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Clifford and Harmonic Analysis
on Cylinders and Tori

Rolf Sören Kraußhar and John Ryan

Abstract

Cotangent type functions in R
n are used to construct Cauchy ker-

nels and Green kernels on the conformally flat manifolds R
n/Z

k where
1 ≤ k ≤ n. Basic properties of these kernels are discussed including
introducing a Cauchy formula, Green’s formula, Cauchy transform,
Poisson kernel, Szegö kernel and Bergman kernel for certain types
of domains. Singular Cauchy integrals are also introduced as are
associated Plemelj projection operators. These in turn are used to
study Hardy spaces in this context. Also the analogues of Calderón-
Zygmund type operators are introduced in this context, together with
singular Clifford holomorphic, or monogenic, kernels defined on sec-
tor domains in the context of cylinders. Fundamental differences in
the context of the n-torus arising from a double singularity for the
generalized Cauchy kernel on the torus are also discussed.

1. Introduction

Classical harmonic analysis has long been applied to the theory of pde’s,
in particular to solve boundary value problems, for instance the Dirichlet
problem. Here we are thinking in particular of solving Laplace’s equation
over a domain in Rn with suitably smooth boundary and for Lp data on the
boundary. In recent times it has proved useful to regard some of the oper-
ators used to solve such a problem, for instance the double layer potential
operator, as the real part of Clifford algebra valued operators. This then
links such operators to a Dirac operator, which in turn may be considered
as a generalized Cauchy-Riemann operator. Indeed the generalized Cauchy-
Riemann operator used by Stein [24], and Stein and Weiss [25] is a special
case of this Dirac operator.
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The idea to Cliffordize standard operators arising in classical harmonic
analysis and elsewhere is due to Coifman and was carried out by a num-
ber of authors including McIntosh et al [15]. This provides a fundamental
link between classical harmonic analysis and Clifford analysis. In turn a
number of basic operators arising in Clifford analysis, including the Dirac
operator, the Cauchy transform over hypersurfaces and Plemelj projection
operators are all invariant under conformal, or Möbius, transformations,
see [22] for details. This invariance is best described using a construction
due to Ahlfors [1].

Though not everything arising in Clifford analysis has a conformal in-
variance it is the case that usually enough remains conformally invariant so
that those operators and tools that are not directly invariant under confor-
mal transformations may be reconstructed from operators that are confor-
mally invariant. This suggests that Clifford analysis is intimately linked to
the conformal groups and in particular the analogues of Riemann surfaces
in Clifford analysis are conformally flat manifolds. These are manifolds
which possess an atlas whose chart maps are Möbius transformations, or
equivalently Riemannian manifolds whose Weyl tensor vanishes [23]. These
supply a relatively rich class of manifolds whose simplest examples include
the sphere, hyperbolas, cylinders and the n-torus. For the first two cited
examples the conformal structure is given via Cayley transformations while
in the cases of cylinders and the n-torus the conformal structure is given
purely by translations.

An overall goal is to develop Clifford analysis over conformally flat mani-
folds and to link with geometric invariants and properties of these manifolds.
For the case of the sphere and hyperbolas this has been partially developed
in [16, 27] and elsewhere. Here we will deal with the simpler cases of cylin-
ders and tori. It should though be pointed out that Dirac operators and
associated Cauchy integral formulas have been introduced in a very general
setting in [5, 18, 7]. The approach taken here and in [16] afford a more
concrete viewpoint. The general intention is to find as explicit an approach
to Clifford analysis as possible for reasonable choices of manifolds. Confor-
mally flat manifolds seems to provide a very good setting to develop this
theme and hopefully points the way to proceed in more general settings.

In order to introduce Clifford analysis on cylinders and tori we make use
of the fact that the universal covering space of all of these manifolds is Rn.
So in fact one can easily develop the appropriate analysis on R

n and provided
the functions and kernels are k-periodic for some k ∈ {1, . . . , n} then one
may project down to the manifold to obtain the equivalent function or kernel
in that setting too. So in order, for instance to construct a generalized
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Cauchy kernel in the context of a cylinder or torus one needs to take the
Cauchy kernel in Rn and adapt it to construct a new kernel that is k-fold
periodic. This is done independently in [10], where generalized Eisenstein
series are used to construct vector valued cotangent functions. The Cauchy
kernel acting on the Lp space of a hypersurface embedded in Rn may be
regarded as a kernel of Calderón-Zygmund type. In order to extend kernels
of Calderón-Zygmund type to the context considered here one adapts the
Eisenstein series argument developed in [10]. Results in this direction have
been obtained for the particular case k = n − 1 in [19] where a number
of results worked out by McIntosh et al [17, 15, 14] over sector domains
are developed essentially in the context of Lipschitz perturbations of the
(n− 1)-torus within a cylinder.

In this paper we begin by introducing a Cauchy integral formula over
cylinders and the n-torus. This in turn is used to show how a number of basic
tools in Clifford analysis including Plemelj projection operators, Szegö and
Poisson kernels may be constructed over domains on cylinders. The Poisson
kernel is specifically constructed in the context where the domain is a half
cylinder. Adapting arguments given in [6] we may also explicitly construct
Bergman kernels for harmonic functions defined on a half cylinder.

We conclude by investigating the case of the n-torus. The Cauchy kernel
here is introduced in [10]. In this case the kernel has two singularities. This
gives rise to some fundamental differences from Rn when attempting to
construct Hardy spaces in this context. We describe these differences here.

A main key in this paper has been to factor out Rn by a Kleinian group.
The Kleinian group in this context is just an integer lattice. However, this
raises the issue of taking a more general domain in R

n or Sn and factoring
this domain by a more general Kleinian group. In this way one constructs
other examples of conformally flat manifolds, see for instance [23]. One can
now ask if the constructions developed here and in [16] extend to this more
general context. This analysis will be developed elsewhere.

2. Preliminaries

As in [4] and elsewhere we will consider Rn to be embedded in the real
2n-dimensional Clifford algebra Cln. Here we assume that if e1, . . . , en is an
orthonormal basis for R

n then under Clifford algebra multiplication e2j = −1
for 1 ≤ j ≤ n.

