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Estimates for multiple stochastic
integrals and stochastic

Hamilton-Jacobi equations

Vassili N. Kolokol’tsov, René L. Schilling and Alexei E. Tyukov

Abstract
We study stochastic Hamilton-Jacobi-Bellman equations and the

corresponding Hamiltonian systems driven by jump-type Lévy pro-
cesses. The main objective of the present paper is to show existence,
uniqueness and a (locally in time) diffeomorphism property of the so-
lution: the solution trajectory of the system is a diffeomorphism as a
function of the initial momentum. This result enables us to implement
a stochastic version of the classical method of characteristics for the
Hamilton-Jacobi equations. An –in itself interesting– auxiliary result
are pointwise a.s. estimates for iterated stochastic integrals driven by
a vector of not necessarily independent jump-type semimartingales.

1. Introduction

Over the last few years interest in stochastic Hamilton-Jacobi-Bellman (HJB
for short) equations has increased, see e.g. the papers [R], [So], [DaPDe]
and references given there. The HJB equations are important as they de-
scribe the evolution of optimally controlled systems with random dynamics,
but they are also useful tools when studying various classes of stochastic
models in probability theory and mathematical physics. Presently, the no-
tion of stochastic HJB equation is used in two different contexts: firstly, for
classical differential equations with a random Hamiltonian and, secondly,
for truly stochastic differential equations where the Hamiltonian includes a
non-homogeneous semimartingale term which does not allow to write down
the corresponding equation in classical form.
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In the sequel we will consider the second type of HJB equations, that is
to say equations of the form

(1.1) dS + H

(
x,

∂S

∂x

)
dt + c(x) dξt = 0, x ∈ R

d, t > 0,

where H : R
2d → R and c : R

d → R
d are smooth functions and ξt is

a stochastic process (driving noise) in Rd. The corresponding Hamilton
system is then

(1.2)

dx = ∂H
∂p

dt

dp = −∂H
∂x

dt − ∂c
∂x

dξt.

The equation (1.1) driven by a Wiener process {ξt}t�0 was considered in
[K1], [K2], and [TrZ1], [TrZ2] for various classes of real H and c. The corre-
sponding case of complex valued H and c was taken up in [K3]. The main
objective of the present paper is to study the equations (1.1), (1.2), where
{ξt}t�0 is a Lévy noise without Brownian part and to develop a stochastic
analogue of the theory of classical (i.e. smooth in x) solutions of the Cauchy
problem for equation (1.1). Generalised solutions can then be constructed
(see [KT2]) in the same way as they are constructed for the case of a Wiener
process {ξt}t�0 in [K1], [K2] (see also [KMa]).

For this programme we need to be able to solve a boundary value problem
for the stochastic Hamilton system (1.2). The analysis of the latter prob-
lem is the second main topic of our paper. Boundary value problems for
Hamilton systems of type (1.2) with a Wiener process {ξt}t�0 and their con-
nections with the calculus of variations were investigated in [K2]. However,
the proof of the existence and uniqueness of the solution of the boundary
value problem was only sketched in [K2]. In this paper we give complete
proofs of the corresponding results for Hamilton systems driven by Lévy
noise without a Brownian part.

An important tool for the analysis of the behaviour of the solutions for
Hamilton systems is the study of their linearised approximations (equation
in variations). These linearised approximations turn out to be linear non-
homogeneous Hamilton systems. Using perturbation theory we can derive
a representation of the solutions of such linear systems as series of multiple
stochastic integrals. In order to prove the convergence of these series, we
are led to the third topic of the article —obtaining estimates for multiple
stochastic integrals. In the present paper we use these estimates as auxil-
iary tools for the study of linear stochastic Hamilton systems. We believe,
however, that they are of independent value. Let us mention here the pa-
per [Ta], where a rather general linear system driven by Brownian motion
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was considered, convergence of the series from perturbations theory proved,
and necessary estimates for multiple integrals obtained. Multiple stochastic
integrals with respect to general semimartingales or infinitely divisible pro-
cesses were also considered, see e.g. [KwW], [Sz] and references given there.

Let us give a brief outline how our paper is organized. In Section 3
we obtain estimates for the symmetric sum of multiple integrals driven by
semimartingales. Under some additional assumptions on H and c we prove
in Section 4 well-posedness of certain boundary value problems for stochas-
tic Hamilton systems (1.2) for times t not exceeding some stopping time.
For proving this we first observe that well-posedness is equivalent to the
statement that the map p0 �→ X(t, t0, x0, p0) (where X(t, t0, x0, p0) is a so-
lution of (1.2) with initial conditions (x0, p0) at time t = t0) is a diffeomor-
phism. We call this statement diffeomorphism theorem. In Section 5 we de-
velop the method of stochastic characteristics to solve stochastic Hamilton-
Jacobi equations with Lévy noise.

Some applications of our results to the theory of stochastic heat equation
(large deviation type asymptotics) are considered in the paper [KT2].

2. Preliminaries

Throughout this paper we consider Lévy processes as driving noise terms
in the Hamiltonian system (1.2). Our standard references for Lévy pro-
cesses are the monographs by Bertoin [Ber1] and Sato [Sa]. For Lévy pro-
cesses and stochastic calculus with jumps we use the books by Jacod and
Shiryaev [JSh] and Protter [Pro]. We will collect a few definitions and results
from these books.

A Lévy process (on Rd) is a stochastic process {ξt}t�0 on a probabil-
ity space (Ω,F , P) with stationary and independent increments which is
also stochastically continuous. We will assume that ξ0 = 0 a.s. The state
space will always be R

d. We can (and will) choose a version that has right-
continuous sample paths with everywhere finite left-hand limits (càdlàg, for
short); if not otherwise mentioned, we will use the augmented canonical
filtration of {ξt}t�0. The process {ξt}t�0 is uniquely (up to stochastic equiv-
alence) determined through its Fourier transform,

Eeiηξt = e−tψ(η), t > 0, η ∈ R
d,

where the characteristic exponent ψ : Rd → C is given by the Lévy-
Khinchine representation

ψ(η) = i� · η + η · Qη +

∫
y �=0

(
1 − eiy·η +

iy · η
1 + |y|2

)
ν(dy).
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Here, � is some vector in R
d, Q ∈ R

d×d is a positive semi-definite matrix
and ν is the Lévy or jump measure with support in Rd \ {0} such that∫

y �=0
|y|2 ∧ 1 ν(dy) < ∞. The Lévy-Khinchine formula is actually a one-to-

one correspondence between the function ψ and the Lévy triplet (�,Q, ν).
Stochastically, the Lévy-Khinchine representation translates into a path

decomposition of the process {ξt}t�0. Fix some Borel set A ⊂ Rd \ {0}, and
write Nt(ω,A) for the Poisson point process with intensity measure ν(A).
It is known that Nt(ω,A) describes jumps of ξt with sizes contained in A
and we get

(2.1) ξt(ω) = αt + Bt(ω) + Mt(ω) + Jt(ω),

where α = E

(
ξ1−

∫
|y|�1

y N1(ω, dy)
)

is the drift coefficient, Bt is a d−dimen-

sional Wiener process with (possibly degenerate) covariance matrix Q,

Mt(ω) =

∫
|y|<1

y (Nt(ω, dy) − tν(dy))

is a martingale which is the compensated sum of all small jumps (modulus
less than 1), and

Jt(ω) =
∑

0<s�t

∆ξs 1{|∆ξs|�1}

is the sum of all big jumps (modulus greater than 1). As usual, we write
∆ξs = ξs − ξs− = ξs − limr↑s ξr for the jump at time s > 0. Note that Jt

is a process of bounded variation on compact time-intervals. This is the
case since càdlàg paths can have only finitely many jumps of size � 1 on
any finite time interval. The above decomposition of ξt shows that Lévy
processes are semimartingales and, therefore, good stochastic integrators.

The following two formulae for point processes hold whenever the right-
hand side is finite:

E

(∫
A

f(y)Nt(•, dy)

)
= t

∫
A

f(y) ν(dy)

and

(2.2) E

({ ∫
A

f(y)(Nt(•, dy) − tν(dy))

}2)
= t

∫
A

f(y)2 ν(dy).

In particular, we get

(2.3) E

(∑
s�t

f(∆ξs)

)
= t

∫
f(y) ν(dy)

for finite right-hand sides.
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It is not hard to see that

t �→ ξt has a.s. finite variation if and only if

∫
0<|y|<1

|y| ν(dy) < ∞

and that

E|ξt| < ∞ if and only if

∫
|y|�1

|y| ν(dy) < ∞.

If ξt has a.s. bounded jumps, i.e., if the support of ν is a bounded set, ξt has
absolute moments of any order.

We will also need the following simple Lemma. Since we could not find
a precise reference for it, we include a short proof.

Lemma 2.1 Let {ξt}t�0, ξ = (ξ1, . . . , ξd) be a Lévy process with Q = 0 and
Lévy measure ν satisfying

∫
|y|>1

|y|2 ν(dy) < ∞. For any 0 < ε < 1/2 we

find a stopping time Rε(ω) < 1 such that

ϑt = 2

d∑
i=1

(
sup

τ∈[0,t]

|ξi,τ | + [ξi, ξi]
1
2
t

)
< t

1
2
−ε

holds for all t < Rε, where P(Rε > 0) = 1. In particular, one can find a
stopping time R > 0 a.s. such that for all t < R

ϑt = 2

d∑
i=1

(
sup

τ∈[0,t]

|ξi,τ | + [ξi, ξi]
1
2
t

)
< 1.(2.4)

Remarks

1. In this paper we will use only the fact that ϑt < 1 for t < R. The
stopping times Rε will be needed in [KT2].

2. Lemma 2.1 remains valid if Q �= 0. Since we do not need this result,
we settle for the case Q = 0 and the somewhat simpler proof.

Proof. As usual we write ξ∗t = supτ∈[0,t] |ξτ |. Since Q = 0, we get from (2.1)

E
({ξ∗t }2) � 3

[|α|2t2 + E
({M∗

t }2
)

+ E
({J∗

t }2
)]

.

Using (a + b)2 � 2a2 + 2b2 and (2.2) we get for t < 1

E ({J∗
t }2) � E

({∑
s�t

|∆ξs|1{|∆ξs|>1}}2
)

= E
({∫

|x|>1

|x|Nt(·, dx)}2
)

� 2E

(
{
∫
|x|>1

|x| (Nt(·, dx) − tν(dx))}2
)

+ 2t2
(∫

|x|>1

|x| ν(dx)
)2

� 2t(1 + ν(Bc
1(0)))

∫
|x|>1

|x|2 ν(dx),

where we used t < 1 and Jensen’s inequality for the last term.
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Doob’s martingale inequality and (2.2) give

E
({M∗

t }2
)

� 4E
(
M2

t

)
= 4t

∫
|x|<1

|x|2 ν(dx).

Formula (2.3) implies that

E([ξ, ξ]t) = t

∫
|x|>0

|x|2 ν(dx).

Thus, the process
ζt = {ξ∗t }2 + [ξ, ξ]t

satisfies E ζt < Ct for t < 1, where C = C(α, ν) > 0 is a constant. By
Chebyshev’s inequality

P(ζt > R) � E(ζt)

R
� Ct

R
, t < 1.

