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The bidual of a tensor product
of Banach spaces

Félix Cabello Sánchez and Ricardo Garćıa

Abstract

This paper studies the relationship between the bidual of the (pro-
jective) tensor product of Banach spaces and the tensor product of
their biduals.

1. Definition of the main operator and organization of
the paper

In this paper we investigate the relationship between the bidual of the (pro-
jective) tensor product of Banach spaces and the tensor product of their
biduals.

First of all, let us show that given Banach spaces X1, . . . , Xk, there is an
‘intertwining’ linear operator α : X ′′

1 ⊗̂ · · · ⊗̂X ′′
k −→ (X1⊗̂ · · · ⊗̂Xk)

′′. This
mapping is ‘natural’, up to a permutation of {1, . . . , k}.

For background on extension of multilinear operators we refer the reader
to [2, 3, 10, 7]. Here, we only recall the Davie-Gamelin description of the
so-called Aron-Berner extension method. Suppose

T : X1 × · · · ×Xk −→ Z

is a multilinear operator acting between Banach spaces. Then we can ex-
tend T to a multilinear operator ε(T ) : X ′′

1 × · · · ×X ′′
k −→ Z ′′ taking

(1.1) ε(T )(x′′1, . . . , x
′′
k) = w∗−lim

x1→x′′
1

· · · w∗−lim
xk→x′′

k

T (x1, . . . , xk),

where the iterated limit is taken in the weak* topology of Z ′′, as xi ∈ Xi con-
verges to x′′i in the weak* topology ofX ′′

i . It is easily seen that ‖ε(T )‖ = ‖T‖.
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Note that we could have chosen any other ordering of the variables and we
would have got another extension, in general different from the given in (1.1).

Now, fix Banach spaces X1, . . . , Xk, and consider the obvious multilinear
operator ⊗ : X1 × · · · × Xk −→ X1⊗̂ · · · ⊗̂Xk sending (x1, . . . , xk) into the
elementary tensor x1 ⊗ · · · ⊗ xk. Applying the Aron-Berner procedure, we
obtain a multilinear operator ε(⊗) : X ′′

1 × · · ·×X ′′
k −→ (X1⊗̂ · · · ⊗̂Xk)

′′. By
the universal property of the (projective) tensor product, there is a unique
linear operator α : X ′′

1 ⊗̂ · · · ⊗̂X ′′
k −→ (X1⊗̂ · · · ⊗̂Xk)

′′ which linearizes ε(⊗),
that is, such that

α(x′′1 ⊗ · · · ⊗ x′′k) = ε(⊗)(x′′1, . . . , x
′′
k).

It is clear from (1.1) that

α(x′′1 ⊗ · · · ⊗ x′′k) = w∗−lim
x1→x′′

1

· · · w∗−lim
xk→x′′

k

(x1 ⊗ · · · ⊗ xk),

and also that ‖α‖ = ‖ε(⊗)‖ = ‖ ⊗ ‖ = 1.

We do not know if, in general, α is one-to-one, let alone an isomorphic
embedding. As often happens when dealing with tensor products, approxi-
mation properties will play a crucial rôle in our proofs.

We now explain the organization of the paper and summarize the main
results. Section 2 contains some preparatory material on the approximation
property. Mainly, that the bounded approximation property (BAP in short)
is nicely stable by tensor products and a simple test for local complementa-
tion of subspaces having the BAP.

In Section 3 we prove our main result: if X1, . . . , Xk are Banach spaces
whose biduals have the BAP, then α embeds X ′′

1 ⊗̂ · · · ⊗̂X ′′
k as a locally com-

plemented subspace of (X1⊗̂ · · · ⊗̂Xk)
′′.

An almost straightforward consequence is that if X ′′ has the BAP, then
L(kX ′′) is a complemented subspace of L(kX)′′ for all k ≥ 1.

In Section 4 we show that sometimes α : X ′′⊗̂X ′′ −→ (X⊗̂X)′′ is still an
isomorphic embedding even if X (hence X ′′) lacks the approximation prop-
erty. Thus, for instance, the ‘bidimensional’ Varopoulos algebra X ′′⊗̂X ′′

is a closed subspace of (X⊗̂X)′′ for all C*-algebras X. This also applies
to Pisier’s creature having no uniformly complemented finite dimensional
subspaces.

In Section 5 we present a more concrete application, namely that if K1

and K2 are infinite compact Hausdorff spaces, then (C(K1)⊗̂C(K2))
′′ lacks

the Dunford-Pettis property. In particular, the bidual of c0⊗̂c0 does not
have it. Incidentally, this was the original motivation of our work.

The remainder of the paper presents some applications to holomorphic
functions. First, we prove a ‘symmetric’ version of the main Theorem. Then,
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by using Schauder decompositions, we obtain that ifX a Banach space whose
bidual has the BAP, then Hb(X

′′) is a complemented subspace of the strong
bidual Hb(X)′′. The same result holds for holomorphic functions of bounded
type on the ball of X.

2. BAP in tensor products and locally complemented
subspaces

Definition 1 A Banach space X is said to have the λ-approximation prop-
erty (λ-AP, for short) if there is a net Tγ of finite rank operators, with
‖Tγ‖ ≤ λ, such that limγ ‖Tγ(x)− x‖ = 0 for all x ∈ X. A Banach space X
having the λ-AP for some finite λ is said to have the BAP.

