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Weighted Sobolev-Lieb-Thirring
inequalities

Kazuya Tachizawa

Abstract

We give a weighted version of the Sobolev-Lieb-Thirring inequal-
ity for suborthonormal functions. In the proof of our result we use
ϕ-transform of Frazier-Jawerth.

1. Introduction

In 1994 Edmunds and Ilyin proved a generalization of the Sobolev-Lieb-
Thirring inequality.

Theorem 1.1 ([2]). Let n ∈ N, s > 0 and p with

max
(
1,
n

2s

)
< p ≤ 1 +

n

2s
.

Then there exists a positive constant c = c(p, n, s) such that for every fam-
ily {φi}N

i=1 in Hs(Rn) which is orthonormal in L2(Rn), we have

(1.1)

{∫
Rn

ρ(x)p/(p−1) dx

}2s(p−1)/n

≤ c
N∑

i=1

‖(−∆)s/2φi‖2

where

ρ(x) =
N∑

i=1

|φi(x)|2.

In this theorem Hs(Rn) denotes the Sobolev space of order s and ‖ · ‖ is
the norm of L2(Rn). In [8] Lieb and Thirring proved this theorem for s = 1
and applied it to the problem of the stability of matter.
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Ghidaglia, Marion and Temam proved (1.1) for s ∈ N under the sub-
orthonormal condition on {φi}, where {φi}N

i=1 in L2(Rn) is called subortho-
normal if the inequality

N∑
i,j=1

ξiξj(φi, φj) ≤
N∑

i=1

|ξi|2

holds for all ξi ∈ C, i = 1, . . . , N ([4]). They applied the inequality (1.1) to
the estimate of the dimension of attractors associated with partial differential
equations(c.f. [13]). In this paper we shall give a weighted version of (1.1)
under suborthonormal condition on {φi}. In the proof of our theorem we
shall use Frazier-Jawerth’s ϕ-transform ([3]).

For the statement of our result we need to recall the definition of Ap-
weights (c.f. [5], [10]). By a cube in R

n we mean a cube which sides are
parallel to coordinate axes. Let w be a non-negative, locally integrable
function on Rn. We say that w is an Ap-weight for 1 < p <∞ if there exists
a positive constant C such that

1

|Q|
∫

Q

w(x) dx

(
1

|Q|
∫

Q

w(x)−1/(p−1)dx

)p−1

≤ C

for all cubesQ⊂R
n. The infimum of the constant C is called the Ap-constant

of w. For example, w(x) = |x|α is an Ap-weight when −n < α < n(p− 1).

We say that w is an A1-weight if there exists a positive constant C
such that

1

|Q|
∫

Q

w(y) dy ≤ Cw(x) a.e. x ∈ Q

for all cubesQ⊂Rn. The infimum of the constant C is called the A1-constant
of w. Let Ap be the class of Ap-weights. The inclusion Ap ⊂ Aq holds
for p < q.

For a nonnegative, locally integrable function w on Rn we define

Lp(w) =

{
f : measurable on R

n,

∫
Rn

|f(x)|pw(x) dx <∞
}
.

For ν ∈ Z and k ∈ Z
n the cube Q defined by

Q = Qνk = {(x1, . . . , xn) : ki ≤ 2νxi < ki + 1, i = 1, . . . , n}
is called a dyadic cube in Rn. Let Q be the set of all dyadic cubes in Rn.
For any Q ∈ Q there exists a unique Q′ ∈ Q such that Q ⊂ Q′ and the
side-length of Q′ is double of that of Q. We call Q′ the parent of Q.

For s > 0 and f ∈ C∞
0 (Rn) we define via inverse Fourier transform

(−∆)s/2f(x) = F−1(|ξ|sf̂)(x).
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Let w ∈ A2 and Hs(w) be the completion of C∞
0 (Rn) with respect to the

norm

‖f‖Hs(w) =

{∫
Rn

|(−∆)s/2f(x)|2w(x) dx+ ‖f‖2

}1/2

.

We remark that for f ∈ C∞
0 (Rn) we have∫

Rn

|(−∆)s/2f(x)|2w(x) dx <∞

because
|(−∆)s/2f(x)| ≤ c

(1 + |x|)n
(x ∈ R

n)

and ∫
Rn

w(x)

(1 + |x|)2n
dx <∞

(c.f. [10, p. 209]).

Let f∈Hs(w) and {fi}∞i=1 be a sequence in C∞
0 (Rn) such that

‖f − fi‖Hs(w) → 0 (i→ ∞).