Choosing t = 2−k and R = (8d)−12−(1−ε)k we find

∞∑
k=1

P
{
ζ2−k > (8d)−12−(1−ε)k

}
� 8dC

∞∑
k=1

2−εk < ∞.

The Borel-Cantelli Lemma implies that

ζ2−k � (8d)−12−(1−ε)k for k > k0(ω) for some k0(ω) ∈ N.

Set k1(ω) = k0(ω) ∨
[

(1−2ε)
ε

+ 1
]
. Then (1 − 2ε)k+1

k
� 1 − ε for k > k1(ω).

If 2−(k+1) � t < 2−k for some k > k1(ω) we find, as t �→ ζt is an increasing
function,

(8d)ζt � (8d)ζ2−k � 2−(1−ε)k �
(
2−(k+1)

) (1−ε)k
k+1 �

(
2−(k+1)

)(1−2ε) � t(1−2ε).

Using the elementary inequality (a1 + · · · + a2d)
2 � (2d)(a2

1 + · · · + a2
2d) we

get with Rε(ω) = 2−k1(ω)

ϑ2
t � (8d)ζt � t1−2ε, ∀ t < Rε,

and the lemma follows. �

Notation. Most of our notation should be standard or self-explanatory.
All stochastic integrals are Itô-integrals and our main reference texts for
stochastic integrals with jumps are Jacod and Shiryaev [JSh] and Prot-
ter [Pro]. In particular, we follow the conventions of Protter∫ b

a

Xs dYs :=

∫
(a,b]

Xs dYs, [X,Y ]0 = X0Y0 and X0− = (X−)0 = 0.
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3. Estimates for multiple stochastic integrals driven by
semimartingales

Here we derive some estimates for multiple stochastic integrals which will be
needed later on. We use the following notation. For any A ∈ RM×N we write

‖A‖∞ = max
i=1,...,M
j=1,...,N

|(A)i,j|.

We will always consider k-fold stochastic integrals driven by (general)
real-valued semimartingales {ηj,t}t�0, j = 1, . . . , d, with càdlàg paths or by
the deterministic process η0,t = t. We assume that all semimartingales are on
the same probability space (Ω,F , P) and are adapted to the same filtration
{Ft}t�0. The filtration is assumed to satisfy the usual conditions, i.e., it is
right-continuous and augmented. Since the dηj,t, j = 0, . . . , d, may appear
in any order we want to keep track when we deal with a Stieltjes differential
dτ = dη0,τ and a (genuinely) stochastic differential dηj,τ , j = 1, . . . , d. To do
so we introduce and fix throughout this section a sequence �n ∈ N such that

(3.1) �2n−1 � �2n and �2n + 1 < �2n+1.

We set

Mi =

{
{1, . . . , d} if �2n−1 � i � �2n

{0} otherwise.

This means that for (j1, . . . , jk) ∈ M = M1 × · · · × Mk the first �1 − 1
integrals of the stochastic differential

(3.2) dηj1,τ1dηj2,τ2 . . . dηjk,τk

are deterministic, the next up to label �2 are semimartingales, those up to
�3 − 1 are again deterministic, etc.:

�1 = min{s ∈ [0, k] : js �= 0}
�2 = min{s ∈ (�1, k] : js = 0} − 1

...
�2n−1 = min{s ∈ (�2n−2, k] : js �= 0}

�2n = min{s ∈ (�2n−1, k] : js = 0} − 1

(min ∅ = k + 1). Moreover,

(3.3) m = m(k) =
∑

n∈N, �2n�k

(�2n − �2n−1 + 1)

is the number of non-trivial differentials in (3.2), i.e.

m = #{s : js �= 0}.
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Let Wj,τ = Wj,τ (ω), I0,τ = I0,τ (ω) be R
M×M -valued continuous processes

adapted to the filtration {Fτ}τ�0 and such that

(3.4) sup
s�t0

‖Wj,s‖∞ � 1, j = 0, . . . , d,

and let vτ be some real-valued Ft-adapted increasing process such that for
any s, t ∈ R+, s < t,

(3.5) ‖Wj,t − Wj,s‖∞ � vt − vs, j = 1, . . . , d.

We also assume that [ηi, ηi]
c = 0, i = 1, . . . , d, and

(3.6) 2 sup
t0�τ1�τ

|ηi,τ1 − ηi,t0| � 1, i = 1, . . . , d.

Notice that the assumptions (3.4), (3.6) can always be achieved by suitable
(pre-)stopping arguments.

For 0 � t0 � τ we set

Ik,τ =(3.7)

=
∑

(j1,...,jk)∈M

∫ τ

t0

Wjk,τk

(∫ τk−

t0

· · ·
(∫ τ2−

t0

Wj1,τ1I0,τ1 dηj1,τ1

)
. . . dηjk−1,τk−1

)
dηjk,τk

,

where M = M1 × · · · ×Mk as above, and
(3.8)

Dτ = M · d
[
vτ − vt0 + 4

d∑
j=1

(
sup

t0�τ1�τ
|ηj,τ1 − ηj,t0 |+ ([ηj , ηj ]τ − [ηj , ηj]t0)

1
2

)]
.

We will use the abbreviation BV-process for a process with (almost surely)
paths of bounded variation on compact time-intervals.

We can now state the main result of this section.

Proposition 3.1 Let ηi,τ , i = 1, . . . , d, be Fτ -semimartingales, Wj,τ be
Fτ -adapted continuous processes as set out above, �n ∈ N be any fixed se-
quence such that (3.1) holds and Ik,τ be as defined above in (3.7). Moreover
we assume that

(3.9) Wj,τWi,τ = Wi,τWj,τ j, i = 1, . . . , d.

If I0,τ = EM ∈ R
M×M is the identity matrix or if �1 > 1 (or both), we have

(3.10) ‖Ik,τ‖∞ � bk Dm
τ {M(τ − t0)}k−m‖I∗

0,τ‖∞,

where ‖I∗
0,τ‖∞ = supt0�s�τ ‖I0,s‖∞, with m from (3.3) and

(3.11) bk =
(27)k

(ln{ln{k + 2}}) k
16

.
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The proof of Proposition 3.1 is quite technical and a few words of guid-
ance are in order. Basically, we prove Proposition 3.1 by induction in k, the
number of iterated integrals in Ik. There are two different ways how Ik+1 can
arise from Ik: (i) the (k+1)st integrator is deterministic, or (ii) the (k+1)st
integrator is a semimartingale. Case (i) is easily dealt with (Case 1 of Step 1
of the proof), while (ii) requires a few auxiliary results which we prove in
Lemmas 3.1–3.6 below. The idea here is to consider the last two, i.e. kth
and (k + 1)st, integrations simultaneously and to look first at the more
complicated (but symmetrised) object

(3.12) zm̂
k+1,τ =

d∑
i=1

∑
J∈Nd

0, |J |=m̂

∑
J ′�J

RJ ′,J,τ

∫ τ

0

UJ,τ2

( ∫ τ2−

0

Wi,τ1Ik−1,τ1−dηi,τ1

)
dηJ ′

τ2
,

where UJ,τ is a product of Wj’s and RJ ′,J,τ are the coefficients of a multi-
nomial series (see (3.19) and (3.20)). Notice that Ik+1,τ = z1

k+1,τ . The
symmetrisation has the effect that we are effectively integrating against
d(η• − ητ )

J—but this integrator would not be well-defined in Itô’s sense.
The technique is to apply integration by parts to the two inner integrals

in (3.12) (the general formula is given in Lemma 3.1, Corollary 3.1 contains
the ‘symmetrised’ version which we are going to use later on) and then to es-
timate the three appearing terms (3.27)–(3.29) which is done in Lemma 3.3.
Depending on the nature of the integrators in (3.12), the main estimates are
done in Lemmas 3.5 and 3.6. Their proofs use mainly Lemmas 3.2–3.4 which
are of technical nature and can be skipped on first reading. This induction
gives the basic estimate of Proposition 3.1 without revealing the form of the
coefficients bk. The coefficients are obtained in a separate induction (Step 2
in the proof of Proposition 3.1). This part of the proof rests entirely on
some tedious estimates and recurrence relations which we deferred to the
appendix (Lemmas A.1–A.4).

Notation

(i) We will use throughout the paper matrix and vector notation for
stochastic integrals. Since matrices are, in general, non-commutative the
position of stochastic differentials etc. is important.

(ii) All stochastic integrals, where the integrand is a vector (or a ma-
trix) and the integrator is an R-valued semimartingale will be understood
coordinate-wise. In a similar way, brackets of vectors and R-semimar-
tingales or matrices of R-semimartingales are understood coordinatewise.
The bracket of two matrices A, B is defined as a matrix

[A,B]ik =

M∑
j=1

[aij , bjk], i, k = 1, . . . ,M,

which is compatible with the rules of stochastic calculus and matrix algebra.
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We start with rewriting the integration by parts formula in the form we
need later on.

Lemma 3.1 Let {Uτ}τ�0 be an Fτ -adapted continuous BV process with val-
ues in R

M×M , {Φτ}τ�0 an Fτ -adapted càdlàg process with values in R
M×M

and let {ντ}τ�0, {κτ}τ�0 be two real-valued Fτ -semimartingales. Then the
iterated stochastic integral

Qτ =

∫ τ

0

Uτ2

(∫ τ2−

0

Φτ1− dντ1

)
dκτ2

can be written in the form

Qτ = κτ

∫ τ

0

dUτ2 ×
∫ τ2−

0

Φτ1− dντ1 + κτ

∫ τ

0

Uτ2Φτ2− dντ2 −
∫ τ

0

Uτ2Φτ2− d[ν, κ]τ2

−
∫ τ

0

dUτ2 × κτ2−

∫ τ2−

0

Φτ1− dντ1 −
∫ τ

0

κτ2−Uτ2Φτ2− dντ2 .(3.13)

Proof. We use the following integration by parts formula for R-valued
semimartingales:∫ τ

0

Yτ2− dZτ2 = YτZτ − Y0Z0 − [Y, Z]τ −
∫ τ

0

Zτ2− dYτ2 .

With the coordinate conventions detailed in the above remark we may choose

Yτ2 = Uτ2

∫ τ2

0

Φτ1− dντ1 and Zτ2 = κτ2 .

Clearly, Y0 = 0 and therefore

Qτ = κτUτ

∫ τ

0
Φτ1− dντ1 −

[
U•

∫ •

0
Φτ1− dντ1 , κ•

]
τ

−
∫ τ

0
κτ2− d

(
Uτ2

∫ τ2

0
Φτ1− dντ1

)
= I + II + III.

An application of Itô’s formula gives

d

(
Uτ2

∫ τ2

0

Φτ1− dντ1

)
=(3.14)

= dUτ2 ×
∫ τ2−

0

Φτ1− dντ1 + Uτ2Φτ2− dντ2 + d

[
U• ,

∫ •

0

Φτ1− dντ1

]
τ2

.

Since U is a continuous BV-process, the square bracket vanishes and we get

(3.15) I = κτ

∫ τ

0

dUτ2 ×
∫ τ2−

0

Φτ1− dντ1 + κτ

∫ τ

0

Uτ2Φτ2− dντ2 .
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From (3.14) we also find

II = −
[(

U•

∫ •

0

Φτ1− dντ1

)
, κ•

]
τ

= −
[( ∫ •

0

Uτ2Φτ2− dντ2

)
, κ•

]
τ

−
[ ∫ •

0

dUτ1 ×
∫ τ1−

0

Φτ2− dντ2 , κ•

]
τ

.