Clifford analysis in turn deals with Clifford algebra valued functions that
solve Dirac type equations on manifolds. For our needs we first recall the
following basic definition.
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Definition 1 ([4]) Suppose that U is a domain in Rn then a C1 function
f : U → Cln is called left monogenic, or left Clifford holomorphic, if for
each x ∈ U we have Df(x) = 0 where D is the Dirac operator

∑n
j=1 ej

∂
∂xj

.

A function g : U → Cln is called right monogenic, or right Clifford holomor-
phic, if for each x ∈ U we have g(x)D = 0.

An example of a function that is both left and right monogenic is the gen-
eralized Cauchy kernel G1(x− y), where

(2.1) G1(x) =
x

‖x‖n
,

being the fundamental solution to the Euclidean Dirac operator.

It is a simple but crucial fact that D2 = −�n, the Euclidean Laplacian
in Rn. For n > 2, the fundamental solution to ∆n is thus simply

(2.2) G2(x) = DG1(x) =
1

n− 2

1

‖x‖n−2

and G2(x− y) is the harmonic Green kernel function.

For 1 ≤ k ≤ n we define the k-cylinder Ck to be the n-dimensional
manifold Rn/Ze1 + · · · + Zek. When k = n we obtain the n-torus Tn.

It should be noted that for each k the space Rn is the universal covering
of Ck and consequently there is a projection map pk : R

n → Ck. Though
we have chosen a particular lattice Ze1 + · · · + Zek it should be noted that
we can in fact work with arbitrary integer lattices lying in Rk. Most of
the results we present here automatically carry over to this more general
context. For convenience we will stick to the integer lattice that we have
just constructed.

An open subset U of Rn is said to be k-fold periodic if for each x ∈ U
the point x + m1e1 + · · · + mkek ∈ U for each m1, . . . mk ∈ Z. In this case
the set pk(U) = U ′ is an open subset of Ck. We are interested in the cases
where U ′ is a domain. Furthermore suppose that U is a k-fold periodic open
set then f : U → Cln is a k-fold periodic function if for each x ∈ U we have
that f(x) = f(x+m1e1 + · · ·+mkek) for each m1, . . . ,mk ∈ Z. Examples of
such functions include

(2.3) cot1,k(x) =
∑

(m1,...mk)∈Zk

G1(x+m1e1 + · · · +mkek)

where 1 ≤ k ≤ n− 2, and

(2.4) cot2,k(x) =
∑

(m1,...,mk)∈Zk

G2(x+m1e1 + · · · +mkek)

where 1 ≤ k ≤ n− 3.
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These functions together with some of their basic properties including
the locally uniform convergence of the series are introduced in [10] and [11].
They are special cases of generalized higher dimensional Eisenstein series.
The functions cot1,k and cot2,k are the k-fold periodic monogenic (resp. har-
monic) generalizations of the classical complex-analytic cotangent function
and can be characterized by a generalized cotangent double angle formula
in complete analogy to the classical case. See [10] for details. We have the
relationship

D cot2,k(x) = cot1,k(x).

These functions are defined on the k-fold periodic domain Rn/Ze1+· · ·+Zek

and take their values in Rn and R respectively. From now on we shall denote
the lattice Ze1 + · · ·+Zek by Z

k and a member of this lattice will be denoted
by m.

It should be noted that if f : U → Cln is a k-fold periodic function then
the projection pk induces a well defined function f ′ : U ′ → Cln defined by
f(p−1

k (x′)) for each x′ ∈ U ′. Moreover any function f ′ : U ′ → Cln lifts to a
k-fold periodic function f : U → Cln, where U = p−1

k (U ′).

For x, y ∈ R
n\Z

k the functions cot1,k(x − y) and cot2,k(x − y) induce
functions cot′1,k(x

′, y′) and cot′2,k(x
′, y′) where x′ = pk(x) and y′ = pk(y).

These functions are defined on

(Ck × Ck)\diag(Ck × Ck)

where
diag(Ck × Ck) = {(x′, x′) : x′ ∈ Ck}.

The projection map pk induces a projection of the Dirac operator D to a
differential operator D′ acting on differentiable functions defined on domains
on Ck. We shall also call this operator a Dirac operator.

Definition 2 Suppose that U ′ is a domain on Ck. A function f ′ : U ′ → Cln
is called cylindrical left monogenic if for each x′ ∈ U ′ we have D′f ′(x′) = 0,
while a function g′ : U ′ → Cln is called cylindrical right monogenic if
g′(x′)D′ = 0 for each x′ ∈ U ′.

Clearly the function cot′1,k(x
′, y′) is cylindrical left and right monogenic

in both variables x′ and y′.

In fact all powers Dl of the Dirac operator D induce a differential oper-
ator D′l acting on differentiable functions defined on domains on Ck. When
l = 2 we get a Laplacian, �′

n, and any solution to the equation �′
nf

′ = 0
is called a cylindrical harmonic function. In particular cot2,k(x

′, y′) is cylin-
drical harmonic in both the variables x′ and y′.
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Remark: Remember that the absolute convergence abscissa of the function
series (2.3) and (2.4) are k = n − 2, respectively k = n − 3. One obtains
a further degree of convergence by simply coupling certain antipodal lattice
points. Following [10], let us divide the lattice Zk into the following three
parts: First there is the origin {0}, then let us take the remainder of the
lattice and divide that into two equal disjoint parts,

Λk = {m1e1+· · ·+mkek : m1, . . . ,mk ∈ Z and mk > 0}∪· · ·∪{m1e1 : m1 > 0}
and −Λk. Note that 0 /∈ Λk. The series

(2.5) cot1,n−1(x) = G1(x) +
∑

m∈Λn−1

(G1(x− m) +G1(x− m))

provides us with the canonical (n−1)-fold periodic monogenic generalization
of the classical cotangent function in the sense of its characterizability by a
generalized cotangent double angle formula, as explained in [10]. The pro-
jection map pn−1 induces a well-defined cylindrical left monogenic function
on Cn−1.