This means that there exist g1 ∈ L2(Rn) and g2 ∈ L2(w) such that

‖g1 − fi‖ → 0 and

∫
Rn

∣∣g2(x) − (−∆)s/2fi(x)
∣∣2w(x) dx→ 0

as i→ ∞. We denote (−∆)s/2f = g2. We remark that g1 ≡ 0 means g2 ≡ 0.
In fact, for any ϕ ∈ C∞

0 (Rn), we have∫
Rn

g2ϕdx = lim
i→∞

∫
Rn

(−∆)s/2fiϕdx = lim
i→∞

∫
Rn

fi(−∆)s/2ϕdx = 0.

Hence we have g2 ≡ 0. This means that we can identify Hs(w) as a subspace
of L2(Rn).

The following is the main result of this paper.

Theorem 1.2. Let n ∈ N, s > 0, and

max
(
1,
n

2s

)
< p ≤ 1 +

n

2s
.

Let w ∈ A2. If 2s < n, then we assume that w−n/(2s) ∈ An/(2s). If 2s ≥ n,
then we assume that w−n/(2s) ∈ Ap and

(1.2)

∫
Q′
w dx ≤ 22s

∫
Q

w dx

for all dyadic cubes Q ∈ Q and its parent Q′.
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Then there exists a positive constant c such that for every family {φi}N
i=1

in Hs(w) which is suborthonormal in L2(Rn), we have{∫
Rn

ρ(x)p/(p−1)w(x)n/(2s(p−1)) dx

}2s(p−1)/n

≤ c
N∑

i=1

∫
Rn

∣∣(−∆)s/2φi(x)
∣∣2w(x) dx,

where

ρ(x) =
N∑

i=1

|φi(x)|2

and c depends only on n, s, p, A2-constant of w, and An/(2s) or Ap-constant
of w−n/(2s).

When 2s < n, an example of weight function w is given by w(x) = |x|α
for −n + 2s < α < 2s. When 2s > n, an example of weight function w is
given by w(x) = |x|α for 0 ≤ α < min{2s− n, n}(c.f. [12, Section 4]). When
2s = n, the condition (1.2) means w is equivalent to a constant almost
everywhere(c.f.[12, Proposition 4.1]).

2. Preliminaries

Let ψ be a function which satisfies the following conditions.

(A1) ψ ∈ S(Rn).

(A2) supp ψ̂ ⊂ {ξ ∈ R
n : 1

2
≤ |ξ| ≤ 2}

(A3) |ψ̂(ξ)| ≥ c > 0 if 3
5
≤ |ξ| ≤ 5

3
.

(A4)
∑
ν∈Z

|ψ̂(2νξ)|2 = 1 for all ξ 	= 0.

For ν ∈ Z, k ∈ Zn and Q = Qνk, we set

ψQ(x) = 2νn/2ψ(2νx− k) (x ∈ R
n).

Let M be the Hardy-Littlewood maximal operator, that is,

M(f)(x) = sup
x∈Q

1

|Q|
∫

Q

|f(y)| dy,

where f is a locally integrable function on Rn and the supremum is taken
over all cubes Q which contain x.
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Proposition 2.1. (i) Let 1 < p < ∞ and w be a non-negative locally
integrable function on Rn. Then there exists a positive constant c such
that ∫

Rn

M(f)pw dx ≤ c

∫
Rn

|f |pw dx

for all f ∈ Lp(w) if and only if w ∈ Ap. The constant c depends only
on n, p and Ap-constant of w.

(ii) Let 1 < p < ∞ and w ∈ Ap. Then there exists a q ∈ (1,p) such
that w ∈ Aq.

(iii) Let 0 < τ < 1 and f be a locally integrable function on Rn such
that M(f)(x) < ∞ a.e.. Then (M(f))τ ∈ A1 and the A1-constant of
(M(f))τ depends only on n and τ .

(iv) Let 1 ≤ p < ∞ and w ∈ Ap. Then there exists a positive constant c
such that ∫

2Q

w dx ≤ c

∫
Q

w dx

for all cubes Q ∈ R
n, where 2Q denotes the double of Q and c depend

only on n and Ap-constant of w.

The proofs of these facts are in [5, Chapter IV] or [10, Chapter V].