Since U• is a continuous BV-process, so is the stochastic integral driven by
dU , and the last bracket above vanishes. So,

(3.16) II = −
∫ τ

0

Uτ2Φτ2− d[ν, κ]τ2 .

Finally, using (3.14) the third time gives

III = −
∫ τ

0

κτ2−dUτ2 ×
∫ τ2−

0

Φτ1− dντ1 −
∫ τ

0

κτ2−Uτ2Φτ2− dντ2 .

Combining this with (3.15) and (3.16) completes the proof. �
Later on, we will use Lemma 3.1 in the following form.

Corollary 3.1 Let {Uτ}τ�0, {Φτ}τ�0, {ντ}τ�0 be as in Lemma 3.1 and let
{κ̃α,τ}τ�0 and {κα,τ}τ�0 be finitely many (α ∈ A) real-valued Fτ -semimar-
tingales such that

(3.17)
∑
α∈A

κ̃α,τκα,τ = 0.

Then the iterated stochastic integral

Qτ =
∑
α∈A

κ̃α,τ

∫ τ

0

Uτ2

(∫ τ2−

0

Φτ1− dντ1

)
dκα,τ2

can be written in the form

Qτ = −
∑
α∈A

κ̃α,τ

∫ τ

0

Uτ2Φτ2− d[ν, κα]τ2 −
∑
α∈A

κ̃α,τ

∫ τ

0

dUτ2 × κα,τ2−

∫ τ2−

0

Φτ1− dντ1

−
∑
α∈A

κ̃α,τ

∫ τ

0

κα,τ2−Uτ2Φτ2− dντ2 .(3.18)

Proof. For a fixed α ∈ A we can apply Lemma 3.1 with κτ = κα,τ to
get (3.13). Now multiply (3.13) with κ̃α,τ and sum over α ∈ A. Because
of (3.17), the first two terms vanish and we get (3.18). �
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Recall the following common notations for multi-indices J = (j1, . . . , jd),
J ′ = (j′1, . . . , j

′
d) ∈ Nd

0: we say J ′ � J if j′1 � j1, . . . , j
′
d � jd, |J | = j1+· · ·+jd,

J ± J ′ = (j1 ± j′1, . . . , jd ± j′d), and if ητ = (η1,τ , . . . , ηd,τ ),

ηJ
τ = ηj1

1,τ . . . ηjd

d,τ .

We also set

(3.19) RJ ′,J,τ = (−1)|J |−|J ′|
(

j1

j′1

)
. . .

(
jd

j′d

)
ηJ−J ′

τ J ′ � J.

From the binomial formula we easily see

(3.20)
∑
J ′�J

RJ ′,J,τη
J ′
τ2

= (ητ2 − ητ )
J = (η1,τ2 − η1,τ )

j1 . . . (ηd,τ2 − ηd,τ )
jd .

Below is a technical lemma which we need in order to estimate the norm of
some integrals driven by BV-processes.

Lemma 3.2 Let {ηi,τ}τ�0, i = 1, . . . , d, be real-valued Fτ -semimartingales
with [ηi, ηi]

c = 0, ηi,0 = 0 and such that the inequalities (3.6) are satisfied.
Then we have for all J ′, J ∈ N

d
0 with J ′ � J and |J ′| = m′, |J | = m

(i) sup
0�s�τ

|ηJ−J ′
s | � (4M · d)−(m−m′)+1Dm−m′−1

τ ,

(ii) sup
0�s�τ

|ηJ−J ′
s | � (4M · d)−(m−m′)Dm−m′

τ ,

(iii) sup
0�s�τ

|ηJ ′
s | � (4M · d)−m′

Dm′
τ ,

(iv) |∆[ηJ ′
, ηi]τ | � (2M · d)−m′−1Dm′

τ ∆Dτ ,

(v)
∑

J ′�J

|RJ ′,J,τ | sup
0�τ2�τ

|∆[ηJ ′
, ηi]τ2| � 2−1(M · d)−m−1Dm

τ ∆Dτ ,

(vi)
∑

J ′�J

|RJ ′,J,τ | sup
0�τ2�τ

|ηJ ′
τ2
| � 2(2M · d)−m+1Dm−1

τ ,

(vii)
∑

J ′�J

|RJ ′,J,τ | (2M · d)−m′−1Dm′
τ � (M · d)−m−1Dm

τ .

Proof. By the very definition (3.8) of Dτ we get

(3.21) max
i=1,...,d

max{|ηi,τ |, |∆ηi,τ |} � (4M · d)−1Dτ .

Hence, due to (3.6),

sup
0�s�τ

|ηJ−J ′
s | � sup

0�s�τ
max

i=1,...,d
|ηi,s|m−m′ � sup

0�s�τ
max

i=1,...,d
|ηi,s|m−m′−1

�(4M · d)−(m−m′)+1Dm−m′−1
τ

and (3.2) follows. Similarly we obtain (3.2) and (3.2).
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We proceed with (3.2). Using (3.21), the elementary identity

∆(a1 ·a2 · . . . ·am′) =
m′∑
r=1

a0 . . . ar−1(∆ar)(ar+1−∆ar+1) . . . (am′+1−∆am′+1),

where a0 = am′+1 = 1, ∆a0 = ∆am′+1 = 0, and m′2−m′+1 � 1 we find

|∆ηJ ′
τ | � m′

(
sup

0�s�τ
max

i=1,...,d
|ηi,s|

)m′−1 (
max

i=1,...,d
|∆ηi,τ |

)
� (2M · d)−m′+1Dm′−1

τ max
i=1,...,d

|∆ηi,τ |.

Since ηi and ηJ are pure jump semimartingales, it follows

(3.22) |∆[ηJ ′
, ηi]τ | = |∆ηJ ′

τ ∆ηi,τ | � (2M · d)−m′+1Dm′−1
τ max

i=1,...,d
|∆ηi,τ |2.

Due to (3.8)

∆[ηi, ηi]
1
2
τ � (4M · d)−1∆Dτ

for any i = 1, . . . , d, where we used that vτ and sup
0�s�τ

|ηs| are increasing

functions of τ . Since

∆([ηi, ηi]
1
2
τ ) =

∆[ηi, ηi]τ

[ηi, ηi]
1
2
τ + [ηi, ηi]

1
2
τ−

� ∆[ηi, ηi]τ

2[ηi, ηi]
1
2
τ

� |∆ηi,τ |2
(2M · d)−1Dτ

,

we conclude

(3.23) |∆ηi,τ |2 � (2M · d)−2Dτ∆Dτ

and the combination of (3.22), (3.23) proves (3.2).
Using the fact that ∑

J ′�J

(
j1

j′1

)
. . .

(
jd

j′d

)
= 2m

we see the implications: (3.2), (3.2) =⇒ (3.2); (3.2), (3.2) =⇒ (3.2); and
(3.2) =⇒ (3.2) . �

Given L′ = (l′1, . . . , l
′
d) ∈ N

d
0 and J = (j1, . . . , jd) ∈ N

d
0 we put

(3.24) fL′(x1, . . . , xd) = x
l′1
1 . . . x

l′d
d ,

(3.25) δL′,τ2 = ∆[fL′(η)]τ2 −
d∑

i=1

∂fL′(ηττ2−)

∂xi

∆ηi,τ2

and

(3.26) UJ,τ2 =
1

J !
(W1,τ2)

j1 . . . (Wd,τ2)
jd , J ! = j1! . . . jd!.
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We are going to estimate the norms of the following integrals and sums

AJ,i,τ = −
∑
J ′�J

RJ ′,J,τ

∫ τ

0

UJ,τ1Wi,τ1Ik−1,τ1− d[ηJ ′
, ηi]τ1 ,(3.27)

BJ,i,τ = −
∑
J ′�J

RJ ′,J,τ

∫ τ

0

dUJ,τ2 × ηJ ′
τ2−

∫ τ2−

0

Wi,τ1Ik−1,τ1− dηi,τ1 ,(3.28)

CL,τ =
∑
L′�L

∑
0<τ2�τ

RL′,L,τUL,τ2Ik−1,τ2−δL′,τ2(3.29)

driven by BV-processes. As we will see in Lemmas 3.5 and 3.6, these integrals
arise from an application of the integration by parts formula to iterated
integrals of a certain type.

Lemma 3.3 For m, k ∈ N and Bm = {J ∈ N
d
0 : |J | = m} we have∥∥∥∥ d∑

i=1

∑
J∈Bm

AJ,i,τ

∥∥∥∥
∞

� 1

2m!
Dm

τ

∫ τ

0

‖Ik−1,τ1−‖∞ dDτ1 ,(3.30)

∥∥∥∥ d∑
i=1

∑
J∈Bm

BJ,i,τ

∥∥∥∥
∞

� 1

(m − 1)!
Dm−1

τ

∫ τ

0

‖Ik,τ2−‖∞ dDτ2 ,(3.31) ∥∥∥∥ ∑
L∈Bm+1

CL,τ

∥∥∥∥
∞

� 1

2m!
Dm

τ

∫ τ

0

‖Ik−1,τ1−‖∞ dDτ1 .(3.32)

Proof. Applying (3.2) of Lemma 3.2 we have

‖AJ,i,τ‖∞ =

∥∥∥∥ ∑
J ′�J

RJ ′,J,τ

∫ τ

0

UJ,τ1Wi,τ1Ik−1,τ1− d[ηJ ′
, ηi]τ1

∥∥∥∥
∞

� 2−1(M · d)−m−1Dm
τ

∫ τ

0

‖UJ,τ1Wi,τ1Ik−1,τ1−‖∞ dDτ1 .

Because of

(3.33) ‖Y Z‖∞ � M‖Y ‖∞‖Z‖∞, Y, Z ∈ R
M×M ,

definition (3.26), and condition (3.4) we obtain for J ∈ Bm

‖UJ,τ1Wi,τ1Ik−1,τ1−‖∞ � Mm

J !
‖Wi,τ1Ik−1,τ1−‖∞ � Mm+1

J !
‖Ik−1,τ1−‖∞ ,

and so

(3.34) ‖AJ,i,τ‖∞ � 1

2

d−m−1

J !
Dm

τ

∫ τ

0

‖Ik−1,τ1−‖∞ dDτ1 .
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Summing (3.34) over all J ∈ Bm, i = 1, . . . , d, and using the multinomial
identity

(3.35)
∑

J∈Bm

1

J !
=

dm

m!

gives (3.30).

To estimate BJ,i,τ we observe that for the continuous BV-processes Wj,τ

which satisfy (3.9) one has

dUJ,τ2 =
1

J !

d∑
r=1

(W1,τ2)
j1 . . .

(
d(Wr,τ2)

jr
)
. . . (Wd,τ2)

jd =

d∑
r=1
jr>0

UJ−er ,τ2 dWr,τ2 ,

where

(3.36) er = (0, . . . , 0, 1︸ ︷︷ ︸
r

, 0, . . . , 0) ∈ N
d
0.

Therefore, using (3.5), (3.33) and

d∑
r=1
jr>0

1

(J − er)!
=

m

J !

we obtain for any càdlàg Fτ -adapted R
M×M -valued process Zτ

(3.37)

∥∥∥∥∫ τ

0

dUJ,τ2 × Zτ2−

∥∥∥∥
∞

� m

J !
Mm

∫ τ

0

‖Zτ2−‖∞ dvτ2 .