We further formally define the harmonic (n− 2)-fold periodic cotangent
function cot2,n−2(x) to be

(2.6) G2(x) +
∑

m∈Λn−2

(G2(x− m) +G2(x− m)).

This series in turn defines an (n−2)-fold periodic harmonic function in x and
via the projection map pn−2 we now have a cylindrical harmonic function on
the cylinder Cn−2.

3. Some integral formulas on cylinders

Next we want to establish generalizations of some important integral formu-
las from classical function theory, such as the Cauchy and the Green integral
formula, in the context of higher dimensional cylinders and tori. We shall
see that the torus (k = n) will play a special role in this context. This is due
to the fact that the torus has a special topological structure among all man-
ifolds Ck; all the other cylinders Ck with k < n have an infinite extension in
contrast to that of the torus. This difference reflects then consequently in a
number of function theoretic aspects, as we shall illustrate explictly in the
further development of this paper.

For this reason we proceed to treat the cylinders Ck with k < n and the
torus k = n in apart sections. We first start with the development of the
theory for the cylinders Ck, k < n.
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By the standard Cauchy Theorem and Cauchy Integral Formula arising
in Clifford analysis, see [1] and elsewhere we may readily deduce:

Theorem 1 Suppose that V is a bounded domain in Rn with the property
that for each x ∈ clV , the closure of V , the shifted lattice x+ Zk intersected
with V only contains the point x. Suppose further that ∂V , the boundary
of V is Lipschitz continuous and that f is a left monogenic function in an
open neighborhood, U , of clV . Then for 1 ≤ k ≤ n− 1 and each y ∈ U

(3.1) f(y) =
1

ωn

∫
∂V

cot1,k(x− y)n(x)f(x)dσ(x),

where ωn is the surface area of the unit sphere in Rn, n(x) is the outer normal
vector to ∂V at x and σ is the Lebesgue measure of the hypersurface ∂V .

The case we are most interested is the one where the open neighborhood U
of V is k-fold periodic and f is k-foldperiodic and monogenic on U . In this
case we may use the projection map pk to readily obtain the following Cauchy
Integral Formula for left cylindrical monogenic functions.

Theorem 2 Suppose V ′ is a subdomain of a domain U ′ lying in Ck and V ′

has compact closure. Moreover clV ′ ⊂ U ′ and p−1
k (∂V ′) is a Lipschitz hy-

persurface. Suppose also that f ′ : U ′ → Cln is a cylindrical left monogenic
function and 1 ≤ k ≤ n− 1 then for each y ∈ V ′

(3.2) f ′(y′) =
1

ωn

∫
∂V ′

cot′1,k(x
′, y′)(Dxpkn(x))f ′(x′)dσ′(x′),

where x′ = pk(x), Dxpk is the derivative of pk at x and σ′ = pk(σ).

A similar result also holds for cylindrically right monogenic functions.

Using Cauchy’s Theorem and k-fold periodicity it may be observed for
each k-periodic left monogenic function

f : U → Cln

defined on a k-periodic domain U containing 0, that

(3.3) f(0) =
1

ωn

∫
Sk(r)

f(x)dσ(x),

where Sk(r) is the intersection of the (n− 1)-dimensional sphere of radius r
and center 0 with U and the closed strip

Sk =
[
− 1

2
,
1

2

]
e1 × · · · ×

[
− 1

2
,
1

2

]
ek × span{ek+1, . . . , en}.

The projection pk allows one to construct a similar mean value formula for
cylindrically left monogenic functions.
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Suppose now that Σ is a sufficiently smooth hypersurface lying in Ck

and U ′ is a domain whose boundary is Σ. Suppose also that ψ is a Cln
valued function belonging to Lp(Σ). Then one may readily determine that
the integral ∫

Σ

cot′1,k(x
′, y′)(Dxpkn(x))ψ(x′)dσ′(x′)

defines a cylindrical left monogenic function f ′(y′) on U as y′ varies over U ′.
Note that we are not necessarily assuming Σ to be connected. It may also be
readily determined that f ′ lifts to a k-fold periodic left monogenic function
defined on the k-fold periodic open set U = p−1

k (U ′). One is most interested
in the cases where U is a domain.

Also the projection map pk readily gives the following version of the
Borel-Pompeiu formula.

Theorem 3 Suppose that V ′ is a domain in Ck with compact closure and
suitably smooth boundary. Suppose also that θ : clV ′ → Cln is a continuous
function and that θ|V ′ is C1. Then for each y′ ∈ V ′

θ(y′) =
1

ωn

( ∫
∂V ′

cot′1,k(x
′, y′)(Dxpkn(x))θ(x)dσ′(x′)

+

∫
V ′

cot′1,k(x
′, y′)D′θ(x′)dµ(x′)

)
,(3.4)

where µ is the projection of Lebesgue measure on Rn onto Ck.

Furthermore if U ′ is a subdomain of Ck with compact closure and λ :
U ′ → Cln is an Lp function with 1 < p <∞ then

D′ 1

ωn

∫
U ′

cot′1,k(x
′, y′)λ(x′)dµ(x′) = λ(y′)

for each y′ ∈ U ′.
One may also use the functions cot′2,k to derive the following version of

Green’s formula for cylindrically harmonic functions.

Theorem 4 Suppose that 1 ≤ k ≤ n − 2 and h : U ′ → Cln is a cylindri-
cally harmonic function on the domain U ′ ⊂ Ck. Suppose also that V ′ is a
relatively compact subdomain of U ′ and that clV ′ ⊂ U ′. Then provided the
boundary of V ′ is sufficiently smooth

h(y) =
1

ωn

∫
∂V ′

(cot′1,k(x
′, y′)(Dxpkn(x))h(x)

+ cot′2,k(x
′, y′)(Dxpkn(x))D′h(x′))dσ′(x′)(3.5)

for each y′ ∈ V ′.
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Remark: Notice that the series

G2(x− y) +
∑

m∈Λn−1

G2(x− y − m) +G2(x− y + m)

is not convergent. A further coupling of antipodal points does not provide
a further convergence degree, either.