3. Proof of Theorem 1.2

The suborthonormal condition on {φi} is equivalent to the inequality

N∑
i=1

|(φi, f)|2 ≤ ‖f‖2

for all f ∈ L2(Rn) (c.f.[1, p57]). We shall prove the inequality{∫
Rn

ρ(x)p/(p−1)w(x)n/(2s(p−1)) dx

}2s(p−1)/n

≤ cK2sp/n−1

N∑
i=1

∫
Rn

∣∣(−∆)s/2φi(x)
∣∣2w(x) dx(3.1)

under the assumption

(3.2)
N∑

i=1

|(φi, f)|2 ≤ K‖f‖2

for all f ∈ L2(Rn) where K is a positive constant.
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This is equivalent to the statement of Theorem 1.2. We remark that K
may depend on {φi}. For example, the inequality (3.1) says that{∫

Rn

|φ|2p/(p−1)wn/(2s(p−1)) dx

}2s(p−1)/n

≤ c‖φ‖4sp/n−2

∫
Rn

∣∣(−∆)s/2φ
∣∣2wdx(3.3)

holds for all φ ∈ Hs(w) under suitable condition on s, p, n and w because

|(φ, f)|2 ≤ ‖φ‖2‖f‖2

for all f ∈ L2(Rn).

First we assume φi ∈ C∞
0 (Rn), i = 1, . . . , N . Let

V (x) = δ1ρ(x)
1/(p−1)w(x)n/(2s(p−1))

where the value of the constant δ1 > 0 will be given later. Since

ρ(x) =
N∑

i=1

|φi(x)|2

is a bounded function with compact support and wn/(2s(p−1)) is locally inte-
grable by the assumption w−n/(2s) ∈ Ap, we have∫

Rn

V pw−n/(2s) dx <∞.

We may also assume that

0 <

∫
Rn

V pw−n/(2s) dx.

By (ii) of Proposition 2.1 there exists a constant κ such that

1 < κ < p and w−n/(2s) ∈ Ap/κ.

We set
v(x) = M(V κ)(x)1/κ.

Then (i) of Proposition 2.1 leads to

(3.4)

∫
Rn

vpw−n/(2s)dx =

∫
Rn

M(V κ)p/κw−n/(2s) dx ≤ c1

∫
Rn

V pw−n/(2s) dx <∞.

Furthermore v is an A1-weight by (iii) of Proposition 2.1.
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We have the following lemmas.

Lemma 3.1. For s > 0 and w ∈ A2 there exists a positive constant α
such that

α
∑
Q∈Q

|Q|−2s/n|(f, ψQ)|2 1

|Q|
∫

Q

w dx ≤
∫

Rn

∣∣(−∆)s/2f
∣∣2w dx

for all f ∈ C∞
0 (Rn), where α is given by

α−1 = cmax
|σ|≤n

‖∂σψ̂‖2
∞

and c is a constant depending only on n, s and A2-constant of w.

Lemma 3.2. For v ∈ A2 there exist positive constants β and β′ such that

β′ ∑
Q∈Q

|(f, ψQ)|2 1

|Q|
∫

Q

v dx ≤
∫

Rn

|f |2v dx ≤ β
∑
Q∈Q

|(f, ψQ)|2 1

|Q|
∫

Q

v dx

for all f ∈ C∞
0 (Rn), where β is given by

β = cmax
|σ|≤n

‖∂σψ̂‖2
∞

and c is a constant depending only on n and A2-constant of v.

The proof of Lemmas 3.1 and 3.2 are in [11, Prop. 2.2 and Lemma 3.2].
We shall give the proof in Section 5 for the reader’s convenience because the
dependence of ψ in α and β is not explained in [11].

For f ∈ C∞
0 (Rn) we have∫

Rn

|f |2V dx ≤
∫

Rn

|f |2v dx ≤ β
∑
Q∈Q

|(f, ψQ)|2 1

|Q|
∫

Q

v dx,

where we used Lemma 3.2. Hence by Lemma 3.1∫
Rn

∣∣(−∆)s/2f
∣∣2w dx− ∫

Rn

V |f |2 dx

≥ α
∑
Q∈Q

|Q|−2s/n|(f, ψQ)|2 1

|Q|
∫

Q

w dx− β
∑
Q∈Q

|(f, ψQ)|2 1

|Q|
∫

Q

v dx.(3.5)

Now we set

(3.6) I =

{
Q ∈ Q : β

∫
Q

v dx > α|Q|−2s/n

∫
Q

w dx

}
.

Let {µk}1≤k be the non-decreasing rearrangement of{
α|Q|−2s/n−1

∫
Q

w dx− β|Q|−1

∫
Q

v dx

}
Q∈I

.

We will show that this rearrangement is possible in the proof of Lemma 3.3.
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When

µk = α|Q|−2s/n−1

∫
Q

w dx− β|Q|−1

∫
Q

v dx,

we define Ψk = ψQ. Then we have by (3.5)

N∑
i=1

∫
Rn

|(−∆)s/2φi|2w dx−
N∑

i=1

∫
Rn

V |φi|2 dx(3.7)

≥
N∑

i=1

∑
Q∈Q

|(φi, ψQ)|2
{
α|Q|−2s/n−1

∫
Q

w dx− β|Q|−1

∫
Q

v dx

}

≥
N∑

i=1

∑
k

µk|(φi,Ψk)|2 =
∑

k

µk

N∑
i=1

|(φi,Ψk)|2

≥ −K‖ψ‖2
∑

k

|µk| ≥ −K‖ψ‖2

(∑
k

|µk|γ
)1/γ

,(3.8)

where γ = p− n/(2s) ∈ (0, 1] and we used (3.2).