The following two lemmata are surely well known. We include their
proofs for the sake of completeness and to fix some notations.

Lemma 1 (BAP in tensor products) If X1, . . . , Xk have the BAP, then
so does X1⊗̂ · · · ⊗̂Xk.

Proof. Since taking tensor products is associative it suffices to consider the
case k = 2. Suppose that X and Y have the BAP, with constant λX and λY ,
respectively. Let {Lγ : γ ∈ Γ} and {Rδ : δ ∈ ∆} be the corresponding
bounded nets of finite rank operators converging to the identity of X and Y ,
respectively. Consider the set Γ×∆, with the product order and let T(γ,δ) =
Lγ ⊗Rδ. Clearly, ‖T(γ,δ)‖ ≤ λX · λY . It remains to show that

(2.1) lim
(γ,δ)

‖T(γ,δ)(u) − u‖ = 0 ((γ, δ) ∈ Γ × ∆, u ∈ X⊗̂Y ).

If u = x⊗ y, this follows from

‖x⊗ y − T(γ,δ)(x⊗ y)‖ = ‖x⊗ y − x⊗Rδ(y) + x⊗Rδ(y) − Lγ(x) ⊗Rδ(y)‖
≤ ‖x‖ · ‖y −Rδ(y)‖ + λY · ‖y‖ · ‖x− Lγ(x)‖.

Hence (2.1) holds true for u =
∑n

i=1 xi ⊗ yi. For arbitrary u ∈ X⊗̂Y , fix
ε > 0 and take xi and yi such that∥∥∥∥u− n∑

i=1

xi ⊗ yi

∥∥∥∥ ≤ ε.

Put v = u−∑n
i=1 xi ⊗ yi. One has

‖u− T(γ,δ)(u)‖ ≤ ‖u− v‖ + ‖v − T(γ,δ)(v)‖ + ‖T(γ,δ)(u− v)‖
≤ (1 + λXλY )ε+ ‖v − T(γ,δ)(v)‖,

and the result follows. �
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Lemma 2 (BAP in duals) Let X be a Banach space. If X ′ has the BAP,
then the corresponding finite rank operators can be chosen weakly* continu-
ous (without varying the constant).

Proof. A moment of reflection shows that the λ-AP (of a Banach space X)
is equivalent to the following condition:

(*) Given a finite subset F of X and ε > 0 there is a finite rank operator
T such that ‖x− T (x)‖ < ε for all x ∈ F , with ‖T‖ ≤ λ.

Of course, the λ-AP implies (*). Conversely, if (*) holds, we can construct
the required net of finite rank operators on the index set of all possible pairs
(F, ε) directed as follows: (F, ε) ≤ (F ′, ε′) if and only if F ⊂ F ′ and ε′ ≤ ε.

Now, assume X ′ has the λ-AP. Fix a finite subset F of X ′ and ε > 0.
The hypothesis implies the existence of a finite rank operator T on X ′ such
that ‖x′ − T (x′)‖ < ε for all x′ ∈ F , with ‖T‖ ≤ λ. Let E be the range
of T and let T ′ : E ′ → X ′′ be the adjoint operator. By Dean’s identity
L(E ′, X ′′) = L(E ′, X)′′, there is a net of operators tδ : E ′ → X, with
‖tδ‖ ≤ ‖T ′‖ ≤ λ, such that tδ converges to T ′ in the weak* topology of
L(E ′, X)′′ –which is the weak* operator topology of L(E ′, X ′′). Finally,
consider the adjoint operators t′δ : X ′ → E ′′ = E as finite rank operators on
X ′. By our choice of (tδ) and taking into account that E is finite-dimensional,
it follows that t′δ(x

′) converges in norm to T (x′) for all x′ ∈ X ′. Hence

‖x′ − t′δ(x
′)‖ < ε (x′ ∈ F )

for δ large enough. This completes the proof. �
The meaning of Lemma 2 is that the operators Tγ which obviously admit

a representation of the form

Tγ =
n∑

i=1

x′′i ⊗ x′i

where x′′i ∈ X ′′ and x′i ∈ X ′ can be replaced by operators of the form

T̃γ =
n∑

i=1

xi ⊗ x′i,

with xi ∈ X.

Corollary 1 (BAP in biduals) If X ′′ has the λ-AP, then there is a net
of finite rank operators tγ : X → X ′′, with ‖tγ‖ ≤ λ, such that

lim
γ

‖x′′ − t′′γ(x
′′)‖ = 0 for all x′′ ∈ X ′′.
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Definition 2 A linear operator κ : X → Y admits a local left inverse of
bound λ if, for each finite-dimensional subspace E ⊂ Y and each ε > 0, there
is an operator T : E → X such that T (κ(x)) = x provided κ(x) belongs to E,
with ‖T‖ ≤ λ+ ε.

It is clear that an operator κ : X → Y admitting a local left inverse is an
isomorphic embedding: λ−1

κ ‖x‖ ≤ ‖κ(x)‖ ≤ ‖κ‖‖x‖. Thus we can regard X
as a locally complemented subspace of Y . The Principle of Local Reflexivity
of Lindenstrauss and Rosenthal [23] says that every Banach space is locally
complemented in its bidual. Also, it is well-known that every Banach space
is locally complemented in its ultrapowers.