So it would appear at the very first that one cannot find a Green’s formula
for cylindrically harmonic functions defined on domains in Cn−1. However,
as we shall see later on, a local one can be obtained for k = n− 1 if one uses
a kernel function with two singularities.

4. Hardy Spaces and Harmonic Functions on Cylinders

4.1. Plemelj projection formulas

Suppose that φ : span{e1, . . . , en−1} → R is a Lipschitz continuous function.
Let Σ be its graph

{x1e1 + · · · + xn−1en−1 + φ(x1e1 + · · · + xn−1en−1)en}.
We say that Σ is k-fold periodic if Σ = m + Σ for each m ∈ Zk. The hyper-
surface Σ bounds two domains,

Σ+ ={x+xnen : x ∈ Σ and xn> 0} and Σ−={x+xnen : x ∈ Σ and xn< 0}.
If the hypersurface Σ is k-fold periodic then so are the domains Σ± provided
k < n. For the rest of this section we will assume that k < n. If Σ is k-fold
periodic then Σ′ = pk(Σ) is a well defined hypersurface in Ck. We shall call
such a hypersurface a Lipschitz surface too. The Lipschitz surface Σ′ bounds
two domains Σ′± = pk(Σ

±) in Ck.
Suppose now that ψ′ : Σ′ → Cln is Lp integrable for some p ∈ (1,∞).

Let us consider the integral

(4.1)
1

ωn

∫
Σ′

cot′1,k(x
′, y′)(Dxpk(n(x))ψ′(x′)dσ′(x′)

where we assume that y′ ∈ Σ′+. As we have seen in the previous section this
integral defines a cylindrical left monogenic function Ψ′+(y′) on Σ′+. Let us
now suppose that we have a path y′(t) in Σ′+ which tends to infinity as t
tends to infinity. We want to know what happens to Ψ′+(y′(t)) as t tends to
infinity. To determine the answer here and to answer some other questions
we will lift back to domains lying in the strip Sk in Rn. We will denote
Σ∩Sk by Σk and the relatively open set Σ±∩Sk by Σ±

k . We also denote the
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function ψ′(pk(x)) for x ∈ Σk by ψk(x). Note that ψk ∈ Lp(Σk). We extend
this function to the rest of Σ by placing ψk(x) = 0 for all x ∈ Σ\Σk. Thus
ψk ∈ Lp(Σ). Under the projection pk the cylindrical left monogenic function
Ψ′±(x′) readily lifts to the left monogenic function Ψ±(x) defined on Σ±

k

respectively. Moreover,

(4.2) Ψ±(y) =
1

ωn

∫
Σk

cot1,k(x− y)n(x)ψk(x)dσ(x).

Let us now suppose that y(t) is a path in Σ+
k that tends to infinity as t

tends to infinity. In particular the nth co-ordinate yn(t) of y(t) tends to
infinity as t tends to infinity. Let us consider limt→∞ Ψ+(y(t)).

Lemma 1 We have

lim
t→∞

Ψ+(y(t)) = 0.

Proof. First recall that in the cases k < n− 1,

cot1,k(x− y) =
∑
m∈Zk

G1(x− y − m)

and in the case k = n− 1,

(4.3) cot1,n−1(x) = G1(x) +
∑

m∈Λn−1

(G1(x− m) +G1(x− m)).

In the cases k < n− 1 we thus precisely deal with the expression

lim
t→∞

Ψ+(y(t)) = lim
t→∞

1

ωn

∫
�

k

∑
m∈Zk

G1(x− y(t) − m)n(x)ψk(x)dσ(x).

The right side of this expression becomes in turn

1

ωn
lim
t→∞

∑
m∈Zk

∫
Σk

G1(x− y(t) − m)n(x)ψk(x)dσ(x).

But

lim
t→∞

∫
Σk

G1(x− y(t) − m)n(x)ψ(x)dσ(x) = 0

for each m ∈ Zk. The result follows from Lebesgue’s Convergence Theorem.
In the case k = n − 1 we can apply the same argument, but now involving
the series (4.3). �
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It follows that limt→∞ Ψ′+(y′(t)) = 0 where y′(t) = pk(y(t)). Sim-
ilarly one can show that if y(t) belongs to Σ−

k and the nth component
yn(t) tends to infinity as t tends to infinity then limt→∞ Ψ−(y(t)) = 0 and
limt→∞ Ψ′−(y(t)) = 0.

For each u ∈ Σ we can place a cone C+(u) in Σ+ or a cone C−(u)
in Σ−. The maximal aperture of these cones is determined by the Lipschitz
constant associated to the graph Σ. Let us denote the sets p±k (C(u)) by
C ′±(u′) respectively. Here u′ = pk(u). Now u′ ∈ Σ′ and C ′±(u′) ⊂ Σ′±

respectively. The sets C ′±(u′) are the analogues of cones but now in the
context of the manifold Ck. Let us now consider a path y′(t) ∈ C ′+(x′)
such that limt→0 y

′(t) = u′. Such a path is called a nontangential path
to u′. One may similarly set up nontangential paths in C ′−(u′) We want
to consider limt→0 Ψ′+(y′(t)). By similar arguments to those used in one
variable complex analysis and Clifford analysis in the Euclidean setting one
may determine that

lim
t→0

Ψ′+(y′(t)) =
1

ωn
lim
t→0

∫
Σ′

cot1,k(x
′, y′(t))(Dxpkn(x))ψ′(x′)dσ′(x′)

=
1

2
ψ′(x′) + P.V.

1

ωn

∫
Σ′

cot′1,k(x
′, u′)(Dxpkn(x))ψ′(x′)dσ′(x′),(4.4)

for almost all u′ ∈ Σ′. Similarly if y′(t) is a path in C ′−(u′) is a path
nontangential to u′ then we may determine that

lim
t→0

Ψ′−(y′(t)) =

= −1

2
ψ′(u′) +

1

ωn

P.V.