Now the following lemma holds.

Lemma 3.3. ∑
k

|µk|γ ≤ c

∫
Rn

vpw−n/(2s) dx,

where c is given by
c = c′ max

|σ|≤n
‖∂σψ̂‖n/s+2p

∞

and c′ depends only on n, s, p and w.

The proof of this lemma will be given in Section 4. By Lemma 3.3
and (3.4) the last quantity in (3.8) is estimated from below by

−cK
(∫

Rn

V pw−n/(2s) dx

)1/γ

= −cKδp/(p−n/(2s))
1

(∫
Rn

ρp/(p−1)wn/(2s(p−1)) dx

)1/(p−n/(2s))

,

where
c = c′‖ψ‖2 max

|σ|≤n
‖∂σψ̂‖(4ps+2n)/(2ps−n)

∞

and c′ depends only on n, s, p and w. We may take the infimum of the above
constant with respect to possible ψ and replace c by this infimum.
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Let

δ1 = δ2K
1−2sp/n

(∫
Rn

ρp/(p−1)wn/(2s(p−1)) dx

)2s(p−n/(2s)−1)/n

,

where δ2 is a positive constant. Then we have by (3.7)

N∑
i=1

∫
Rn

|(−∆)s/2φi|2w dx

≥ δ2K
1−2sp/n

(∫
Rn

ρp/(p−1)wn/(2s(p−1)) dx

)2s(p−1)/n

− cKδ
p/(p−n/(2s))
2 K−2sp/n

(∫
Rn

ρp/(p−1)wn/(2s(p−1)) dx

)2s(p−1)/n

= {δ2 − cδ
p/(p−n/(2s))
2 }K1−2sp/n

(∫
Rn

ρp/(p−1)wn/(2s(p−1)) dx

)2s(p−1)/n

.

If we take δ2 small enough, then we get the inequality (3.1) because
1 < p/(p− n/(2s)).

Next we shall show (3.1) for φi ∈ Hs(w), i = 1, . . . , N . First we show

(3.9) Hs(w) ⊂ L2p/(p−1)(wn/(2s(p−1))).

Let h ∈ Hs(w). Then there exists a sequence {hm}∞m=1 ⊂ C∞
0 (Rn) such that

‖h − hm‖Hs(w) → 0 (m → ∞). Since we proved that (3.3) holds for hm ∈
C∞

0 (Rn), we get{∫
Rn

|hm|2p/(p−1)wn/(2s(p−1)) dx

}2s(p−1)/n

≤ c‖hm‖4sp/n−2

∫
Rn

∣∣(−∆)s/2hm

∣∣2w dx,
where c does not depend on hm. Since 4sp/n− 2 > 0 and {hm} is a Cauchy
sequence in Hs(w), the above inequality says that {hm} is a Cauchy sequence
in L2p/(p−1)(wn/(2s(p−1))). Let g be the limit of {hm} in L2p/(p−1)(wn/(2s(p−1))).
For any compact set E in Rn we have∫

E

|g − hm| dx ≤
(∫

E

|g − hm|2p/(p−1)wn/(2s(p−1)) dx

)(p−1)/(2p)

×
(∫

E

w−n/(2s(p+1)) dx

)(p+1)/(2p)

.

Since w−n/(2s) is locally integrable by the assumption w−n/(2s) ∈ An/(2s) or
w−n/(2s) ∈ Ap, we get hm → g in L1

loc(R
n) as m→ ∞. Hence we have g = h

and (3.9).
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Furthermore we have

(3.10)

{∫
Rn

|h|2p/(p−1)wn/(2s(p−1)) dx

}2s(p−1)/n

≤ c‖h‖4sp/n−2

∫
Rn

∣∣(−∆)s/2h
∣∣2w dx.

We fix a positive number ε. Let χ1, . . . , χN be functions in C∞
0 (Rn)

such that
N∑

i=1

‖φi − χi‖2
Hs(w) < ε.