Our immediate objective is the following isometric version of a folk result
on locally complemented subspaces (see [21, theorem 3.5] or the first section
of [20]).

Lemma 3 Let κ : X → Y be a linear operator acting between Banach
spaces. The following are equivalent:

(a) κ has a local left-inverse of bound λ.

(b) κ′ : Y ′ → X ′ has a right-inverse of norm at most λ.

(c) κ′′ : X ′′ → Y ′′ has a left-inverse of norm at most λ.

(d) For each compact operatorK from X into any Banach space Z, there is
a compact operator K̃ : Y → Z such that K=K̃◦κ, with ‖K̃‖ ≤ λ‖K‖.

Proof. The implication (a) ⇒ (b) easily follows from ‘Lindenstrauss com-
pactness argument’, while (b) ⇒ (c) is obvious and (c) ⇒ (a) is a straight-
forward consequence of the Principle of Local Reflexivity.

We prove the implication (a) ⇒ (d). Consider the set S of all pairs (F, ε),
where F is a finite dimensional subspace of Y and ε > 0 directed by

(F, ε) ≤ (F ′, ε′) ⇐⇒ F ⊂ F ′ and ε′ ≤ ε.

For each (F, ε), take a linear operator T ε
F : F → X such that T ε

F (κ(x)) = x
for all x ∈ κ−1(F ), with ‖T ε

F‖ ≤ λ + ε. Now, fix any ultrafilter V refining
the Fréchet filter on S. Let K : X → Z be a compact operator. Define
K̃ : Y → Z by

K̃(y) = lim
V(F,ε)

K(T ε
F (y)) (y ∈ Y ).

The definition makes sense because every y ∈ Y belongs eventually to F ,
the set {T ε

F (y) : (F, ε) ∈ S, y ∈ F} is bounded in X and K is compact.

On the other hand, the image under K̃ of the unit ball of Y is contained
in the closure of the image under K of the ball of radius λ of X. This shows
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at once that K̃ is compact and that ‖K̃‖ ≤ λ‖K‖. It remains to see that K̃
extends K. Take x ∈ X. Then

K̃(κ(x)) = lim
V(F, ε)

K(T ε
F (κ(x))) = K(x),

as desired.

Finally, we prove that (d) implies (b). Let Γ be the net of all finite
dimensional subspaces of X ′ ordered by inclusion. For each E ∈ Γ, let KE :
X → E ′ be the preadjoint of the inclusion map E → X ′. The hypothesis
yields K̃E : Y → E ′ such that K̃E ◦ κ = KE, with ‖K̃E‖ ≤ λ. Let V be an
ultrafilter (refining the Fréchet filter) on Γ and define S : X ′ → Y ′ by

S(x′) = w∗−lim
V(E)

K̃ ′
E(x′) (x′ ∈ X ′)

The definition is correct since for each x′ ∈ X ′ one eventually has x′ ∈ E.
Obviously, ‖S‖ ≤ λ. That S is a right inverse for κ′ follows from

〈κ ◦ S(x′), x〉 = lim
V(E)

〈K̃ ′
E(x′), κ(x)〉 = lim

V(E)
〈x′, K̃E(κ(x))〉 = 〈x′, x〉.

This completes the proof. �
The fourth condition in the preceding Lemma is often called the compact

extension property (CEP for short). We now prove the following test for local
complementation of subspaces having the BAP.

Lemma 4 Let κ : X → Y be a linear operator, where X is a Banach
space with the BAP given by the net Tγ. Suppose that for every γ there is
T̃γ : Y → X such that T̃γ ◦ κ = Tγ, with ‖T̃γ‖ ≤ λ. Then κ admits a local
inverse with bound λ.

Proof. We show that X has the CEP in Y with constant λ. Let K be a
compact operator from Y into any Banach space Z. Choose any ultrafilter V

refining the Fréchet (=order) filter on Γ and define K̃ : Y → Z by

K̃(y) = lim
V(γ)

K(T̃γ(y)) (y ∈ Y ).

The definition makes sense becauseK is compact and the set {T̃γ(y) : γ ∈ Γ}
is contained in the ball of radius λ‖y‖ of X. This implies that K̃ is compact
and also that ‖K̃‖ ≤ λ‖K‖.

It remains to see that K̃ ◦ κ = K. Take x ∈ X. Then,

K̃(κ(x)) = lim
V(γ)

K(T̃γ(x)) = lim
V(γ)

K(Tγ(x)) = K(x),

which completes the proof. �
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3. The main result

We are now ready to prove the main result of the paper.

Theorem 1 Let X1, . . . , Xk be Banach spaces whose biduals have the BAP.
Then α embeds X ′′

1 ⊗̂ · · · ⊗̂X ′′
k as a locally complemented subspace of

(X1⊗̂ · · · ⊗̂Xk)
′′ .