Note that according to the assumption of the lemma

Ik,τ =
d∑

i=1

∫ τ−

0

Wi,τ1Ik−1,τ1− dηi,τ1

(i.e. Mk = {1, . . . , d} in the set M = M1 × · · · ×Mk) and hence, by the
very definition (3.7) of Ik,τ∥∥∥∥ d∑
i=1

BJ,i,τ

∥∥∥∥
∞
=

∥∥∥∥ ∑
J ′�J

RJ ′,J,τ

∫ τ

0

dUJ,τ2 × ηJ ′
τ2−

( d∑
i=1

∫ τ2−

0

Wi,τ1Ik−1,τ1− dηi,τ1

)∥∥∥∥
∞

� m

J !
Mm

∑
J ′�J

|RJ ′,J,τ |
∫ τ

0

∥∥∥∥ητ2−
d∑

i=1

∫ τ2−

0

Wi,τ1Ik−1,τ1− dηi,τ1

∥∥∥∥
∞
dvτ2

� m

J !
Mm

( ∑
J ′�J

|RJ ′,J,τ | sup
0�τ2�τ

|ηJ ′
τ2
|
)∫ τ

0

‖Ik,τ2−‖∞ dvτ2

� m

J !
M(2d)−m+1Dm−1

τ

∫ τ

0

‖Ik,τ2−‖∞ dvτ2 ,
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where we used (3.2) of Lemma 3.2. Summing over all J ∈ Bm and using the
multinomial identity (3.35) we get∥∥∥∥∥

d∑
i=1

∑
J∈Bm

BJ,i,τ

∥∥∥∥∥
∞

� 2−m+1

(m − 1)!
(M · d)Dm−1

τ

∫ τ

0

‖Ik,τ2−‖∞ dvτ2 .

Since ∆vτ � (M · d)−1∆Dτ we arrive at (3.31).
We proceed with CL,τ . An application of Taylor’s formula and (3.25)

imply

|δL′,τ2 | � 1

2

(
sup

0�θ�1

d∑
i,j=1

∣∣∣∣∂2fL′(ητ2− + θ∆ητ2)

∂xi∂xj

∣∣∣∣) max
n=1,...,d

|∆ηn,τ2|2.

Since, by (3.24), fL′(x1, . . . , xd) = xL′
=

d∏
j=1

x
l′j
j

d∑
i,j=1

∣∣∣∣∂2fL′(x)

∂xi∂xj

∣∣∣∣ � (m′ + 1)m′ max
n=1,...,d

|xn|m′−1,

we get from (3.8) and (3.23)

|δL′,τ2 | � 1

2
(m′ + 1)m′

(
max

i=1,...,d
sup

0�s�τ2

(|ηi,s| + |∆ηs|)m′−1

) (
max

i=1,...,d
|∆ηi,τ2|2

)
� 1

2
(m′ + 1)m′((4M · d)−m′+1Dm′−1

τ2
) ((2M · d)−2Dτ2∆Dτ2)

� 1

2
(m′ + 1)(2M · d)−m′−1Dm′

τ2
∆Dτ2 .

We apply (3.2) of Lemma 3.2 to find for L ∈ Bm+1

‖CL,τ‖∞� m + 1

2

(∑
L′�L

|RL′,L,τ |(2M · d)−m′−1Dm′
τ

)∫ τ

0

‖UL,τ1Ik−1,τ1−‖∞ dDτ1

� m + 1

2
(M · d)−m−1Dm

τ

∫ τ

0

‖UL,τ1Ik−1,τ1−‖∞ dDτ1

� d−m−1

2

(m + 1)

L!
Dm

τ

∫ τ

0

‖Ik−1,τ1−‖∞ dDτ1 ,

(3.38)

where we used the fact that sup
0�s�t

‖Wj,s‖∞ � 1, cf. (3.4). Since

∑
L∈Bm+1

m + 1

L!
d−m−1 =

1

m!
,

summing (3.38) over all L ∈ Bm+1 completes the proof. �
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Lemma 3.4 For any m, k ∈ N one has

d∑
i=1

∑
L∈Bm+1

∑
L′�L

RL′,L,τ

∫ τ

0

l′iη
L′−ei
τ2− UL,τ2Ik−1,τ2− dηi,τ2(3.39)

=

d∑
i=1

∑
J∈Bm

∑
J ′�J

RJ ′,J,τ

∫ τ

0

ηJ ′
τ2−UJ,τ2Wi,τ2Ik−1,τ2−dηi,τ2 ,

where ei ∈ Nd
0 is the i-th unit multi-index.

Proof. Given L′, L ∈ N
d
0, i ∈ {1, . . . , d} such that L′ � L and l′i > 0 we take

(3.40) J = L − ei, J ′ = L′ − ei.

From (3.19) we find that

(3.41) RJ ′,J,τ =
l′i
li

RL′,L,τ .

Since
UJ,τ2Wi,τ2 = (ji + 1)UJ+ei,τ2 = liUL,τ2 ,

it follows

(3.42) l′i

∫ τ

0

ηL′−ei
τ2− UL,τ2Ik−1,τ2− dηi,τ2 =

l′i
li

∫ τ

0

ηJ ′
τ2−UJ,τ2Wi,τ2Ik−1,τ2− dηi,τ2 .

Multiplying both sides of (3.42) by RL′,L,τ and using (3.41) gives

RL′,L,τ l
′
i

∫ τ

0

ηL′−ei
τ2− UL,τ2Ik−1,τ2− dηi,τ2(3.43)

= RJ ′,J,τ

∫ τ

0

ηJ ′
τ2−UJ,τ2Wi,τ2Ik−1,τ2− dηi,τ2 .

We sum (3.43) over all triples (L,L′, i) such that i = 1, . . . , d, L′ � L,
L ∈ Bm+1 and l′i > 0. By (3.40), L = J + ei and L′ = J ′ + ei which
means that

{(L,L′, i) : i = 1, . . . , d, L′ � L ∈ Bm+1, l
′
i > 0}

= {(J, J ′, i) : i = 1, . . . , d, J ′ � J ∈ Bm},
i.e. we can express the summation of the r.h.s. of (3.43) in terms of (J, J ′, i).
On the left, the terms where l′i = 0 do not contribute and we may, therefore,
simply sum over all (L,L′, i) with L′ � L ∈ Bm+1, i = 1, . . . , d. This
proves (3.39). �
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Using integration by parts for Ik,τ will lead to expressions of the form

(3.44) QJ,i,τ =
∑
J ′�J

RJ ′,J,τ

∫ τ

0

UJ,τ2

( ∫ τ2−

0

Wi,τ1Ik−1,τ1− dηi,τ1

)
dηJ ′

τ2
,

where J ∈ Nd
0, i ∈ {0, . . . , d} and UJ,τ2 is given by (3.26). We want to esti-

mate the norm of the sum
∑

|J |=m QJ,i,τ through the norm of
∑

|L|=m+1 QL,i,τ

plus some correction terms. This will be needed in the main induction step
in the proof of Proposition 3.1.

Lemma 3.5 For any m ∈ N the stochastic integrals QJ,i,τ satisfy∥∥∥∥ d∑
i=1

∑
J∈Bm

QJ,i,τ

∥∥∥∥
∞

�(3.45)

� Dm
τ

m!

∫ τ

0

‖Ik−1,τ1−‖∞ dDτ1 +
Dm−1

τ

(m − 1)!

∫ τ

0

‖Ik,τ2−‖∞ dDτ2

+

∥∥∥∥ ∑
L∈Bm+1

∑
L′�L

RL′,L,τ

∫ τ

0

UL,τ2Ik−1,τ2− dηL′
τ2

∥∥∥∥
∞

.

Proof. We write for the right-hand side of (3.45) I + II + III. For any
J ∈ Bm, i ∈ {1, . . . , d} an application of Corollary 3.1 with A = {J ′ ∈ N0 :
J ′ � J}, α = J ′ and

Uτ2 = UJ,τ2 , Φτ1 = Wi,τ1Ik−1,τ1 , ντ1 = ηi,τ1 , κα,τ = ηJ ′
τ , κ̃α,τ = RJ ′,J,τ

yields

QJ,i,τ = −
∑
J ′�J

RJ ′,J,τ

∫ τ

0

UJ,τ1Wi,τ1Ik−1,τ1− d[ηJ ′
, ηi]τ1

−
∑
J ′�J

RJ ′,J,τ

∫ τ

0

dUJ,τ2 × ηJ ′
τ2−

∫ τ2−

0

Wi,τ1Ik−1,τ1− dηi,τ1 ,

−
∑
J ′�J

RJ ′,J,τ

∫ τ

0

ηJ ′
τ2−UJ,τ2Wi,τ2Ik−1,τ2−dηi,τ2 ,(3.46)

where we used that, by (3.20),∑
α∈A

κ̃α,τκα,τ =
∑
J ′�J

RJ ′,J,τη
J ′
τ = 0,

i.e. (3.17) is satisfied.
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Observe that the first two integrals in (3.46) are just AJ,i,τ and BJ,i,τ

defined in (3.27) and (3.28). Therefore, Lemma 3.3 gives

(3.47)

∥∥∥∥ d∑
i=1

∑
J∈Bm

QJ,i,τ

∥∥∥∥
∞

� 1

2
I + II +

∥∥∥∥ d∑
i=1

∑
J∈Bm

C̃J,i,τ

∥∥∥∥
∞

,

with I, II as required for (3.45) and with −C̃J,i,τ given by the last term
in (3.46). We still have to estimate the last sum.

Recall that fL′(x1, . . . , xd) and δL′,τ2 are given by formulae (3.24) and (3.25)
respectively. Since the ηj,τ are pure-jump semimartingales, an application of
Itô’s formula to fL′(x1, . . . , xd) = xL′

and the process ητ2 = (η1,τ2 , . . . , ηd,τ2)
yields ∫ τ

0

UL,τ2Ik−1,τ2− dηL′
τ2

=
d∑

i=1

∫ τ

0

UL,τ2Ik−1,τ2−
∂fL′(ητ2−)

∂xi

dηi,τ2(3.48)

+
∑

0<τ2�τ

UL,τ2Ik−1,τ2−δL′,τ2 .

We multiply (3.48) by RL′,L,τ , sum it over all L′ � L and obtain using

∂fL′(ητ2−)/∂xi = l′iη
L′−ei
τ2−∑

L′�L

RL′,L,τ

∫ τ

0

UL,τ2Ik−1,τ2− dηL′
τ2

(3.49)

=
d∑

i=1

∑
L′�L

RL′,L,τ l
′
i

∫ τ

0

ηL′−ei
τ2− UL,τ2Ik−1,τ2− dηi,τ2 + CL,τ ,

with CL,τ as in (3.29). Summing (3.49) over all L ∈ Bm+1 and applying
Lemma 3.4 we find

∑
L∈Bm+1

∑
L′�L

RL′,L,τ

∫ τ

0

UL,τ2Ik−1,τ2− dηL′
τ2

=

d∑
i=1

∑
J∈Bm

C̃J,i,τ +
∑

L∈Bm+1

CL,τ .