Now the inequalities

N∑
i=1

|(χi, f)|2 ≤ 2
N∑

i=1

|(χi − φi, f)|2 + 2
N∑

i=1

|(φi, f)|2

≤ 2

N∑
i=1

‖χi − φi‖2‖f‖2 + 2K‖f‖2 ≤ 2(K + ε)‖f‖2(3.11)

hold for all f ∈ L2(Rn). On the other hand{∫
Rn

( N∑
i=1

|φi − χi|2
)p/(p−1)

wn/(2s(p−1)) dx

}2s(p−1)/n

≤
{ N∑

i=1

(∫
Rn

|φi − χi|2p/(p−1)wn/(2s(p−1)) dx

)(p−1)/p}2sp/n

≤ N2sp/n−1
N∑

i=1

(∫
Rn

|φi − χi|2p/(p−1)wn/(2s(p−1)) dx

)2s(p−1)/n

≤ cN2sp/n−1

N∑
i=1

‖φi − χi‖4sp/n−2

∫
Rn

∣∣(−∆)s/2φi − (−∆)s/2χi

∣∣2w dx
≤ cN2sp/n−1ε2sp/n−1

N∑
i=1

∫
Rn

∣∣(−∆)s/2φi − (−∆)s/2χi

∣∣2w dx
≤ cN2sp/n−1ε2sp/n,

where we used (3.10). Therefore{∫
Rn

( N∑
i=1

|φi|2
)p/(p−1)

wn/(2s(p−1)) dx

}2s(p−1)/n

≤
{∫

Rn

(
2

N∑
i=1

|φi−χi|2+2
N∑

i=1

|χi|2
)p/(p−1)

wn/(2s(p−1)) dx

}2s(p−1)/n
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≤ 22sp/n

[{∫
Rn

( N∑
i=1

|φi − χi|2
)p/(p−1)

wn/(2s(p−1)) dx

}(p−1)/p

+

{∫
Rn

( N∑
i=1

|χi|2
)p/(p−1)

wn/(2s(p−1)) dx

}(p−1)/p
]2sp/n

≤ 24sp/n−1

{∫
Rn

( N∑
i=1

|φi − χi|2
)p/(p−1)

wn/(2s(p−1)) dx

}2s(p−1)/n

+ 24sp/n−1

{∫
Rn

( N∑
i=1

|χi|2
)p/(p−1)

wn/(2s(p−1)) dx

}2s(p−1)/n

≤ c24sp/n−1N2sp/n−1ε2sp/n(3.12)

+ c26sp/n−2(K + ε)2sp/n−1
N∑

i=1

∫
Rn

|(−∆)s/2χi|2w dx,

where we used (3.11) and (3.1) for χi. Since

N∑
i=1

∫
Rn

|(−∆)s/2χi|2w dx

≤ 2
N∑

i=1

∫
Rn

∣∣(−∆)s/2χi − (−∆)s/2φi

∣∣2w dx+ 2
N∑

i=1

∫
Rn

∣∣(−∆)s/2φi

∣∣2w dx
≤ 2ε+ 2

N∑
i=1

∫
Rn

∣∣(−∆)s/2φi

∣∣2w dx,
we have by (3.12){∫

Rn

( N∑
i=1

|φi|2
)p/(p−1)

wn/(2s(p−1)) dx

}2s(p−1)/n

≤ c24sp/n−1N2sp/n−1ε2sp/n + c26sp/n−1(K + ε)2sp/n−1ε

+ c26sp/n−1(K + ε)2sp/n−1

N∑
i=1

∫
Rn

|(−∆)s/2φi|2w dx.

Since we can take ε arbitrary small, we conclude{∫
Rn

( N∑
i=1

|φi|2
)p/(p−1)

wn/(2s(p−1)) dx

}2s(p−1)/n

≤ c26sp/n−1K2sp/n−1

N∑
i=1

∫
Rn

|(−∆)s/2φi|2w dx.

Hence we get (3.1).
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4. Proof of Lemma 3.3

The arguments of the proof are similar to those in [11] and [12]. First we
consider the case n > 2s. For λ > 0 we set

(4.1) Iλ = {Q ∈ Q : α|Q|−2s/n−1

∫
Q

w dx− β|Q|−1

∫
Q

v dx < −λ}.

Then we have for Q ∈ Iλ

α|Q|−2s/n−1

∫
Q

w dx < |Q|−1

∫
Q

(βv − λ)+ dx,

where

(βv − λ)+(x) = max{0, βv(x) − λ}.
Since p = n/(2s) + γ, γ ∈ (0, 1], and

β−pγ

∫ ∞

0

∫
βv>λ

(βv − λ)n/(2s)w−n/(2s) dxλγ−1dλ ≤
∫

Rn

vpw−n/(2s) dx <∞,

we have ∫
Rn

(βv − λ)
n/(2s)
+ w−n/(2s) dx <∞

for all λ > 0. By the assumption w−n/(2s) ∈ An/(2s) and (ii) of Proposi-
tion 2.1, there exists a κ′ ∈ (1, n/(2s)) such that w−n/(2s) ∈ An/(2sκ′). We set

v∗λ(x) = M((βv − λ)κ′
+ )(x)1/κ′

.