Proof. We write the proof for two Banach spaces X and Y . The verification
of the general case is left to the reader. Suppose X ′′ and Y ′′ have the BAP,
with constants λX′′ and λY ′′ , respectively. By Corollary 1, there exist nets
of finite rank operators lγ : X → X ′′ and rδ : Y → Y ′′, with ‖lγ‖ ≤ λX′′ and
‖rδ‖ ≤ λY ′′ in such a way that

lim
γ

‖x′′ − l′′γ(x
′′)‖ = 0 (x′′ ∈ X ′′)

lim
δ

‖y′′ − r′′δ (y
′′)‖ = 0 (y′′ ∈ Y ′′).

By Lemma 1, the net T(γ,δ) = l′′γ ⊗ r′′δ transfers the BAP to X ′′⊗̂Y ′′, with
constant λX′′λY ′′ . In view of Lemma 4, the proof will be complete if we
show that for each (γ, δ) there is a an operator T̃(γ,δ) making commute the
diagram

X ′′⊗̂Y ′′ α−→ (X⊗̂Y )′′

(3.1) T(γ,δ) ↘ ↙ T̃(γ,δ)

X ′′⊗̂Y ′′

with ‖T̃(γ,δ)‖ uniformly bounded.

Fix (γ, δ) and consider the linear operator

lγ ⊗ rδ : X⊗̂Y −→ X ′′⊗̂Y ′′

and the bitranspose map

(rγ ⊗ lδ)
′′ : (X⊗̂Y )′′ −→ X ′′⊗̂Y ′′

(recall that lγ ⊗ rδ has finite dimensional range). Set

T̃(γ,δ) = (lγ ⊗ rδ)
′′.

Obviously, ‖T̃(γ,δ)‖ = ‖lγ‖ · ‖rδ‖ ≤ λX′′λY ′′ . We end the proof by showing
that (3.1) commutes. It suffices to see that

(lγ ⊗ rδ)
′′(α(x′′ ⊗ y′′)) = l′′γ(x

′′) ⊗ r′′δ (y
′′)

holds for all x′′ ∈ X ′′, y′′ ∈ Y ′′.
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One has (all limits are taken as y ∈ Y converges to y′′ in the weak*
topology of Y ′′ and x ∈ X converges to x′′ in the weak* topology of X ′′):

T̃(γ,δ)(α(x′′ ⊗ y′′)) = (lγ ⊗ rδ)
′′(α(x′′ ⊗ y′′))

= (lγ ⊗ rδ)
′′
(
w∗− lim

x→x′′

(
w∗− lim

y→y′′
x⊗ y

))
= lim

x→x′′

(
(lγ ⊗ rδ)

′′(w∗− lim
y→y′′

x⊗ y
))

= lim
x→x′′

(
lim

y→y′′
(lγ ⊗ rδ)

′′(x⊗ y)
)

= lim
x→x′′

(
lim

y→y′′
(lγ ⊗ rδ)(x⊗ y)

)
= lim

x→x′′

(
lim

y→y′′
lγ(x) ⊗ rδ(y)

)
= lim

x→x′′
lγ(x) ⊗ r′′δ (y

′′)

= l′′γ(x
′′) ⊗ r′′δ (y

′′)

= T(γ,δ)(x
′′ ⊗ y′′).

Which completes the proof. �
The proof shows that the local complementation constant of X ′′⊗̂Y ′′ in

(X⊗̂Y )′′ is at most λX′′λY ′′ . For an arbitrary number of Banach spaces
X1, . . . , Xk, the local complementation constant of X ′′

1 ⊗̂ · · · ⊗̂X ′′
k in

(X1⊗̂ · · · ⊗̂Xk)
′′ is at most λX′′

1
· · · λX′′

k
. In particular, if each X ′′

i has the
metric approximation property (that is, the 1-AP; MAP in short), then α
is an isometry and X ′′

1 ⊗̂ · · · ⊗̂X ′′
k is a locally 1-complemented subspace of

(X1⊗̂ · · · ⊗̂Xk)
′′.

An almost straightforward consequence is the following.

Corollary 2 If X ′′ has the BAP, then L(kX ′′) is a complemented subspace
of L(kX)′′ for all k ≥ 1.

Proof. Since the space of multilinear forms on X1 × · · · × Xk is naturally
isomorphic to (X1⊗̂ · · · ⊗̂Xk)

′ this obviously follows from Theorem 1 and
Lemma 3. �

Notice that if X ′′ has the MAP, then α′ : L(kX)′′ → L(kX ′′) is an
isometric quotient map and admits a right inverse of norm 1. In this case
L(kX ′′) is isometric to a 1-complemented subspace of L(kX)′′.

There are some connections between α, injective tensors and the Borel
transform. Given two Banach spaces X and Y , we write X⊗̌Y for the
injective tensor product of X and Y , that is, the completion of the algebraic
tensor product X ⊗ Y under the least reasonable crossnorm [12].



The bidual of a tensor product of Banach spaces 851

There is a natural map a : X ′′⊗̂Y ′′ → (X ′⊗̌Y ′)′ which identifies ele-
ments of X ′′⊗̂Y ′′ with integral (actually nuclear) bilinear forms on X ′ × Y ′.
Approximation properties can be easily described by means of a: X ′′ has
the AP (respectively, the BAP and the MAP) if and only if, for all Ba-
nach spaces Y , the map a is injective (respectively, an isomorphic embed-
ding and an isometry). On the other hand there is an obvious operator
b : X ′⊗̌Y ′ → (X⊗̂Y )′ (which is always an isometric embedding) whose
adjoint b′ : (X⊗̂Y )′′ → (X ′⊗̌Y ′)′ is often called the Borel transform.

