ hBn

2

)
≥ mα

((
−∞, t+

h

K

])
.

Proof. This fact is proved by integrating the inequality

Im⊗n
α

≥ Imα

K

which provides a similar information about boundary measure (this corre-
sponds to infinitesimal enlargements).

This isoperimetric inequality is a consequence of the fact that Imα is
comparable to Iνα . The comparison theorem of [10] implies that Im⊗n

α
is

larger than a universal constant times Iν⊗n
α

≥ KLα ≥ K
k2
Imα . �
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[6] Bakry D. and Émery, M.: Diffusions hypercontractives. In Séminaire
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[7] Bakry, D. and Ledoux, M.: Lévy-Gromov’s isoperimetric inequality
for an infinite-dimensional diffusion generator. Invent. Math. 123 (1996),
259–281.

[8] Barthe, F.: Extremal properties of central half-spaces for product mea-
sures. J. Funct. Anal. 182 (2001), 81–107.

[9] Barthe, F.: Levels of concentration between exponential and Gaussian.
Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), 393–404.

[10] Barthe, F.: Log-concave and spherical models in isoperimetry. Geom.
Funct. Anal. 12 (2002), 32–55.

[11] Barthe, F.: Infinite dimensional isoperimetric inequalities in product
spaces with the supremum distance. J. Theoret. Probab. 17 (2004), 293–
308.

[12] Barthe, F. and Roberto, C.: Sobolev inequalities for probability mea-
sures on the real line. Studia Math. 159 (2003), 481–497.

[13] Beckner, W.: A generalized Poincaré inequality for Gaussian measures.
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