∫
Σ′

cot′1,k(x
′, u′)(Dxpkn(x))ψ′(x′)dσ′(x)(4.5)

for almost all u′ ∈ Σ′. We need to know if these singular integrals are well
defined. It is enough to show that the singular integral

P.V.

∫
Σk

cot1,k(x− y)n(x)ψ(x)dσ(x)

is Lp bounded.

Proposition 1 The operator

CΣk
: Lp(Σk) → Lp(Σk) : CΣk

(ψ)(y)=
1

ωn

P.V.

∫
Σk

cot1,k(x− y)n(x)ψ(x)dσ(x)

is a well defined Lp bounded operator for 1 < p <∞.
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Proof. The integral

P.V.

∫
Σk

∑
m∈Zk

G1(x− y − m)n(x)ψ(x)dσ(x)

is only singular for finitely many terms in the cotangent series∑
m∈Zk

G1(x− y − m),

for k < n− 1, or

G1(x) +
∑

m∈Λn−1

(G1(x− m) +G1(x− m)),

for k = n− 1, respectively. For these few terms the Lp boundedness follows
from arguments describing the Lp boundedness for the double layer potential
operator and singular Cauchy transform for Lipschitz graphs in Rn in [17]
and elsewhere. For the remaining terms one simply notes that that part of
the operator is a convolution with an L∞ function. The result follows. �

By adapting standard arguments from one variable complex analysis and
using Lemma 1 we have now shown that the operators

1

2
I ± CΣ′ : Lp(Σ′) → Lp(Σ′)

are well defined mutually annihilating idempotents, where

CΣ′(ψ)u′ =
1

ωn
P.V.

∫
Σ′

cot′1,k(x
′, u′)(Dxpkn(x))ψ′(x′)dσ(x′).

It follows that for 1 < p <∞
Lp(Σ′) = Hp(Σ′+) ⊕Hp(Σ′−),

where Hp(Σ′±) is the Hardy p-space of cylindrical left monogenic functions
defined on Σ′± with continuous nontangential Lp extension to Σ′.

4.2. Bergman, Szegö, Poisson and Kerzman Stein kernels

Consider now the special case where the Lipschitz graph is the trivial one,
the span of e1, . . . , en−1. In this case

Σ+
k =

[
− 1

2
,
1

2

]
e1 × · · · ×

[
− 1

2
,
1

2

]
ek × span{ek+1, . . . , en−1} × R

+en.

We denote this half strip by S+
k and we denote the half cylinder pk(S

+
k )

by C+
k . We claim that while in [24] and elsewhere one sees a development

of basic ideas in classical harmonic analysis over the half space Rn,+ a suit-
able analogue for this development in the context of cylinders is the half
cylinder C+

k .
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In particular the Szegö kernel Sk(x
′, y′) for C+

k is the function

cot′1,k(x
′, y′)Dxpk(en),

where x′ ∈ ∂C+
k and y′ ∈ C+

k . Furthermore the Poisson kernel for C+
k is

given by twice the real part of the Szegö kernel. So the Poisson kernel for
the half cylinder C+

k is

Pk(x
′, y′) = 2Re(cot1,k(x

′, y′)Dx(pken)).

In fact this follows directly from the Plemelj formula given by equation 1.
This Poisson kernel solves the Dirichlet problem for cylindrically harmonic
functions on C+

k with Lp data given on the boundary for 1 < p <∞.

In the particular case k = n − 1 we have ∂C+
n−1 = Tn−1. The Poisson

kernel solves thus the Dirichlet problem on the n− 1 torus in this context.

By similar arguments to those given in [6] it may be readily shown that
the Bergman kernel Bk(x

′, y′) for L2 integrable cylindrically monogenic func-
tions defined on the half cylinder C+

k is given by

2
∂

∂xn

Sk(x
′, y′).

This function may be readily lifted to obtain the Bergman kernel for k-fold
periodic square integrable monogenic functions defined on the half strip S+

k .
A Bergman kernel for square integrable left monogenic functions defined on
a half strip has previously been introduced in [8]. By similar arguments
to those given in [6], which extend the classical quadratic relation between
the Bergman and the Szegö kernel (see e.g. [2]) for the particular case of
dealing with the half-space, one may deduce that the Bergman kernel for
square integrable cylindrical harmonic functions defined on the half cylinder
is given by the real part of the Bergman kernel Bk(x

′, y′).
It should be pointed out here that in our construction of the Poisson

kernel and Bergman kernel we are explicitly using the integer lattice Zk as
we need Dx(pken) to be orthogonal to the boundary of C+

k .
It should also be mentioned that these explicit formulas for the Bergman

kernel remain valid if we consider instead of the L2-space the Lp space
with 2 ≤ p <∞.

Furthermore, we observe that one can also extend the Kerzman-Stein
theory to the setting of cylinders and tori considered here. What follows
can be regarded as complementary results to [26] in which a Kerzman-Stein
theory has been developed for manifolds on the unit sphere. In [2] for in-
stance the classical Kerzman-Stein theory in one complex variable is well
illustrated. For similar results in the framework of monogenic functions
in higher dimensional Euclidean space Rn within the context of Lipschitz
continuous functions, we refer for example to [3].
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In what follows let us denote the Cauchy-transform by

H′ :=
1

2
I + CΣ′ .

Adapting the calculations from [3] to the context considered here, we finally
obtain the following explicit representation formula for the Lp(Σ′) adjoint of
the Cauchy-transform:

H′∗Ψ′(u′) =
1

2
Ψ′(u′) +

1

ωn

P.V.

∫
Σ′

(
Dupkn(u)

)
cot′1,k(x

′, u′)Ψ′(x′)dσ(x′)

which is again Lp(Σ′) bounded, where here we use the usual Clifford algebra
conjugation —as defined in [22] and elsewhere. Following for example the
above cited works it is natural to introduce the cylindrical Kerzman-Stein
operator as follows:

A′Ψ′(u′) := [H′ −H′∗]Ψ′(u′) =
1

ωn
P.V.

∫
Σ′
A(x′, u′)Ψ′(x′)dσ(x′)

where we put

A(x′, u′) = cot′1,k(x
′, u′)(Dxpkn(x)) − (Dupkn(u)) cot′1,k(x

′, u′).