It is easily seen that the following diagram commutes

X ′′⊗̂Y ′′ α−→ (X⊗̂Y )′′

a↘ ↙ b′(3.2)

(X ′⊗̌Y ′)′

Thus, we have proved the following:

Proposition 1 If X ′′ has the BAP, then α : X ′′⊗̂Y ′′ → (X⊗̂Y )′′ is an
isomorphic embedding for all Banach spaces Y .

A more general result shall be proved in the next Section.

To some extent, this paper is the “predual” of Jaramillo, Prieto and
Zalduendo’s [19]. There, it is proved that if X ′′ has the BAP, then there
exists a linear surjection β : L(kX)′′ → L(kX ′′) for all k ≥ 1. It is not hard
to verify that β is (essentially) the adjoint of “our” α. Hence, β is not only
a surjection, but a projection (provided X ′′ has the BAP). As noted in [19,
theorem 4], there exist (even non-reflexive) Banach spaces X for which the
map β is an isomorphism for all k. This is easier to verify for α:

Corollary 3 (Jaramillo-Prieto-Zalduendo) SupposeX ′′ has the approx-
imation property and the Radon-Nikodým property. Then

α : (⊗̂k
X ′′) −→ (⊗̂k

X)′′

is an isomorphism if and only if every multilinear form on Xk is nuclear.

Proof. Consider the diagram

(⊗̂k
X ′′) α−→ (⊗̂k

X)′′

a↘ ↙ b′(3.3)

(⊗̌k
X ′)′

The approximation property of X ′′ means that a is injective. The RNP
implies that a is surjective [12]. The hypothesis about the multilinear forms

on Xk means that L(kX) = (⊗̌k
X ′) through the preadjoint of the Borel

transform. �
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One spaceX satisfying the three relevant conditions of the above result is
the original Tsirelson space T ∗. The non-reflexive example is the Tsirelson-
James type space presented in [4]. See [1, 17] and [13, chapter 2, section 4]
for details.

4. Banach spaces failing the AP

In this Section we study the map α : X ′′⊗̂Y ′′ → (X⊗̂Y )′′ for some spaces
without the AP. Roughly speaking, a Banach space X has a certain approx-
imation property if the tensor product X⊗̂Y is nice (in a certain sense) for
all Banach spaces Y , or equivalently, for Y = X ′. Obviously, X⊗̂Y may be
nice for some choices of Y , even if X⊗̂X ′ is bad. An illustrative example is
provided by Theorem 2 below.

Lemma 5 Let X and Y be Banach spaces. Suppose there are constants C
and λ such that, for every operator T : X → Y ′ there is a Banach space
Z having the λ-AP and a factorization T = R ◦ L, where L : X → Z and
R : Z → Y ′ satisfy ‖R‖ · ‖L‖ ≤ C‖T‖. Then, for each u ∈ X⊗̂Y , one has

‖u‖ ≤ Cλ sup
‖B‖≤1

|B(u)|,

where B runs over the bilinear forms of finite type on X × Y .

Proof. We may and do assume that u =
∑n

i=1 xi ⊗ yi. Let B be a norm-
one bilinear form on X × Y such that |B(u)| = ‖u‖ and let B1 : X → Y ′

be the (first) associated linear operator. Take operators L : X → Z and
R : Z → Y ′ such that B1 = R ◦ L, with ‖R‖‖L‖ ≤ C.

Now, fix ε > 0 and use the λ-AP of Z to get a finite rank F : Z → Z
such that ‖F‖ ≤ λ and

‖F (L(xi)) − L(xi)‖ < ε (1 ≤ i ≤ n).

Let B̃1 = R ◦ F ◦ L. It is clear that B̃1 is a finite rank operator of norm
at most Cλ. Hence the associated bilinear form B̃ is of finite type, and
‖B̃‖ ≤ Cλ. One has,

|B(u) − B̃(u)| =

∣∣∣∣B( n∑
i=1

xi ⊗ yi

)
− B̃

( n∑
i=1

xi ⊗ yi

)∣∣∣∣
≤

n∑
i=1

|B(xi ⊗ yi) − B̃(xi ⊗ yi)| =
n∑

i=1

|〈R(L(xi)) − R(F (L(xi))), yi〉|

≤
n∑

i=1

‖R‖‖L(xi) − F (L(xi))‖‖yi‖ ≤
(

n∑
i=1

‖R‖‖yi‖
)
ε.

Since ε was arbitrary the proof is complete. �
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Lemma 6 Let X and Y be Banach spaces. Then for each u ∈ X ′′⊗̂Y ′′ the
norm of u as a linear functional on X ′′′⊗̌Y ′′′ coincides with the norm of u
regarded as a functional on X ′⊗̌Y ′.

Proof. Clearly,

(4.1) ‖u : X ′′′⊗̌Y ′′′ → K‖ = sup
‖B‖≤1

|B(u)|,

where B runs over all bilinear forms of finite type on X ′′ × Y ′′, that is,

B =
m∑

k=1

f ′′′
k ⊗ g′′′k (f ′′′

k ∈ X ′′′, g′′′k ∈ Y ′′′).