Then

(4.2)

∫
Rn

(v∗λ)
n/(2s)w−n/(2s) dx ≤ c1

∫
Rn

(βv − λ)
n/(2s)
+ w−n/(2s) dx <∞

and v∗λ ∈ A1 by (iii) of Proposition 2.1, where c1 depends only on n, s and
An/(2s)-constant of w−n/(2s).

We can show that Iλ is a finite set as follows. Let Q ∈ Iλ. Then we have

α|Q|−2s/n

∫
Q

w dx ≤
∫

Q

v∗λ dx

≤
{∫

Q

(v∗λ)
n/(2s)w−n/(2s) dx

}2s/n{∫
Q

wn/(n−2s) dx

}(n−2s)/n

.
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Since w−n/(2s) ∈ An/(2s), the last quantity is bounded by

c2

{∫
Q

(v∗λ)
n/(2s)w−n/(2s) dx

}2s/n

|Q|
(∫

Q

w−n/(2s) dx

)−2s/n

≤ c2

{∫
Q

(v∗λ)
n/(2s)w−n/(2s) dx

}2s/n

|Q|−2s/n

∫
Q

w dx,

where we used the inequality

1 ≤ 1

|Q|
∫

Q

w dx

(
1

|Q|
∫

Q

w−n/(2s) dx

)2s/n

.

The above calculation says

1 ≤ c3

∫
Q

(v∗λ)
n/(2s)w−n/(2s) dx,

where c3 = c′α−n/(2s) and c′ is the An/(2s)-constant of w−n/(2s).
First we assume that Iλ includes infinite disjoint cubes {Qi}∞i=1. Then

we have

∞=
∞∑
i=1

1 ≤
∞∑
i=1

c3

∫
Qi

(v∗λ)
n/(2s)w−n/(2s) dx ≤ c3

∫
Rn

(v∗λ)
n/(2s)w−n/(2s) dx <∞.

This is a contradiction. Hence Iλ does not include infinite disjoint cubes.

Next we assume that there exist infinite cubes {Qi}∞i=1 ⊂ Iλ such that
Qi 	= Qj (i 	= j) and Q1 ⊂ Q2 ⊂ Q3 ⊂ · · · . Let Q̃i be a half size dyadic
sub-cube of Qi+1 such that Qi ∩ Q̃i = ∅. Since Qi+1 ∈ Iλ, we have

α|Qi+1|−2s/n

∫
Qi+1

w dx ≤
∫

Qi+1

v∗λ dx.

Now we get ∫
Qi+1

v∗λ dx ≤
∫

3Q̃i

v∗λ dx ≤ c4

∫
Q̃i

v∗λ dx,

where we used the doubling property of v∗λ. Since

|Qi+1|−2s/n

∫
Qi+1

w dx ≥ 2−2s|Q̃i|−2s/n

∫
Q̃i

w dx,

we get

c5|Q̃i|−2s/n

∫
Q̃i

w dx ≤
∫

Q̃i

v∗λ dx.
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The similar calculation as before leads to

1 ≤ c6

∫
Q̃i

(v∗λ)
n/(2s)w−n/(2s) dx,

where c6 = c′′α−n/(2s) and c′′ depends only on n, s, and w. Since {Q̃i}∞i=1 is
a set of infinite disjoint cubes, we have a contradiction as before. Hence any
sequence in Iλ such that Q1 ⊂ Q2 ⊂ Q3 ⊂ · · · has a maximal element.
Similarly we can show that any sequence in Iλ such that Q1⊃ Q2⊃ Q3⊃ · · ·
has a minimal element.

By these arguments the number of maximal cubes and minimal cubes
in Iλ with respect to the inclusion relation is finite. Hence Iλ is a finite set.
We remark that the non-decreasing rearrangement of I in (3.6) is possible
because Iλ is a finite set for every λ > 0.

Let N(λ) = �Iλ, that is, the number of elements of Iλ. Let Ĩλ be the
set of all Q ∈ Iλ which satisfy the following condition: there exists a half
size dyadic sub-cube Q̃ ⊂ Q such that Q̃ 	∈ Iλ and Q̃ does not contain any
dyadic cube in Iλ. Then we have the following lemma.

Lemma 4.1. �Iλ ≤ 2�Ĩλ.

Lemma 4.1 is proved in Rochberg and Taibleson’s paper ([9, Lemma 1]).