As Σ′ has a Lipschitz boundary, we can directly adapt the argument
from [3, Lemma 4.5]. to the context of the cylinder Ck, and thus, we infer
that the operator I + A′ is invertible on Lp(Σ′). As a consequence we can
express the Szegö projection P ′ on the space Lp(Σ′) in the following way

P ′ = H′(I + A′).

In many cases, as for instance in cases when Σ′ is topologically similar
to pk(∂B), B denoting a ball in Rn, this formula provides simpler numerical
methods to determine the Szegö kernel of the respective domains lying on
the surface of the cylinder Ck than to determine it directly, for example by
a Gram-Schmidt algorithm which is in general numerically very unstable.
However, we should mention that in the context of Lipschitz graphs the
operator A′ is in general no longer a compact operator. It is always a
compact operator when the input functions Ψ are µ-Hölder continuous.

One can say more. We start with the following definition.

Definition 3 A hypersurface Θ in Rn is called strongly Lipschitz if Θ can be
covered by open sets, each of which is a the graph of some Lipschitz function,
and each such Lipschitz graph has the same Lipschitz constant.
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We are interested in the case where Θ is k-fold periodic. In this case we
consider the projected hypersurface Θ′ = pk(Θ). Then we may determine:

Theorem 5 Suppose that 1 ≤ p ≤ n − 1 and Θ′ is the projection of a
k-fold periodic strongly Lipschitz graph and Θ′ is the boundary of two do-
mains Θ′+ and Θ′− within Ck. Suppose also that Θ′ is compact. Then for
each p ∈ (1,∞)

Lp(Θ′) = Hp(Θ′+) ⊕Hp(Θ′−),

where Hp(Θ′±) is the Hardy p-space of cylindrical left monogenic functions
on Θ′± with nontangential Lp extension to the boundary Θ′.

This result may be obtained by partition of unity arguments and by
adapting standard Calderón-Zygmund techniques.

4.3. Calderón Zygmund type operators

Let us proceed now to introduce a smooth function

(4.6) χ : span{e1, . . . , en−1}\{0} → Cln.

We shall assume that this function is an odd function and that it is homo-
geneous of degree zero. Let l(x) = χ(x)

‖x‖n−1 and suppose that

‖l(x− y) − l(x− z)‖ ≤ C(n) ‖y−z‖
‖x−z‖n for 2‖y − z‖ < ‖x− z‖

and for some dimensional constant C(n). Then, see [24], the convolution
operator

Tl : Lp(span{e1, . . . , en−1}) → Lp(span{e1, . . . , en−1}) :

Tl(ψ) =

∫
span{e1,...,en−1}

l(x− y)ψ(x)dxn−1

is an operator of Calderón-Zygmund type, and it is well defined and bounded
for 1 < p <∞. For 1 ≤ k ≤ n− 2 let us introduce the function

(4.7) L(x− y) =
∑
m∈Zk

l(x− y − m)

where x and y belong to span{e1, . . . , en−1} and x �= y. Via the projection pk

the function L(x−y) projects to give a Cln valued function L′(x′, y′) defined
on (∂C+

k × ∂C+
k )\diag ∂C+

k . By very similar arguments to those used to
prove Proposition 1 one may determine:
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Theorem 6 For 1 < p <∞ and 1 ≤ k ≤ n− 2 the operator

T ′
L′ : Lp(∂C+

k ) → Lp(∂C+
k ) : T ′

L′(ψ′) = P.V.

∫
∂C+

k

L′(x′, y′)ψ′(x′)dσ′(x′)

is a bounded operator.

So in the setting of the cylinders the operator T ′
L′ is the appropriate

analogue of an operator of Calderón-Zygmund type.
Let us now introduce operators of Calderón-Zygmund type acting on

the Lp space of the (n − 1)-torus Tn−1. Let us reconsider the function
l : Rn\{0} → Cln that we introduced earlier. From this function we may
introduce the function

(4.8) L(x, y) = l(x− y) +
∑

m∈Λn−1

(l(x− y − m) + l(x− y + m)).

As

‖l(x− y) − l(x− z)‖ < C(n)
‖y − z‖
‖x− z‖n

for 2‖y−z‖ < ‖x−z‖ this series is locally uniformaly convergent and so the
function L is well defined. The projection map pn−1 now induces from L a
map L′(x′, y′) and by similar arguments to those used to establish Theorem 6
we now have:

Theorem 7 For 1 < p <∞ the operator

T ′
L′ : Lp(Tn−1) → Lp(Tn−1) : T ′

L′(ψ′)u′ = P.V.

∫
Tn−1

L′(x′, y′)ψ′(x′)dσ(x′)

is Lp bounded.

The links between Clifford analysis and harmonic analysis associated to
(n − 1)-fold periodic Lipschitz surfaces is described in some detail in [19].
Here we will briefly outline some of this analysis and generalize to the Ck

setting.
A sector domain Sα is defined to be the domain

{x ∈ R
n : |xn| < α‖x1e1 + · · · + xn−1en−1‖ for some fixed α ∈ R

+}.
For 1 ≤ k ≤ n − 1 the projection pk(Sα ∩ Sk) is a domain in Ck. We call
this type of domain a cylindrical sector domain and we denote it by S ′

α. The
complement of Sα consists of the union of two closed cones C±

α with en ∈ C+
α

and −en ∈ C−
α . We denote the domains Sα ∪ (C±

α \{0}) by Sα,± respectively.
We denote the domains pk(Sα,± ∩ Sk) by S ′

α,± respectively. Furthermore we
denote pk(C

±
α ∩ Sk) by C ′±

α .
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Following [15, 14, 17] we shall consider a left and right monogenic func-
tion T (x) defined on Sα. Moreover

‖T (x)‖ < C‖x‖−(n−1)

for some constant C ∈ R+. The monogenic function T is chosen so that
there is a bounded measurable function t : C+

α → Cln. In fact t(u) − t(v) is
defined to be ∫

A(u,v)

T (x)n(x)dσ(x)

where A(u, v) is a smooth orientable manifold in Sα which joins the (n− 2)-
dimensional spheres Su and Sv, where

Su = {x ∈ R
n :< x, u >= 0, ‖x‖ = ‖u‖}

and Sv is defined similarly. Via the projection pk(C
+
α ∩Sk) the map t induces

a bounded measurable function t′ : C ′+
α → Cln.