Similarly,

(4.2) ‖u : X ′⊗̌Y ′ → K‖ = sup
‖b‖≤1

|b(u)|,

where b runs over all bilinear forms of finite type on X ′′ × Y ′′ which are
separately weakly* continuous, that is, of the form

b =
m∑

k=1

f ′
k ⊗ g′k (f ′

k ∈ X ′, g′k ∈ Y ′).

Of course ‖u : X ′′′⊗̌Y ′′′ → K‖ ≥ ‖u : X ′⊗̌Y ′ → K‖. To prove the reversed
inequality we show that for each u ∈ X ′′⊗̂Y ′′ and each B of finite type
one has

|B(u)| ≤ sup
‖b‖≤‖B‖

|b(u)|,

where b runs over the bilinear forms of finite type which are separately
weakly* continuous on X ′′ × Y ′′.

Again, we may assume

u =
n∑

i=1

x′′i ⊗ y′′i .

Let B : X ′′×Y ′′ → K be a bilinear form of finite type, and let B1 : X ′′ → Y ′′′

the associated finite rank operator. Reasoning as in the proof of Lemma 2
one sees that for every ε > 0 there is a weakly* continuous operator B̃1 :
X ′′ → Y ′′′ such that

‖B1(x
′′
i ) − B̃1(x

′′
i )‖ < ε (1 ≤ i ≤ n),

with ‖B̃1‖ ≤ ‖B1‖.
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Applying the argument given at the end of the proof of Lemma 5 we see
that

|B(u)| ≤ sup
‖B̃‖≤‖B‖

|B̃(u)|,

where B̃ runs over the bilinear forms of finite type on X ′′ × Y ′′ which are
weakly* continuous on the first variable.

We complete the proof by showing that for each B̃ as above, one has

(4.3) |B̃(u)| ≤ sup
‖b‖≤‖B̃‖

|b(u)|,

where b is as in (4.2). Let B̃2 : Y ′′ → X ′′′ be the second operator associated
to B̃. Note that B̃2 takes values in X ′ –instead of X ′′′. Again, for each
ε > 0 there is a weakly* continuous operator b2 : Y ′′ → X ′ such that
‖B̃2(y

′′
i ) − b2(y

′′
i )‖ < ε, with ‖b2‖ ≤ ‖B̃2‖. This proves (4.3) and completes

the proof. �

Theorem 2 Let X and Y be Banach spaces. Suppose there are constants
C and λ such that, for every operator T : X ′′ → Y ′′′ there is a Banach space
Z having the λ-AP and a factorization T = R ◦ L, where L : X ′′ → Z and
R : Z → Y ′′′ satisfy ‖R‖ · ‖L‖ ≤ C‖T‖. Then α : X ′′⊗̂Y ′′ → (X⊗̂Y )′′ is an
isomorphic embedding.

Proof. In view of the diagram (3.2), it suffices to show that a : X ′′⊗̂Y ′′ →
(X ′⊗̌Y ′)′ is an isomorphic embedding (note that ‖b′‖ = ‖b‖ = 1). Since

‖a(u)‖ def
= ‖u : X ′⊗̌Y ′ → K‖ = ‖u : X ′′′⊗̌Y ′′′ → K‖

it follows by Lemma 5 that ‖u‖ ≤ Cλ‖a(u)‖. �

Corollary 4 If X has type 2 and X ′ has cotype 2 then α : X ′′⊗̂X ′′ −→
(X⊗̂X)′′ is an isomorphic embedding.

Proof. It follows from a result of Pisier [25] that the hypothesis of Theo-
rem 2 can be satisfied with Z a suitable Hilbert space. �

Thus, for instance, X ′′⊗̂X ′′ is a subspace of (X⊗̂X)′′ ifX is a C*-algebra,
in particular if X is either K(H) or L(H) or if X is Pisier’s space [24] having
no uniformly complemented finite dimensional subspaces. Note that Pisier
space and L(H) = K(H)′′ both fail the AP [26]. We do not know, however,
if in these cases, X ′′⊗̂X ′′ is locally complemented in (X⊗̂X)′′. It is unclear
to us if the results in this Section can be extended for more than two Banach
spaces.
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5. Applications to the Dunford-Pettis property

Let us recall that a Banach space has the Dunford-Pettis property (DPP) if
all weakly compact operators defined on it are completely continuous.

Lemma 7 Weakly compact operators can be extended from locally comple-
mented subspaces.

Proof. Suppose X is locally complemented in Y and let W : X → Z be
a weakly compact operator. By an old result of Gantmacher, W ′′ takes
values in Z. Since X ′′ is complemented in Y ′′ we can extend W ′′ to a weakly
compact operator Y ′′ → Z whose restriction to Y is the required extension.
(A direct proof follows replacing ‘compact’ by ‘weakly compact’ everywhere
in the proof of the implication (a) ⇒ (d) in Lemma 3.) �

Corollary 5 A Banach space has the DPP if and only if every locally com-
plemented subspace have it.