Let Q ∈ Ĩλ and Q̃ be a dyadic cube which satisfies the condition in the
definition of Ĩλ. Then by similar calculations as before we get

1 ≤ c6

∫
Q̃

(v∗λ)
n/(2s)w−n/(2s) dx.

For every Q ∈ Ĩλ we choose a Q̃ as above. Let {Q̃j}j∈J be the set of all
such cubes Q̃. Then the cubes in {Q̃j}j∈J are mutually disjoint. Therefore
we get

�Ĩλ = �J ≤
∑
j∈J

c6

∫
Q̃j

(v∗λ)
n/(2s)w−n/(2s) dx

≤ c6

∫
Rn

(v∗λ)
n/(2s)w−n/(2s) dx ≤ c7

∫
Rn

(βv − λ)
n/(2s)
+ w−n/(2s) dx,

where we used (4.2). Hence we have

N(λ) ≤ 2c7

∫
Rn

(βv − λ)
n/(2s)
+ w−n/(2s) dx.
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Therefore we conclude∑
k

|µk|γ =

∫ ∞

0

γλγ−1N(λ) dλ

≤ 2c7

∫ ∞

0

∫
βv>λ

(βv − λ)
n/(2s)
+ w−n/(2s) dxγλγ−1dλ

≤ c8

∫
Rn

vpw−n/(2s) dx,

where c8 = c′′′α−n/(2s)βp and c′′′ depends only on n, s, p and w.

Next we consider the case n ≤ 2s. We remark that v(x) > 0 for all
x ∈ Rn. In fact if v(x0) = 0 at some point x0, then by the definition of the
maximal operator we have V ≡ 0, that is, φi ≡ 0, i = 1, . . . , N .

We also remark that I in (3.6) is not empty. In fact if I is empty, then
we have

β

∫
Q

v dx ≤ α|Q|−2s/n

∫
Q

w dx

for all Q ∈ Q. Let Q0 ∈ Q and Q0 ⊂ Q1 ⊂ Q2 ⊂ · · · be the infinite sequence
of dyadic cubes such that Qi+1 is the parent of Qi for all i = 0, 1, 2, . . ..
By (1.2) we have

|Qi+1|−2s/n

∫
Qi+1

w dx ≤ |Qi|−2s/n

∫
Qi

w dx for all i.

Hence we have

(4.3) β

∫
Qi

v dx ≤ α|Q0|−2s/n

∫
Q0

w dx

for all i. On the other hand, since v ∈ A1, there exists a constant d > 1
such that

d

∫
Qi

v dx ≤
∫

Qi+1

v dx

for all i (c.f. [5, p. 141]). Hence we have

di

∫
Q0

v dx ≤
∫

Qi

v dx

and

lim
i→∞

∫
Qi

v dx = ∞,

which contradicts to (4.3). Therefore I is not empty.
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Let Q ∈ I and Q′ be the parent of Q. Then we have

α|Q′|−2s/n

∫
Q′
w dx ≤ α|Q|−2s/n

∫
Q

w dx < β

∫
Q

v dx ≤ β

∫
Q′
v dx,

where we used the assumption (1.2). Hence we have Q′ ∈ I, which means
that I is an infinite set.

Lemma 4.2. There exists a c > 0 such that∑
Q∈I

(
1

|Q|
∫

Q

v dx

)γ

≤ c

∫
Rn

vpw−n/(2s) dx,

where c = c′α−n/(2s)βn/(2s) and c′ depends only on n, p, s and w.

This lemma is proved in [12, Lemma 3.3]. Let Iλ be the set defined
by (4.1).

Lemma 4.3. For each λ > 0, Iλ is a finite set.

Lemma 4.3 is easily proved by Lemma 4.2 (cf. [12, Lemma 3.4]). By
Lemma 4.3 we can show that the non-decreasing rearrangement of I is pos-
sible.

By Lemma 4.2 we conclude
∞∑

k=1

|µk|γ = c
∑
Q∈I

(
β|Q|−1

∫
Q

v dx− α|Q|−2s/n−1

∫
Q

w dx

)γ

≤ c
∑
Q∈I

(
β|Q|−1

∫
Q

v dx

)γ

≤ c

∫
Rn

vpw−n/(2s) dx,

where c = c′′α−n/(2s)βp and c′′ depends only on n, p, s and w. This ends the
proof of Lemma 3.3.

5. Proof of Lemmas 3.1 and 3.2

In this section we give a proof of Lemmas 3.1 and 3.2. The following argu-
ment is in [11]. We use the following lemma.