In [15, 14, 17] it is shown that there are left and right monogenic functions
T± : S±

α → Cln such that

‖T±(x)‖ < C±‖x‖1−n on S±
α

and for some constants C± ∈ R+. Moreover T (x) = T+(x) + T−(x) on Sα.
Furthermore there are associated to T± bounded measurable functions t1 and
t2 defined on C+

α such that t1(x) + t2(x) = t(x). Again these functions give
rise via the projection pk to bounded measurable functions t′1 and t′2 defined
on C ′+

α and such that t′1(x
′) + t′2(x

′) = t′(x′). According to Eisenstein [9]
(see also [19]) there are at most 2kmk−1 entries m = m1e1 + · · ·+mkek ∈ Zk

such that |m1| + · · · + |mk| = m. Consequently the series∑
m∈Zk

T (x− m) and
∑
m∈Z

T±(x− m)

are locally uniformly convergent for 1 ≤ k ≤ n − 2. The particular case
k = n − 1 is treated in [19]. We denote these k-fold periodic left and
right monogenic functions by W (x) and W±(x) respectively. The projection
pk : Sk → Ck gives rise to cylindrical left and right monogenic functions
W ′(x′) andW ′±(x′) defined on S ′

α and S ′
α,± respectively. MoreoverW ′+(x′)+

W ′−(x′) = W ′(x′) on S ′
α.

From W (x) and W±(x) we obtain the kernels W (x− y) and W±(x− y).
Via pk these functions kernels give rise to kernels W ′(x′, y′) and W ′±(x′, y′).
Suppose that Σ′

k is the image of a k-fold periodic Lipschitz graph Σ under
the projection pk. Suppose also that Σ′

k ⊂ S ′
α. Furthermore for each x ∈ Σ

let BΣ(x, r) = {y ∈ Σ : ‖y‖ < r}. Denote pk(BΣ(x, r)) by BΣ′(x′, r). By
simple adaptations of arguments used in [19] one may now determine:
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Theorem 8 For 1 < p <∞ The operator

TW ′,t′ : Lp(Σ′) → Lp(Σ) :

TW ′,t′(ψ
′) = lim

ε→0

( ∫
Σ′\BΣ′(x′,ε)

W ′(x′, y′)(Dxpkn(x))ψ′(x′)dσ′(x′)

+t′(ε(Dxpkn(x))ψ′(y′)
)

is a bounded operator.

Moreover for 1 < p <∞ the operators

TW ′±,t′± : Hp(Σ±) → Hp(Σ±) :

TW ′±,t′±(Ψ′±) = lim
ε→0

( ∫
Σ′\BΣ′ (y′,ε)

W ′±(x′, y′)(Dxpkn(x))Ψ′(x′)dσ(x′)

+t′±(ε(Dxpkn(x))Ψ′±(y′)
)

are bounded.

5. Polymonogenic cylindrical functions

Let us now turn to look at integral representations to the higher order Dirac-
Laplace equation D′pf ′ = 0. The Cauchy-Green kernels for the equation
Dpf = 0 appear in [21]. For p = 1, . . . , n− 1 they are

G2l+1(x) = C(p, n)
x

‖x‖n−2l

when 2l + 1 = p and

G2l(x) = C(p, n)
1

‖x‖n−2l

when 2l = p. The real constants C(p, n) are chosen so that DGp = Gp−1.
Precise formulas for Gp for p ≥ n are given in [21]. However, as we shall
soon see they do not directly give rise to integral representations for solutions
to D′pf ′ = 0.

One formally defines cotp,k(x− y) to be given by the Mittag-Leffler type
series

(5.1)
∑
m∈Zk

Gp(x− y − m).
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First it should be pointed out that this series does not converge for p ≥ n and
this is the reason why we did not bother to specify what the kernels Gp are
in these cases. Further these series do not converge for all choices of p and
k ∈ {1, . . . , n− 1}. Let us recall that there are at most 2kmk−1 co-ordinates
m = m1e1 + · · ·+mkek ∈ Zk such that |m1|+ · · ·+ |mk| = m. It follows that
the generalized Eisenstein series for the kernel cotp,k(x−y) converges locally
uniformly for p ≤ n−k− 1. Moreover D cotp,k(x− y) = cotp−1,k(x− y). For
the special case p = n− k if we re-define cotn−k,k(x− y) to by the series

(5.2) Gn−k(x− y) +
∑

m∈Λk

(Gn−k(x− y − m) +Gn−k(x− y − m)),

as this series is locally uniformly convergent the function cotn−k,k(x− y) is
well defined. Moreover, D cotn−k,k(x − y) = cotn−k−1,k(x − y). See [11] for
more details.

In the special case where n is even and k = 1 the kernel is a solution of the

Fueter-Sce equation D�
n−2

2
n f = 0. When n is odd the series (see also [12])

(5.3) (x− y)−1 +
∑

m∈Z+

((x− y − m)−1 + (x− y + m)−1)

is still locally uniformly convergent and still satisfies the Fueter-Sce equation

D�
n−2

2
n f = 0. This time though the operator D�

n−2
2

n is a pseudo-differential
operator acting on our series in a distributional sense. See [20] for details.
It should be noted that for all choices of n the series (5.3) is a solution to
the hyperbolic Dirac equation

x1Df(x) + nPe1(f)(x) = 0

where here f(x) = f1e1 + · · ·+ fnen and Pe1(f) = f1. Here we are assuming
that x1 �= 0. A similar equation to this is described in [13] and elsewhere.

Returning to the functions cotp,k(x − y) for p ≤ n − k, we can use the
projection map pk to induce functions cot′p,k(x

′, y′). These functions are
annihilated by the operator D′p acting on either x or y and either on the
left or on the right. It is straightforward to obtain the following result.