Corollary 6 (Independently obtained by González and Gutiérrez; see [16])
Let K1 and K2 be infinite compact Hausdorff spaces. Then

(C(K1)⊗̂C(K2))
′′

lacks the DPP. In particular, the bidual of c0⊗̂c0 does not have the DPP.

Proof. In view of the result just proved, this follows from Theorem 1 and
the fact (proved by Bombal and Villanueva in [5]) that C(K1)⊗̂C(K2) lacks
the DPP unless both K1 and K2 are scattered. �

The present authors and Castillo proved in [6] that if Xi and Yi are
Banach spaces such that X ′

i is isomorphic to Y ′
i , then (X1⊗̂ · · · ⊗̂Xk)

′ is
isomorphic to (Y1⊗̂ · · · ⊗̂Yk)

′. It follows that if X and Y are (infinite dimen-
sional) L∞-spaces, then

(X⊗̂Y )′′

lacks the DPP.

To the best of our knowledge, c0⊗̂ c0 is the “second” Banach space hav-
ing the DPP and whose bidual lacks it. The first counterexample was c0(	

n
2 ).

It has the DPP because its dual 	1(	
n
2) has the Schur property. The bidual

	∞(	n2) lacks the DPP because it contains a complemented subspace isomor-
phic to 	2 –this was first observed by Stegall who give a rather involved
proof; a simpler proof, following [9, Example 4], appears in [6]. We do not
know whether or not (c0⊗̂c0)′′ contains a reflexive complemented subspace.
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6. Symmetrization

This Section is an adaptation of the first one to the symmetric case. Recall
that a k-linear operator T : X× k. . . ×X → Z is called symmetric provided
T (x1, . . . , xk) = T (xσ(1), . . . , xσ(k)) for every permutation of {1, . . . , k} and
all xi ∈ X.

The arguments given in Section 1 cannot be used straightforwardly in
the symmetric case because Aron-Berner extensions need not preserve sym-
metry. This is due to the choice of an specific ordering in the iterated limit
(from the last variable to the first). For a multilinear operator T : Xk → Z,
and σ in the symmetric group Sk, define Tσ : Xk → Z by

Tσ(x1, . . . , xk) = T (xσ(1), . . . , xσ(k)).

and εσ(T ) : (X ′′)k → Z ′′ by ε(Tσ)σ−1.

This is the Aron-Berner extension of T , but changing the usual order
in the iterated limit by the new ordering given by σ−1; see [7, section 4].
Finally, put

εs(T ) =
1

k!

∑
σ∈Sk

εσ(T )

Since εs(T ) is symmetric whenever T is, the problem of symmetry is fixed.
Now, we can define another operator

αs : (⊗̂k
X ′′) −→ (⊗̂k

X)′′

taking αs(x
′′
1 ⊗ · · · ⊗ x′′k) = εs(⊗)(x′′1, . . . , x

′′
k).

Note that αs can be regarded as an averaging of maps ασ = εσ(⊗), where
α corresponds to the choice of σ as the identity of Sk. Moreover, if X ′′ has
the λ-AP, then there is a net of finite rank operators tγ : X → X ′′, with
‖tγ‖ ≤ λ such that t′′γ⊗ k. . . ⊗t′′γ converges to the identity in the strong

operator topology of L((⊗̂k
X ′′)). It is easily seen that

t′′γ⊗ k. . . ⊗t′′γ = (tγ⊗ k. . . ⊗tγ)′′ ◦ ασ

for all σ ∈ Sk. Hence,

t′′γ⊗ k. . . ⊗t′′γ = (tγ⊗ k. . . ⊗tγ)′′ ◦ αs.

This proves the following:

Theorem 3 If X ′′ has the λ-AP, then αs embeds (⊗̂k
X ′′) as a λk-locally

complemented subspace of (⊗̂k
X)′′.
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We need the notion of a symmetric tensor product (see [14]). Let X be

a Banach space and ⊗̂k
X its k-fold tensor product. Put

Σ(x1 ⊗ · · · ⊗ xk) =
1

k!

∑
σ∈Sk

xσ(1) ⊗ · · · ⊗ xσ(k) .

It is easily seen that Σ defines a contractive projection on ⊗̂k
X: compu-

tations are even easier looking at Σ′ on L(kX).

The range of Σ is, by definition, the k-fold symmetric tensor product

of X and it is denoted by X⊗̂s
k. . . ⊗̂sX or ⊗̂k

sX. We emphasize that the
symmetric tensor product is a quotient of the (full) tensor product rather
than a subspace (unless you prefer to think the symmetric forms as a quotient
of all multilinear forms!). In fact, the symmetric tensor product should be
defined as the symmetric k-linear operator

Xk ⊗−→ ⊗̂k
X

Σ−→ ⊗̂k

sX.

It is pretty obvious that this construction has the following universal prop-
erty: for every symmetric multilinear operator S from Xk into any Ba-

nach space Z there is a unique linear operator L : ⊗̂k

sX −→ Z such that
S = L ◦ Σ ◦ ⊗, with ‖L‖ = ‖S‖.