Therefore, by (3.32),∥∥∥∥ d∑
i=1

∑
J∈Bm

C̃J,i,τ

∥∥∥∥
∞

�
∥∥∥∥ ∑

L∈Bm+1

CL,τ

∥∥∥∥
∞

+ III � 1

2
I + III.

Combining this and (3.47) we arrive at (3.45). �
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Here is the modification of Lemma 3.5 for the case when the inner integral
in (3.44) is driven by dτ .

Lemma 3.6 If �2n < k′ < �2n+1 for some n ∈ N or 1 � k′ < �1 then∥∥∥∥ ∑
J∈Bm

∑
J ′�J

RJ ′,J,τ

∫ τ

0

UJ,τ2

( ∫ τ2−

0

W0,τ1Ik′−1,τ1 dτ1

)
dηJ ′

τ2

∥∥∥∥
∞

(3.50)

� M

m!
Dm

τ

∫ τ

0

‖Ik′−1,τ2‖∞ dτ2 +
1

(m − 1)!
Dm−1

τ

∫ τ

0

‖Ik′,τ2−‖∞ dDτ2

Proof. For any J ∈ Bm, i ∈ {1, . . . , d} we apply Corollary 3.1 with A =
{J ′ ∈ N0 : J ′ � J}, α = J ′, ντ = η0,τ = τ and

Uτ2 = UJ,τ2 , Φτ1 = W0,τ1Ik′−1,τ1 , κα,τ = ηJ ′
τ , κ̃α,τ = RJ ′,J,τ .

As before ∑
α∈A

κ̃α,τκα,τ =
∑
J ′�J

RJ ′,J,τη
J ′
τ = 0.

Moreover, [ν, κα] = 0. Therefore we estimate the left-hand side of (3.50) by
I + II, where

I =

∥∥∥∥ ∑
J∈Bm

∑
J ′�J

RJ ′,J,τ

∫ τ

0

ηJ ′
τ2

UJ,τ2W0,τ2Ik′−1,τ2 dτ2

∥∥∥∥
∞

,

II =

∥∥∥∥ ∑
J∈Bm

∑
J ′�J

RJ ′,J,τ

∫ τ

0

dUJ,τ2 × ηJ ′
τ2−

∫ τ2−

0

W0,τ1Ik′−1,τ1 dτ1

∥∥∥∥
∞

.

Similar calculations to those in the proof of Lemma 3.3 give

I � Mm+1
∑

J∈Bm

1

J !

( ∑
J ′�J

|RJ ′,J,τ | sup
0�τ1�τ

|ηJ ′
τ1
|
) ∫ τ

0

‖Ik′−1,τ2‖∞ dτ2

� M
Dm

τ

m!

∫ τ

0

‖Ik′−1,τ2‖∞ dτ2.

From (3.37) and arguments similar to those of Lemma 3.3 we deduce

II � Mm
∑

J∈Bm

m

J !

( ∑
J ′�J

|RJ ′,J,τ | sup
0�τ1�τ

|ηJ ′
τ1
|
) ∫ τ

0

‖Ik′,τ1−‖∞ dvτ1

� (Md)
Dm−1

τ

(m − 1)!

∫ τ

0

‖Ik′,τ1−‖∞ dvτ1

� Dm−1
τ

(m − 1)!

∫ τ

0

‖Ik′,τ1−‖∞ dDτ1 .

Piecing together the above estimates completes the proof. �
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Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. Without loss of generality we may assume that
t0 = 0. We define pl, l ∈ N0, recursively by p0 = 1 and for

l ∈ (γn−1, γn] :=

( n−1∑
i=1

(�2i − �2i−1 + 1),

n∑
i=1

(�2i − �2i−1 + 1)

]
, γ0 = 0

by

(3.51) pl = pγn−1ql−γn−1,

where the qk are defined by formula (A.3) in the appendix.

Recall that m = m(k), Dτ were defined at the beginning of this section.
Throughout this proof we suppress the argument in m(·) if the argument
is k, i.e. m = m(k). We split the proof into two steps.

Step 1. We show by induction that

(3.52) ‖Ik,τ‖∞ � pmDm
τ

(Mτ)k−m

(k − m)!
‖I∗

0,τ‖∞, k ∈ N.

Clearly, (3.52) is true for k = 0. Assume that (3.52) holds for 0, . . . , k − 1.

Case 1. �2n < k < �2n+1 for some n ∈ N or 1 � k < �1. In this case ηjk,τ = τ
in the definition of Ik,τ and m(k) = m(k − 1). Therefore,

‖Ik,τ‖∞ � M

∫ τ

0

‖Ik−1,s‖∞ ds � M

∫ τ

0

pmDm
s

(Ms)k−1−m

(k − 1 − m)!
ds ‖I∗

0,τ‖∞

� pmDm
τ

(Mτ)k−m

(k − m)!
‖I∗

0,τ‖∞,

which is just (3.52).

Case 2. �2n−1 � k � �2n for some n ∈ N; then ηjk,τ is a semimartingale. For
m̂ ∈ N and r̂ = �2n−1, . . . , k, we denote by

zm̂
r̂,τ =

∑
J∈Bm̂

∑
J ′�J

RJ ′,J,τ

∫ τ

0

UJ,sIr̂−1,s− dηJ ′
s .

Note that z1
r̂,τ = Ir̂,τ and

zm̂
r̂+1,τ =

d∑
i=1

∑
J∈Bm̂

QJ,i,τ , zm̂+1
r̂,τ =

∑
L∈Bm̂+1

∑
L′�L

RJ ′,J,τ

∫ τ

0

UL,τ2Ir̂−1,τ2− dηL′
τ2

,

where

QJ,i,τ =
∑
J ′�J

RJ ′,J,τ

∫ τ

0

UJ,τ2

(∫ τ2−

0

Wi,τ1Ir̂−1,τ1− dηi,τ1

)
dηJ ′

τ2
.
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Applying Lemma 3.5 with the above QJ,i,τ we get

‖zm̂
r̂+1,τ‖∞ �(3.53)

� Dm̂
τ

m̂!

∫ τ

0

‖Ir̂−1,s−‖∞ dDs +
Dm̂−1

τ

(m̂ − 1)!

∫ τ

0

‖Ir̂,s−‖∞ dDs + ‖zm̂+1
r̂,τ ‖∞.

If k > �2n−1 we obtain after the change of indices m̂ = m+1, r̂ +1 = k−m,
m = 0, 1, . . . , k − �2n−1 − 1,

(3.54) ‖zm+1
k−m,τ‖∞ − ‖zm+2

k−(m+1),τ‖∞ � βm+1,τ + βm,τ ,

where

(3.55) βm,τ =
Dm

τ

m!

∫ τ

0

‖Ik−m−1,s‖∞ dDs.

Summing (3.54) over m = 0, . . . , (k − �2n−1 − 1), we get

(3.56) ‖z1
k,τ‖∞ − ‖zk−�2n−1+1

�2n−1,τ ‖∞ � β0,τ + βk−�2n−1,τ + 2

k−�2n−1−1∑
m=1

βm,τ .

Set k′ = �2n−1 − 1 and observe that �2n−2 < k′ < �2n−1. An application of
Lemma 3.6 gives

(3.57) ‖zk−�2n−1+1
�2n−1,τ ‖∞ � Dk−�2n−1+1

τ

(k − �2n−1 + 1)!
M

∫ τ

0

‖I�2n−1−2,τ2‖∞ dτ2+βk−�2n−1,τ .

If k = �2n−1, the inequality (3.57) is obviously true by Lemma 3.6. Combin-
ing (3.56), (3.57) we arrive at

(3.58) ‖z1
k,τ‖∞ � Dk−�2n−1+1

τ

(k − �2n−1 + 1)!
M

∫ τ

0

‖I�2n−1−2,τ2‖∞ dτ2 + 2

k−�2n−1∑
m=0

βm,τ .

Since

(3.59) m(k − m − 1) = m(k) − m − 1, m = 0, . . . , k − �2n−1,

we can use the induction hypothesis (3.52) and deduce from (3.55) for m =
0, 1, . . . , k − �2n−1,

βm,τ � Dm
τ

m!
pm−m−1

∫ τ

0

Dm−m−1
s

(Ms)k−m

(k − m)!
dDs ‖I∗

0,τ‖∞

� pm−m−1

(m − m)m!
Dm

τ

(Mτ)k−m

(k − m)!
‖I∗

0,τ‖∞ .(3.60)
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Since m(�2n−1−2) = m(�2n−1−1) = m(k)− (k−�2n−1 +1) we may use again
the induction hypothesis (3.52) to get

M

∫ τ

0

‖I�2n−1−2,τ2‖∞ dτ2(3.61)

� pm−(k−�2n−1+1)D
m−(k−�2n−1+1)
τ M

∫ τ

0

(Ms)k−m−1

(k − m − 1)!
ds ‖I∗

0,τ‖∞ .

Together (3.58), (3.60) and (3.61) show

‖z1
k,τ‖∞ � pm−(k−�2n−1+1)

Dm
τ

(k − �2n−1 + 1)!

(Mτ)k−m

(k − m)!
‖I∗

0,τ‖∞(3.62)

+ 2

k−�2n−1∑
m=0

pm−m−1D
m
τ

(m − m)m!

(Mτ)k−m

(k − m)!
‖I∗

0,τ‖∞ .

Since m−(k−�2n−1+1) = γn−1 it follows from (3.51), (3.59) with l = m−m−1
that

pm−m−1 = pγn−1q(k−�2n−1+1)−m−1, m = 0, . . . , k − �2n−1.

From this and definition (A.3) in the appendix we find

pm−(k−�2n−1+1)

(k − �2n−1 + 1)!
+

k−�2n−1∑
m=0

2pm−m−1

(m − m)m!
� pγn−1

k−�2n−1∑
m=0

3q(k−�2n−1+1)−m−1

((k − �2n−1 + 1) − m)m!

= pγn−1qk−�2n−1+1 = pm,(3.63)

where we used m � k − �2n−1 + 1. Combining (3.62) and (3.63) we arrive
at (3.52).

Step 2. We are going to prove that

(3.64)
pm

(k − m)!
� (27)k

(ln ln(k + 1))
k
16

.

If 1 � k < �1 then m(k) = 0, pm = p0 = 1, and estimate (3.64) is clear.
From definition (3.51) we deduce

pm = qk−�2n−1+1

n−1∏
j=1

q�2j−�2j−1+1 for �2n−1 � k � �2n

and

pm =

n∏
j=1

q�2j−�2j−1+1 for �2n < k < �2n+1.
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From (A.4) we know

(3.65)
pm

(k − m)!
� (26)kZ−1,

where

Z = (k − m)!

n∏
j=1

(ln{αj + 1})
αj
2 .