Lemma 5.1. Let w ∈ A2 and m ∈ Cn(Rn \ {0}). Suppose that

B = max
|σ|≤n

sup
0<r

r2|σ|−n

∫
r≤|ξ|≤2r

∣∣∣∣( ∂

∂ξ

)σ

m(ξ)

∣∣∣∣2 dξ <∞.

Then the operator T defined by T̂ f(ξ) = m(ξ)f̂(ξ) is bounded from L2(w)
to L2(w) and the operator norm ‖T‖ is bounded by CB1/2 where C is a
constant which depends only on n and w.

The proof of Lemma 5.1 is in [6] or [7].
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For ν ∈ Z we define ψν(x) = 2nνψ(2νx). Let w ∈ A2 and s ≥ 0.
Frazier and Jawerth proved that there exist positive constants c1 and c2
such that

c1
∑
Q∈Q

|Q|−2s/n|(f, ψQ)|2 1

|Q|
∫

Q

w dx ≤
∫

Rn

{∑
ν∈Z

22sν|f ∗ ψν(x)|2
}
w(x) dx

≤ c2
∑
Q∈Q

|Q|−2s/n|(f, ψQ)|2 1

|Q|
∫

Q

w dx

for all f ∈ C∞
0 (Rn) where c1 and c2 depend only on n, s and w ([3, Propo-

sition 10.14]).
We shall use the argument in Kurtz [6, p.242, p.243]. Let {rν(t)} be the

Rademacher functions on [0, 1] indexed by ν ∈ Z and

Ttf(x) =
∑
ν∈Z

rν(t)f ∗ ψν(x).

Then Tt satisfies the condition of Lemma 5.1. Hence∫
Rn

∣∣Ttf(x)
∣∣2w(x) dx ≤ CM

∫
Rn

∣∣f(x)
∣∣2w(x) dx,

for all f ∈ C∞
0 (Rn) where

M = max
|σ|≤n

‖∂σψ̂‖2
∞

and C is a positive constant depending only on n and w. By integrating
from 0 to 1 with respect to t, we get∫

Rn

{∑
ν∈Z

∣∣f ∗ ψν(x)
∣∣2}w(x) dx ≤ CM

∫
Rn

∣∣f(x)
∣∣2w(x) dx.

By the duality argument and the fact w−1 ∈ A2 we obtain∫
Rn

∣∣f(x)
∣∣2w(x) dx ≤ CM

∫
Rn

{∑
ν∈Z

∣∣f ∗ ψν(x)
∣∣2}w(x) dx

for all f ∈ C∞
0 (Rn). Hence we have

c3M
−1

∫
Rn

|f |2w dx ≤
∫

Rn

{∑
ν∈Z

∣∣f ∗ ψν

∣∣2}w dx ≤ c4M

∫
Rn

|f |2w dx,

where c3 and c4 are constants depending only on n and w.
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Therefore we get

c3M
−1

∫
Rn

|(−∆)s/2f |2w dx ≤
∫

Rn

{∑
ν∈Z

∣∣(−∆)s/2f ∗ ψν

∣∣2}w dx
≤ c4M

∫
Rn

∣∣(−∆)s/2f
∣∣2w dx

for all f ∈ C∞
0 (Rn)(c.f.[11]).

Let Φ ∈ S(Rn) satisfy supp Φ ⊂ {ξ : 1/4 ≤ |ξ| ≤ 4} and Φ(ξ) = 1 for
1/2 ≤ |ξ| ≤ 2. For ν ∈ Z the multiplier mν(ξ) = 2−sν |ξ|sΦ(ξ/2ν) satisfies
the condition of Lemma 5.1. Hence we have∫

Rn

∣∣(−∆)s/2f ∗ ψν(x)
∣∣2w(x) dx ≤ c5

∫
Rn

22sν
∣∣f ∗ ψν(x)

∣∣2w(x) dx,

where
c5 = c6 inf

Φ
max
|σ|≤n

‖∂σΦ‖2
∞

and c6 is a positive constant depending only on n, s and w and the infimum
is taken over all possible Φ.

Similarly there exists a positive constant c7 depending only on n, s and w
such that∫

Rn

22sν |f ∗ ψν(x)|2w(x) dx ≤ c7

∫
Rn

|(−∆)s/2f ∗ ψν(x)|2w(x) dx.

Hence we get

c8M
−1

∫
Rn

|(−∆)s/2f |2w dx ≤
∑
Q∈Q

|Q|−2s/n|(f, ψQ)|2 1

|Q|
∫

Q

w dx

≤ c9M

∫
Rn

|(−∆)s/2f |2w dx

for all f ∈ C∞
0 (Rn), where c8 and c9 are positive constant depending only

on n, s and w. This ends the proof of Lemmas 3.1 and 3.2.
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