In particular the dual of ⊗̂k

sX is naturally isometric to Ls(
kX), the space

of symmetric k-linear forms on Xk.
Now, consider the composition of αs with Σ′′. This clearly induces a

symmetric multilinear map from (X ′′)k into (⊗̂k

sX)′′. By the universal prop-

erty, there is a norm-one linear map (⊗̂k

sX
′′) −→ (⊗̂k

sX)′′ making commute
the following diagram:

⊗̂k
X ′′ αs−→ (⊗̂k

X)′′

Σ ↓ ↓ Σ′′

(⊗̂k

sX
′′) −→ (⊗̂k

sX)′′

Actually, it is not hard to see that the lower map is nothing but the
restriction of αs to the range of Σ. Since “being locally complemented” is a
transitive property, we obtain the following.

Corollary 7 If X ′′ has the λ-AP, then αs embeds (⊗̂k

sX
′′) as a λk-locally

complemented subspace of (⊗̂k

sX)′′.

Corollary 8 If X ′′ has the λ-AP, then α′
s : Ls(

kX)′′ −→ Ls(
kX ′′) admits a

linear section of norm at most λk.
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7. Applications to holomorphic functions

Let U be a balanced open subset of a Banach space X. A U -bounded set
is a bounded subset of U whose distance to the boundary of U is strictly
positive. If U = X, then U -bounded sets are simply bounded sets. We de-
note by Hb(U) the Fréchet space of all holomorphic functions on U which are
bounded on all U -bounded sets, with the topology τb of uniform convergence
on U -bounded sets.

Let f be a holomorphic function on U . The Taylor series

f(x) ∼
∞∑

k=0

dkf(0)

k!
(x, k. . ., x) (dkf(0) ∈ Ls(

kX))

decomposes f as a formal sum
∑

k Tk, where Tk ∈ Ls(
kX).

We are identifying each symmetric form on Xk with the associated k-
homogeneous polynomial T̂ given by

T̂ (x) = T (x, r. . ., x).

It is well-known that (Ls(
kX))k is then a Schauder decomposition of Hb(U)

for arbitrary open balanced U . Actually this decomposition turns out to
be a very special one. Let us recall from [15] that a sequence of Banach
subspaces (Ek) of a locally convex space E is said to be an R-decomposition
(0 < R ≤ ∞) of E if (in addition of being a Schauder decomposition) it
satisfies that, given xk ∈ Ek, the series

∑
k xk converges in E if and only if

lim sup
k→∞

‖xn‖1/k ≤ 1

R
.

For instance, (Ls(
kX))k is a 1-decomposition of Hb(U) if U is the unit ball

of X; while it is a ∞-decomposition for Hb(X). Another remarkable re-
sult in [15] is that if (Ek) is an R-decomposition of E, then (E ′′

k ) is an
R-decomposition of the strong bidual E ′′.

We are now ready to prove the main result of the Section. We denote by
U ′′ the norm-interior of the weak*-closure of U in X ′′. It is clear that U ′′ is
the (norm) interior of the bipolar of U . In particular, if U is the open unit
ball of X then U ′′ is open unit ball of X ′′.

Theorem 4 Suppose X ′′ has the BAP. Then Hb(U
′′) is a complemented

subspace of the strong bidual Hb(U)′′, where U is either a ball of X or X
itself.
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Proof. We write the proof for U = X. The proof for balls is similar (cf.
[15, theorem 9]).

Since Ls(
kX)′′ (respectively, Ls(

kX ′′)) is a ∞-decomposition of Hb(X)′′

(respectively of Hb(X
′′)), we can define a mapping η : Hb(X)′′ → Hb(X

′′)
taking

η

( ∞∑
k=0

Tk

)
def
=

∞∑
k=0

α′
s(Tk) ,

where
∞∑

k=0

Tk ∈ Hb(X)′′ with Tk ∈ Ls(
kX)′′.

Clearly, ∥∥α′
s : Ls(

kX)′′ → Ls(
kX ′′)

∥∥ = 1 for all k.

It follows that η is continuous. To end, we show that η admits a continuous
right inverse ψ : Hb(X

′′) → Hb(X)′′. For each k, let ψk : Ls(
kX)′′ →

Ls(
kX ′′) be a right inverse for α′

s : Ls(
kX ′′) → Ls(

kX)′′ of norm at most λk,
where λ is the AP constant of X ′′.

Finally, set

ψ(f) =
∞∑

k=0

ψk(Tk),

where

f =
∞∑

k=0

Tk

is the unique decomposition of f with Tk ∈ Ls(
kX ′′). By [15, theorem 9], ψ is

continuous and, obviously, η ◦ψ is the identity on Hb(X
′′), which completes

the proof. �
We do not know whether or not Theorem 4 is true for every balanced

open U . Also it would interesting what happens for other spaces of analytic
functions, for instance the space H∞(B), whereB is the closed unit ball ofX.

Note added in proof. The part of Corollary 4 concerning C*-algebras
was obtained earlier in [22]. See Theorem 5.1 in that paper, taking into
account that the projective tensor product is denoted ⊗γ there.

Very recently J. Gutiérrez solved the problem stated at the end of Sec-
tion 5 by showing that (c0⊗̂c0)′′ contains a complemented infinite-dimensional
Hilbert subspace [18]. Actually, even c0⊗̂	∞ contains such a copy. See [8],
where it is shown that c0⊗̂c0 contains a complemented copy of Stegall’s
counterexample c0(	

n
2 ).
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