Here αj = �2j − �2j−1 + 1, j = 1, . . . , n − 1, and αn = k − �2n−1 + 1
for �2n−1 � k � �2n, αn = �2n − �2n−1 + 1 for �2n < k < �2n+1. Clearly
k − m � n − 1. Using the estimate from Lemma A.3 with m = k − m gives

(3.66) Z � 1

2k
(ln ln(k + 1))

k
16

and (3.65), (3.66) show (3.64). The proposition now follows from (3.52)
and (3.64). �

4. Boundary value problems for stochastic Hamilton

systems (diffeomorphism theorem)

We consider the following Hamiltonian system

(4.1)


dx = p dt

dp =
∂V (x)

∂x
dt − ∂c(x)

∂x
dξt,

with initial condition (x0, p0) ∈ R2d at t = t0. We write

(X,P ) = (X(t, t0, x0, p0), P (t, t0, x0, p0)) ∈ R
2d

for its solution. The coefficients

∂V

∂x
∈ R

d,
∂c

∂x
∈ R

d×d

are derivatives of functions V : Rd → R1 and c = (c1, . . . , cd) : Rd → Rd

which admit (at least) continuous partial derivatives up to order 3 such that

(4.2)

∣∣∣∣∂|L|V (x)

∂xL

∣∣∣∣ , ∣∣∣∣∂|L|c(x)

∂xL

∣∣∣∣ � K |L| = 2, 3

and

(4.3)
∂c(x)

∂x
= 0, ∀ |x| > K

for some constant K > 1.
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The driving noise ξt = (ξ1,t, . . . , ξd,t) is a d-dimensional Lévy process
such that

(4.4) [ξj , ξj ]
c = 0 , j = 1, . . . , d,

i.e. it contains no Brownian component. The main result of this section is
the following.

Theorem 4.1 Under the assumptions (4.2)-(4.4), there exists a stopping
time T such that P(T > 0) = 1 and for 0 � t0 < t < T (ω), x0 ∈ R

d,

(i) the system (4.1) has a solution (X,P),

∂X

∂x0

= Ed + O(t − t0),
∂P

∂p0

= Ed + O(t − t0),(4.5)

∂X

∂p0

= (t − t0)Ed + O((t − t0)
2),(4.6)

where O(·) is uniform with respect to x0, p0,

(ii) the map
D : R

d → R
d, p0 �→ X(t, t0, x0, p0)

is a diffeomorphism.

Remark. We can rewrite the system (4.1) in the following form(
X(t)
P (t)

)
=

∫ t

t0

V(X(s), P (s)) ds −
∫ t

t0

γ(X(s), P (s)) dζs

with coefficients

V(x, p) =

(
p

∂V (x)/∂x

)
∈ R

2d, γ(x, p) =

(
0 0
0 ∂c(x)/∂x

)
∈ R

2d×2d

and the (degenerate) Lévy noise

ζt =

(
0
ξt

)
∈ R

2d.

Notice that V and γ are globally Lipschitz continuous; Theorem 7 of
[Pro, pp. 197-198] guarantees existence and uniqueness of a solution{(

X(t)

P (t)

)}
t�t0

.

Moreover, if the coefficients have globally Lipschitz continuous partial
derivatives up to order N + 2, then we may differentiate{(

X(t)

P (t)

)}
t�t0

w.r.t. the initial conditions up to order N , cf. [Pro, p. 254, Theorem 40].
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For the proof of Theorem 4.1 we need the following auxiliary result.

Lemma 4.1 There exists a constant K1 = K1(K, d) such that for t0 � a �
b < R∧K−1

1 (R is the stopping time from Lemma 2.1 and K is the constant
from (4.2)) ∫ b

a

|P (τ)| dτ � 3|X(a) − X(b)| + K1(b − a),

where

(4.7) X(τ) = X(τ, t0, x0, p0), P (τ) = P (τ, t0, x0, p0).

Proof. Step 1. From the system (4.1) we find

P (τ) − P (a) =

∫ τ

a

∂V (X(s))

∂x
ds −

∫ τ

a

∂c(X(s))

∂x
dξs .

Since X(t), ∂V (X(t))/∂x and ∂c(X(t))/∂x are continuous BV-processes, we
find by integration by parts

P (τ) − P (a) =
∂V (X(a))

∂x
(τ − a) − ∂c(X(a))

∂x
(ξτ − ξa)(4.8)

−
∫ τ

a

(s − τ)
∂2V (X(s))

∂x2
P (s) ds +

∫ τ

a

∂2c(X(s))(ξs − ξa)

∂x2
P (s) ds.

Here
∂2c(X(s))(ξs − ξa)

∂x2
=

d∑
i=1

∂2ci(X(s))(ξi,s − ξi,a)

∂x2
∈ R

d×d.

We know from Lemma 2.1 that

|ξτ − ξa| � 2 sup
0�s�τ

|ξs| � 2
d∑

i=1

sup
0�s�τ

|ξi,s| � ϑt < 1

for τ < R and so

(4.9) |P (τ)| � |P (a)| + C1 + C1

∫ τ

a

|P (s)| ds,

where

C1 = max
i=1,...,d

sup
x∈Rd

(
d

∥∥∥∥∂2V

∂x2

∥∥∥∥
∞

+ d

∥∥∥∥∂2ci

∂x2

∥∥∥∥
∞

)
∨

(√
d

∥∥∥∥∂V

∂x

∥∥∥∥
∞

+
√

d

∥∥∥∥ ∂c

∂x

∥∥∥∥
∞

)
.

Integrating (4.9) we have for b < R

(4.10)

∫ b

a

|P (τ)| dτ � |P (a)|(b − a) + C1(b − a) + C1

∫ b

a

∫ τ

a

|P (s)| dsdτ.
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Since for b − a < (3C1)
−1

C1

∫ b

a

∫ τ

a

|P (s)| dsdτ = C1(b − a)

∫ b

a

|P (s)| ds − C1

∫ b

a

(τ − a)|P (τ)| dτ

� 1

3

∫ b

a

|P (s)| ds,(4.11)

we deduce from (4.10) that

(4.12)

∫ b

a

|P (τ)| dτ � 3

2
(|P (a)| + C1)(b − a).

Step 2. Similarly, we find from (4.8)

(4.13) |P (τ) − P (a)| � C1 + C1

∫ τ

a

|P (s)| ds.

We integrate (4.13) to get∫ b

a

|P (τ) − P (a)| dτ � C1(b − a) + C1

∫ b

a

∫ τ

a

|P (s)| dsdτ

� C1(b − a) +
1

3

∫ b

a

|P (s)| ds,

where we used (4.11) and so, by (4.12)∫ b

a

|P (τ) − P (a)| dτ � 1

2
(|P (a)| + 3C1)(b − a).

Thus ∣∣∣∣∫ b

a

P (τ) dτ

∣∣∣∣ � |P (a)|(b − a) −
∫ b

a

|P (τ) − P (a)| dτ

� 1

2
(|P (a)| − 3C1)(b − a).(4.14)

Combining (4.12) and (4.14) we arrive at∫ b

a

|P (τ)| dτ � 6C1(b − a) + 3

∣∣∣∣∫ b

a

P (τ) dτ

∣∣∣∣ .
The assertion follows with K1 = 6C1. �
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Corollary 4.1 Let f : R
d → R, f ∈ C1 and

f (1)(x) = 0 if |x| > K

(K is the constant from (4.2)). Then for 0 � t0 � t < R∧ K−1
2

(4.15) Var[t0,t] f(X(·)) � K2,

where K2 = K2(K, d, f) is some constant.

Proof. Let B = {τ ∈ [t0, t] : |X(τ)| � K}. If B = ∅ then the left-hand side
of (4.15) vanishes and the assertion of the corollary is clear. Otherwise we
set a = inf{τ : τ ∈ B}, b = sup{τ : τ ∈ B}.
Since the first derivative f (1) has compact support, supp f (1)⊂{x : |x|�K},

Var[t0,t] f(X(·)) =

∫ b

a

|f (1)(X(s))P (s)| ds

� sup
x∈Rd

|f (1)(x)|
∫ b

a

|P (τ)| dτ

and (4.15) follows from Lemma 4.1. �
We introduce a new stopping time

T = R∧ K̃−1
2 ,

where K̃2 = max
i,j=1,...,d

K2(K, d, ∂ci/∂xj) and K2 is defined in Corollary 4.1.

Proof of Theorem 4.1. Step 1. Since (X,P ) can be differentiated with
respect to the initial data (x0, p0), we find that the matrix-valued process

G =
∂(X,P )

∂(x0, p0)
=

(
∂X/∂x0 ∂X/∂p0

∂P/∂x0 ∂P/∂p0

)

satisfies the formally differentiated system (4.1) (cf. also [Pro], proof of
Theorem 39, p. 250):

(4.16) dG = W0,tG dt +
d∑

j=1

Wj,tG dξj,t, G
∣∣
t=t0

= G0 =

(
Ed 0

0 Ed

)
,

where Ed ∈ R
d×d is the identity matrix and

(4.17) W0,t =

(
0 Ed

∂2V (X(t))/∂x2 0

)
, Wj,t =

(
0 0

−∂2cj(X(t))/∂x2 0

)
.
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A solution of the system (4.16) can be given by the following (formal) series
expansion,

(4.18) G =
∞∑

k=0

Gk

with G0 = G
∣∣
t=t0

,

G1 =

d∑
j=0

∫ t

t0

Wj,τG0 dηj,τ and Gk =

d∑
j=0

∫ t

t0

Wj,τGk−1 dηj,τ , (k ∈ N)

where ητ = (η0,τ , η1,τ , . . . , ηd,τ ) = (τ, ξ1,τ , . . . , ξd,τ ) is a (d + 1)-dimensional
semimartingale.

Indeed, it is immediate that

d∑
j=0

∫ t

t0

Wj,τ (G0 + G1 + · · · + Gk) dηj,τ = G1 + · · · + Gk+1,

so (4.18) will give a solution of (4.16) whenever it converges uniformly (on
compact intervals) in t.

Since the terms of series (4.18) are k-fold integrals, we get

(4.19) G = E2d +

∞∑
k=1

d∑
j1,...,jk=0

Ĩj1,...,jk,t = E2d + Ĩ0,t +

(
A11 A12

A21 A22

)
,

where Aij ∈ R
d×d are suitable (series of) block-matrices and

(4.20) Ĩj1,...,jk,t =

∫ t

t0

Wjk,τk

(∫ τk−

t0

. . .
(∫ τ2−

t0

Wj1,τ1 dηj1,τ1

)
. . . dηjk−1,τk−1

)
dηjk,τk

.

Because of the particular form of the Wj,τ ’s in (4.17), we know more about
the structure of Aij in (4.19). Let

J1 = {(j1, . . . , jk) : k ∈ N, none of j1, . . . , jk equals to 0}
(i.e. all integrators in (4.20) are Lévy processes) and

J2 = {(j1, . . . , jk) : k � 2 at most one j1, . . . , jk equals to 0}
(i.e. at most one dτ integration happens). If (j1, . . . , jk) ∈ J1, then the
iterated integrals have the form

Ĩj1,...,jk,t =

(
0 0

r 0

)
, r ∈ R

d×d

and if (j1, . . . , jk) ∈ J2, they are of the form

Ĩj1,...,jk,t =

(
r11 0

r21 r22

)
, r11, r21, r22 ∈ R

d×d.
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Thus

‖A11‖∞, ‖A22‖∞ �
∥∥∥∥ ∑

(j1,...,jk)∈J\J1

Ĩj1,...,jk,t

∥∥∥∥
∞

,(4.21)

‖A12‖∞ �
∥∥∥∥ ∑

(j1,...,jk)∈J\J2

Ĩj1,...,jk,t

∥∥∥∥
∞

,(4.22)

where J = ∪∞
k=1{0, . . . , d}k.