Theorem 9 Suppose that U ′ is a domain in Ck and V ′ is a relatively com-
pact domain lying in U ′ and ∂V ′ is strongly Lipschitz. Suppose also that
f ′ : U ′ → Cln satisfies the equation D′pf ′ = 0 for some p ∈ {1, . . . , n − k}
then for each y′ ∈ V ′

(5.4) f(y′) =
1

ωn

∫
∂V ′

p∑
j=1

cot′j,k(x
′, y′)(Dxpkn(x))D′j−1f ′(x′)dσ(x′).
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6. Clifford analysis on the torus

Last of all we treat the case k = n. In this case Ck is the n-torus Tn. To do
Clifford analysis on the torus, we need to consider n-fold periodic functions.
In contrast to all the other cases treated earlier in this paper, there is no
nontrivial n-fold periodic function with the property of being monogenic
and of having only one pole of the order of the Euclidean Cauchy kernel in
each period cell which is just a bounded parallelepiped in this case. This
is a consequence of the Liouville theorem. The sum of the residues of any
monogenic n-fold periodic function within a period cell vanishes. See [10] for
more details. However, it is possible to construct n-fold periodic monogenic
functions which have two poles of the order of the Euclidean Cauchy kernel
per period cell and no further poles.

As a examples serve the following family of functions

cot1,n;a,b(x− y) = G1(x− y − a) +G1(x− y − b)+(6.1)

+
∑

m∈Zn\{0}
(G1(x− y − a+ m)−G1(x− y − b+ m)−G1(m− a) +G1(m− b))

where a, b ∈ Rn\Zn and a �= b mod Zn. This family of functions was
introduced in [10] and serve as analogues of the cotangent type functions
cot1,k in the context on the n-torus.

This series is locally uniformly convergent and defines an n-fold peri-
odic left and right monogenic function in both x and y. This function
has singularities at both x − y = a and x − y = b. Using the projection
map pn this generalized cotangent function defines a vector valued func-
tion cot′1,n,a,b(x

′, y′).

Definition 4 For a domain U ′ ⊂ Tn a smooth function f ′ : U ′ → Cln is
said to be toroidal left monogenic if D′f ′ = 0.

A similar definition can be set up for toroidal right monogenic functions.
The function cot′1,n,a,b(x

′, y′) is both toroidal left and right monogenic in
both the variables x′ and y′.

Suppose U is an n-fold periodic open subset of R
n and f : U → Cln is

n-fold periodic. From f we can construct the n-fold periodic function

F : U − a→ Cln : F (x) = f(x+ a).

Via the projection pn we obtain from f a function F ′ defined on an open set
U ′

a = pn(U − a).
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From this construction we get the following Cauchy Integral Formula.

Theorem 10 Suppose that U ′ is a domain in Tn and that f ′ : U ′ → Cln
is a toroidal left monogenic function. Suppose also that V ′ is a subdomain
of U ′ whose closure also lies in U ′ and V ′ has a strongly Lipschitz boundary.
Furthermore b does not belong to the closure of V ′

a. Then for each y′ ∈ V ′

(6.2) f ′(y′) =
1

ωn

∫
∂V ′

a

cot′1,n,a,b(x
′, y′a)(Dxpnn(x))F ′(x′)dσ′(x′)

where y′a = pn(y − a).

Remark: This Cauchy integral formula has a local character, due to the
fact that we are dealing with a Cauchy kernel function that has two point
singularities.

Suppose now that Σ is an n-fold periodic Lipschitz hypersurface in Rn.
Let Σ′ denote the hypersurface pn(Σ′) ⊂ Tn, while Σ′

a denotes pn(Σ−a) and
Σ′

b = pn(Σ − b).
Suppose now that ψ′ ∈ Lp(Σ′) for some p ∈ (1,∞). Then ψ′

a(x), =
ψ′(x′a), belongs to Lp(Σ′

a) where x′a = pn(x− a) and ψ′
b(x), = ψ′(x′b) belongs

to Lp(Σ′
b) where x′b = pn(x− b). We shall assume that a and b do not belong

to Σ. The integral

1

ωn

∫
Σ′

cot′1,n,a,b(x
′, y′)(Dxpnn(x))ψ′(x′)dσ′(x′)

defines a toroidal left monogenic function on Tn\(Σ′
a ∪ Σ′

b). Furthermore if
y′(t) is a path in Tn\(Σ′

a ∪ Σ′
b) with nontangential limit u′ ∈ Σ′

a then

lim
t→0

1

ωn

∫
Σ′

cot′1,n,a,b(x
′, y′(t))(Dxpn(n(x))ψ′(x′)dσ′(x′)

= ±1

2
ψ′

a(u
′) +

1

ωn

P.V.

∫
Σ′

cot′1,n,a,b(x
′, u′)(Dxpnn(x))ψ′(x′)dσ′(x′)

for almost all u′ ∈ Σ′
a.

A similar formula holds if the path y′(t) were to nontangentially approach
a point v′ ∈ Σ′

b. The plus or minus sign appearing in the previous formula
depends on the choice of orientation one gives to Σ and on which side of Σ′

a

the path y′(t) approaches u′. One may readily adapt earlier arguments to
show that the singular integral appearing in the previous formula is indeed
Lp bounded. Also Kerzman-Stein formulas can be obtained for the setting
of the n-torus Tn.
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Remark: Notice that we can adapt the construction given by Equation (6.1)
to get a local Green’s formula for harmonic functions on the (n − 1) cylin-
der Cn−1. Namely we replace G1 by G2 in (6.1). In the same way, namely
by replacing G1 by Gk in (6.1) we obtain for the function class Dkf = 0 a
local Green’s formula on the (n − k − 1) cylinder Cn−k−1. Unfortunately,
a further coupling of antipodal points does not lead to a further degree of
convergence. Thus, we do not get a similar type of Green’s formula for
harmonic functions for the n-torus Tn, or for k-monogenic functions on the
cylinders Cn−l, respectively, when l ≤ k.
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