Step 2. Let us now verify the conditions needed in Proposition 3.1.
Lemma 2.1 and condition (4.4) imply that ηt = (t, ξt) satisfies (3.6) for
0 � t0 � t < R.

Condition (4.2) implies that for some constant K > 1

‖Wj,t‖∞ � K, j = 0, . . . , d

and, by (4.17), we find

Wj,τWi,τ = 0 = Wi,τWj,τ i, j = 1, . . . , d.

Definition (3.8) (with M=2d) and formula (4.15) with f = (∂ci/∂xj),
i, j = 1, . . . , d, give

Dt � 2d2(K̃2 + 2ϑt + 2ϑt0) � 2d2(K̃2 + 4ϑt),

where ϑt, ϑt0 are given by formula (2.4), and Lemma 2.1 shows

(4.23) Dt � 2d2(K̃2 + 4) = O(1), 0 � t0 � t < T.

Step 3. For any

(4.24) Mk = Mk
1 × · · · ×Mk

k, Mk
i = {1, . . . , d} or Mk

i = {0}
an application of Proposition 3.1 to the matrices K−1Wj,τ ∈ R

2d×2d, j =
1, . . . , d, shows (note that I0,τ = E2d is the identity!)∥∥∥∥ ∑

(j1,...,jk)∈Mk

Ĩj1,...,jk,t

∥∥∥∥
∞

� KkbkD
m
t {2d(t − t0)}k−m,

where bk are given by (3.11). One readily sees

(4.25) Mk ∩ J1 = ∅ =⇒ m � k − 1 and Mk ∩ J2 = ∅ =⇒ m � k − 2.

Consequently, using the fact that the set {0, . . . , d}k is the disjoint union of
2k subsets of type (4.24), we find from (4.21)

‖A11‖∞, ‖A22‖∞ �
∞∑

k=2

2k max

∥∥∥∥ ∑
(j1,...,jk)∈Mk

Ĩj1,...,jk,t

∥∥∥∥
∞

,

where the maximum is taken over all Mk such that m � k − 1.
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Hence

(4.26) ‖A11‖∞, ‖A22‖∞ �
∞∑

k=2

2kKkbk(Dt + 2d(t − t0))
k−1(2d)(t − t0),

where we used that, by (4.25), m � k − 1, and so

Dm
t {2d(t − t0)}k−m � (Dt + 2d(t − t0))

k−1(2d)(t − t0).

Since the coefficients bk from (3.11) are rapidly decreasing, it is clear that
the series Φ1(x) =

∑∞
k=2 2kKkbkx

k−1 converges for all x ∈ R; by (4.23),
Φ1(Dt + 2d(t − t0)) = O(1). Then we deduce from (4.26) that

(4.27) ‖A11‖∞, ‖A22‖∞ = O(t − t0), 0 � t0 � t < T.

Similarly, using (4.22) and (4.25) we have

‖A12‖∞ �
∞∑

k=2

2kKkbk(Dt + 2d(t − t0))
k−2(2d)2(t − t0)

2

� (2d)2Φ2(Dt + 2d(t − t0))(t − t0)
2

= O((t − t0)
2),(4.28)

where Φ2(x) =
∑∞

k=2 2kKkbkx
k−2. Substituting estimates (4.27), (4.28)

into (4.19) we arrive at (4.5), (4.6).

Step 4. From (4.6), we conclude (using the implicit function theorem)
that the map D : p0 �→ X(t, p0) = X(t, t0, x0, p0) is a local diffeomorphism.
Let us prove that it is injective. Since

X(t, p2) − X(t, p1) =

∫ 1

0

∂X

∂p0

(t, p1 + τ(p2 − p1)) (p2 − p1) dτ,

we have

|X(t, p2) − X(t, p1)|2 =

∫ 1

0

∫ 1

0

(p2 − p1)
T

(
∂X

∂p0

(t, p1 + s(p2 − p1))

)T

×

×
(

∂X

∂p0

(t, p1 + τ(p2 − p1))

)
(p2 − p1) dτds

� C‖p2 − p1‖2,(4.29)

for some constant C = C(t, t0) > 0. The last inequality comes from (4.6).
This shows that D is injective and so D : Rd → D(Rd) ⊂ Rd is a global
diffeomorphism. Since, by (4.29), D is open and closed, then D(Rd) ⊂ Rd

is open and closed. As D(Rd) �= ∅ we have D(Rd) = R
d. This finishes the

proof of Theorem 4.1. �
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We assume that for all multi-indices I ∈ N
d
0, 2 � |I| � q + 2 the partial

derivatives

(4.30)

∣∣∣∣∂|I|V
∂xI

∣∣∣∣ � K,

∣∣∣∣∂|I|ci

∂xI

∣∣∣∣ � K, i = 1, . . . , d,

are bounded and continuous.

Lemma 4.2 If the coefficients V , ci satisfy the above mentioned assump-
tions, we have for all 0 � t0 � t < T

∂|I|X(t, t0, x0, p0)

∂pI
0

= O((t − t0)
|I|+1),(4.31)

∂|I|P (t, t0, x0, p0)

∂pI
0

= O((t − t0)
|I|),(4.32)

where I ∈ Nd
0, 2 � |I| � q and O(·) is uniform with respect to x0 and p0.

For notational convenience we set c0(X) = −V (X). Let us first prove a
technical lemma.

Lemma 4.3 For r ∈ N, i1, . . . , ir ∈ {1, . . . , d}, i ∈ {0. . . . , d} and ρ, µ, . . . ,
λ, L ∈ N

d
0, |ρ|, |µ|, . . . , |L| � q, we define Zi(τ) = Zi,i1,...,ir ,ρ,µ,...,λ,L(τ) by

(4.33) Zi(τ) =
∂|µ|Xi1(τ)

∂pµ
0

. . .
∂|λ|Xir(τ)

∂pλ
0

∂|ρ|c(2)
i (X(τ))

∂xρ

(
∂|L|

∂pL
0

∂X

∂p0

)
,

where c
(2)
i (x) = (∂2ci(x)/∂x2) ∈ Rd×d. Then∥∥∥∥ d∑

i=0

∫ s

t0

Zi(τ) dηi,τ

∥∥∥∥
∞

� C

∫ s

t0

∣∣∣∣∂|µ|P (τ)

∂pµ
0

∣∣∣∣ dτ . . .

∫ s

t0

∣∣∣∣∂|λ|P (τ)

∂pλ
0

∣∣∣∣ dτ

∫ s

t0

∥∥∥∥ ∂|L|

∂xL

∂P

∂p0

∥∥∥∥
∞

dτ

for t0 � s < T and some constant C > 0.

Remark. By definition, Zi(τ) is a continuous process, so we can write Zi(τ)
instead of Zi(τ−).

Proof. The first equation in the system (4.1) implies(
sup

t0�τ�s

∣∣∣∣∂|J |X(τ)

∂pJ
0

∣∣∣∣) ∨
(

Var[t0,s]
∂|J |X
∂pJ

0

)
�

∫ s

t0

∣∣∣∣∂|J |P (τ)

∂pJ
0

∣∣∣∣ dτ

for any J ∈ N
d
0.
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By (4.3), (∂c/∂x) = 0 for |x| > K. An application of Corollary 4.1 with

f = (∂|ρ|c(2)
i (x)/∂xρ)n,j , n, j = 1, . . . , d, and condition (4.30) imply

sup
t0�τ�s

∥∥∥∥∂|ρ|c(2)
i (X(τ))

∂xρ

∥∥∥∥
∞
∨

∥∥∥∥Var[t0,s]

∂|ρ|c(2)
i (X)

∂xρ

∥∥∥∥
∞

� C1

for some constant C1 > 0 and all |ρ| � K. Using the formula

sup
t0�τ�s

∣∣∣ r+2∏
l=1

al(τ)
∣∣∣∨Var[t0,s]

( r+2∏
l=1

al

)
� (r +2)

r+2∏
l=1

(
sup

t0�τ�s
|al(τ)| ∨Var[t0,s]al

)
,

where al : R → R, l = 1, . . . , r + 2, we find

sup
t0�τ�s

|Zi(τ)| ∨ ‖Var[t0,s]Zi‖∞(4.34)

�(r + 2)C1

∫ s

t0

∣∣∣∣∂|µ|P (τ)

∂pµ
0

∣∣∣∣ dτ . . .

∫ s

t0

∣∣∣∣∂|λ|P (τ)

∂pλ
0

∣∣∣∣ dτ

∫ s

t0

∥∥∥∥ ∂|L|

∂xL

∂P

∂p0

∥∥∥∥
∞
dτ.

Since X(τ) is a continuous process, so is Z(τ) and (4.34) shows that Z(τ)
is a BV-process. Using integration by parts gives∫ s

t0

Zi(τ) dηi,τ = Zi(s)ηi,s − Zi(t0)ηi,t0 −
∫ s

t0

ηi,τ− dZi(τ),

hence for s < T∥∥∥∥∫ s

t0

Zi(τ) dηi,τ

∥∥∥∥
∞

�(4.35)

� 2 sup
t0�τ�s

|ηi,τ | sup
t0�τ�s

‖Zi(τ)‖∞ + sup
t0�τ�s

|ηi,τ | ‖Var[t0,s]Zi‖∞.

Recall that ηi,s is a Lévy process. Therefore by Lemma 2.1 we have

2

d∑
i=0

( sup
t0�τ�s

|ηi,s|) � θt + t � 2

for 0 � t0 � s < T � R. Summing (4.35) over i = 0, . . . , d, and using (4.34)
completes the proof. �
Proof of Lemma 4.2.

Step 1. Let us choose and (in this step) fix a sequence (j1, j2, . . .) ∈
{1, . . . , d}N. Write

A0(τ) =
∂X(τ)

∂p0

, B0(τ) =
∂P (τ)

∂p0

, Am(τ) =
∂|J |A0(τ)

∂pJ
0

, Bm(τ) =
∂|J |B0(τ)

∂pJ
0

,

A0(τ),B0(τ),Am(τ),Bm(τ) ∈ Rd×d, where

J = (j1, . . . , jm) and p0 = (p0,1, . . . , p0,d) ∈ R
d.
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From equation (4.16) we get

(4.36) dτ

( A0(τ)

B0(τ)

)
=

d∑
i=0

Wi,τ

( A0(τ)

B0(τ)

)
dηi,τ .

Differentiating (4.36) with respect to p0,j1 , . . . , p0,jm we get the following
system of SDE’s

dτ

( Am(τ)

Bm(τ)

)
=

d∑
i=0

Wi,τ

( Am(τ)

Bm(τ)

)
dηi,τ −

d∑
i=0

Ãm,i,τ dηi,τ(4.37)

Am(t0) = Bm(t0) = 0,

where Ãm,i,τ ∈ R
2d×d is given by the following recurrence relation

Ã0,i,τ = 0, Ãm,i,τ = − ∂Wi,τ

∂p0,jm

( Am−1(τ)

Bm−1(τ)

)
+

∂Ãm−1,i,τ

∂p0,jm

m > 0.

The interchange of stochastic and ordinary differentials (with respect to the
initial conditions) is possible since the coefficients of the system (4.36) are
smooth enough cf. Protter [Pro, p. 245, Theorem 40]. Using (4.17) gives

(4.38) Ãm,i,τ =

(
0

Am,i,τ

)
, i = 0, . . . , d, Am,i,τ ∈ R

d×d,

where

(4.39) A0,i,τ = 0, Am,i,τ =
∂c

(2)
i (X(τ))

∂p0,jm

Am−1(τ) +
∂Am−1,i,τ

∂p0,jm

m > 0.

Recall that c
(2)
i (x) = (∂2ci(x)/∂x2) ∈ Rd×d. From (4.39) we find by induction

(4.40) Am,i,τ =

m+1∑
k=2

∂m+1−k

∂p0,jm . . . ∂p0,jk

(
∂c

(2)
i (X(τ))

∂p0,jk−1

∂k−2A0(τ)

∂p0,jk−2
. . . ∂p0,j1

)
.

A solution of (4.37) is given by the following (formal) series expansion

(4.41) G =

∞∑
k=1

Gk

with

G1 = −
d∑

i=0

∫ t

t0

Ãm,i,τ0− dηi,τ0 , Gk =
d∑

i=0

∫ t

t0

Wi,τGk−1 dηi,τ k � 2.

This can be seen as in the proof of Theorem 4.1 and (4.41) is a solution
of (4.37) whenever it converges uniformly (on compact intervals) in t.
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Thus( Am(t)

Bm(t)

)
= −

d∑
i=0

∫ t

t0

Ãm,i,τ0− dηi,τ0 −
∞∑

k=1

d∑
i1,...,ik=0

Ĩm
i1,...,ik,t,

where

Ĩm
i1,...,ik,t =

∫ t

t0

Wik,τk
. . .

∫ τ2−

t0

Wi1,τ1

( d∑
i=0

∫ τ1−

t0

Ãm,i,τ0− dηi,τ0

)
dηi1,τ1 . . . dηik,τk

.

Since Wi1,τ Ãm,i,τ = 0 for i1 = 1, . . . , d, it follows that

Ĩm
i1,...,ik,t = 0 for i1 > 0,

i.e. the first integration in Ĩm
i1,...,ik,t is trivial, which means �1 > 0. Therefore∥∥∥∥ ∞∑

k=1

d∑
i1,...,ik=0

Ĩm
i1,...,ik,t

∥∥∥∥
∞

=

∥∥∥∥ ∞∑
k=1

d∑
i2,...,ik=0

d∑
i1=1

Ĩm
i1,...,ik,t

∥∥∥∥
∞

�
∞∑

k=1

2k max

∥∥∥∥ ∑
(i1,...,ik)∈Mk

Ĩm
i1,...,ik,t

∥∥∥∥
∞

,

where Mk = Mk
1 × · · · × Mk

k, Mk
j = {1, . . . , d} or Mk

j = {0} for j > 1
and the maximum is taken over all Mk such that Mk

1 = {0}. Also observe
that formula (3.10) still holds if I0,t is not a square M × M matrix, but
rectangular of the form I0,t ∈ RM×N and any N ∈ N. An application of
Proposition 3.1 to the matrices K−1Wj,τ ∈ R2d×2d, j = 1, . . . , d, with

I0,t =
∑d

i=0

∫ t

t0
Ãm,i,τ0− dηi,τ0 ∈ R2d×d shows∥∥∥∥ ∑

(i1,...,ik)∈Mk

Ĩm
i1,...,ik,t

∥∥∥∥
∞

� KkbkD
m
t {2d(t − t0)}k−m‖I∗

0,t‖∞,

where the bk’s are given by (3.11). Thus for t < T

‖Am(t)‖∞ ∨ ‖Bm(t)‖∞

�
d∑

i=0

∥∥∥∥∫ t

t0

Ãm,i,τ0− dηi,τ0

∥∥∥∥
∞

+
∞∑

k=1

2kKkbkD
m
t {2d(t − t0)}k−m sup

t0�s�t

d∑
i=0

∥∥∥∥∫ s

t0

Ãm,i,τ0− dηi,τ0

∥∥∥∥
∞

� sup
t0�s�t

d∑
i=0

∥∥∥∥∫ s

t0

Ãm,i,τ0− dηi,τ0

∥∥∥∥
∞

Φ̂(Dt + 2d(t − t0)),

where Φ̂(x) = 1 +
∑∞

k=1 2kKkbkx
k, Dτ and bk are given by (3.8) and (3.11)

respectively.
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By (4.23), Φ̂(Dt + 2d(t − t0)) � Φ̂(2d2(K̃2 + 4) + 2d) = O(1) for t < T ,
so we get from (4.38) arrive at

(4.42)

∥∥∥∥∂|J |B0(t)

∂pJ
0

∥∥∥∥
∞

= ‖Bm(t)‖∞ = O(1) sup
t0�s�t

d∑
i=0

∥∥∥∥∫ s

t0

Am,i,τ0− dηi,τ0

∥∥∥∥
∞

.

Step 2. Now we apply induction in m to prove

(4.43) Am = O((t − t0)
m+2), Bm = O((t − t0)

m+1)

for any J ∈ N
m
0 , which is equivalent the assertion of the lemma.

Let us first check the claim for m = 1. From (4.40) we find

A1,i,τ =
d∑

j=1

∂c
(2)
i (X(τ))

∂xj

∂Xj(τ)

∂p0,j1

∂X(τ)

∂p0

.

An application of Lemma 4.3 with r = 1, i1 = j, ρ = ej, µ = ej1 (see
definition (3.36)) and L = 0 shows∥∥∥∥∫ s

t0

∂c
(2)
i (X(τ))

∂xj

∂Xj(τ)

∂p0,j1

∂X(τ)

∂p0

dηi,τ

∥∥∥∥
∞

= O(1)

(∫ s

t0

∥∥∥∥∂P (τ)

∂p0

∥∥∥∥
∞

dτ

)2

.

By (4.5) we know ‖∂P/∂p0‖∞ = O(1). Hence

sup
t0�s�t

d∑
i=0

∥∥∥∥∫ s

t0

A1,i,τ− dηi,τ

∥∥∥∥
∞

= O((t − t0)
2).

Combining this and (4.42) gives B1 = O((t − t0)
2). Using (4.1) we obtain

A1 = O((t − t0)
3).

We now assume that (4.43) holds for 1, . . . ,m − 1. From (4.40) we find
that Am,i,τ is a linear combination of the Zi(τ) = Zi,i1,...,ir ,ρ,µ,...,λ,L(τ) given
by (4.33) with

(4.44) |ρ| = r � m, |µ| + . . . + |λ| + |L| = m.

By the induction assumption and by (4.5) we have
∥∥∂|L|B0(τ)/∂xL

∥∥
∞ =

O((t − t0)
|L|) and∣∣∣∣∂|µ|P (τ)

∂pµ
0

∣∣∣∣ = O((t − t0)
φ(|µ|)), . . . ,

∣∣∣∣∂|λ|P (τ)

∂pλ
0

∣∣∣∣ = O((t − t0)
φ(|λ|)),

where φ : N → N such that φ(1) = 0, φ(n) = n for all n > 1. (Note that the
choice of φ allows us to combine the formulae (4.5) and (4.32), which show
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different behaviour for |µ| = 1 resp. |µ| > 1.) An application of Lemma 4.3
shows

(4.45)

d∑
i=0

∥∥∥∥∫ s

t0

Am,i,τ− dηi,τ

∥∥∥∥
∞

= O((t − t0)
γ),

where
γ = φ(|µ|) + 1 + . . . + φ(|λ|) + 1 + |L| + 1.

Since 1 + φ(n) � n we conclude from (4.44) that

γ � |µ| + . . . + |λ| + |L| + 1 = m + 1.

Combining this, (4.45) and (4.42) we have Bm = O((t− t0)
m+1). The asser-

tion for Am follows again from the first equation in (4.1). �

5. The method of stochastic characteristics

As before we denote by (X,P ) = (X(t, t0, x0, p0), P (t, t0, x0, p0)) the solution
of the Hamilton system

(5.1)


dx =

∂H

∂p
dt

dp = −∂H

∂x
dt − ∂c

∂x
dξt,

with initial condition (x0, p0) ∈ R2d at t = t0, where

H : R
d × R

d → R, c : R
d → R

d.

We shall say that H and c satisfy property (D1) if

There exists a stopping time T > 0 a.s. such that
for any 0 � t0 < t < T , ∀x0 ∈ R

d the map
D1 : R

d → R
d, p0 �→ X(t, t0, x0, p0)

is a diffeomorphism.

Next we shall say that H, c and S0 : R
d → R satisfy property (D2) if

(D1)

(D2)

There exists a stopping time T > 0 a.s. such that
for any 0 � t0 < t < T the map
D2 : Rd → Rd, x0 �→ X(t, t0, x0,∇S0(x0))
is a diffeomorphism.

Remark. In the literature on Burgers turbulence, the map D2 is called
Lagrangian function, and its inverse D−1

2 is called the inverse Lagrangian
function [Ber2].
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In the following statement we summarise the main results of the previous
section.

Theorem 5.1 Let S0 : R
d → R be a twice differentiable function such that

(5.2)
∂2S0(x)

∂x2
� Λ for some symmetric Λ ∈ R

d×d,∀x ∈ R
d,

H(x, p) = (1/2)p2 − V (x) and the conditions of the Theorem 4.1 hold.
Then (D1) and (D2) are satisfied.

Proof. Theorem 4.1 immediately implies (D1).

Using formulae (4.5), (4.6) we deduce from

∂X(t, t0, x0,∇S0(x0))

∂x0

=
∂X(t, t0, x0, p0)

∂x0

∣∣∣
p0=∇S0(x0)

+
∂X(t, t0, x0,∇S0(x0))

∂p0

∂2S0(x0)

∂x2
0

that

∂X(t, t0, x0,∇S0(x0))

∂x0

= Ed + O(t − t0) + [(t − t0) + O(t − t0)]
∂2S0(x0)

∂x2
0

and so there exist a constant C1 > 0 such that

∂X(t, t0, x0,∇S0(x0))

∂x0

� 1

2
Ed for 0 � t0 � t < T ∧ C1.

Therefore the map D2 : x0 �→ X(t, t0, x0,∇S0(x0)) is a local diffeomorphism.
Along the same lines as in the proof of Theorem 4.1 we conclude that D2 is
a global diffeomorphism. �

Recall that the notations X(τ), P (τ) were introduced in (4.7). To each
pair (X(τ), P (τ)) of solutions of (5.1) there corresponds the action function
defined by the formula

(5.3) σ(t, t0, x0, p0) =

∫ t

t0

[
P (τ)

∂X(τ)

∂τ
−H(X(τ), P (τ))

]
dτ −

∫ t

t0

c(X(τ)) dξτ .

If (D1) holds, the inverse map p0 = p0(t, t0, x, x0) to D1 exists, i.e.

(5.4) X(t, t0, x0, p0(t, t0, x, x0)) = x, t > t0, x ∈ R
n,

and we can define locally (for 0 � t0 < t < T ) the two-point function

(5.5) S(t, t0, x, x0) = σ(t, t0, x0, p0(t, t0, x, x0)).
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Notation. We set

(5.6) p(t, t0, x, x0) = P (t, t0, x0, p0(t, t0, x, x0))

and

(5.7) x(τ) = X(τ, t0, x0, p0(t, t0, x, x0)), p(τ) = P (τ, t0, x0, p0(t, t0, x, x0)).

Finally, we put X(τ, x0, p0) = X(τ, 0, x0, p0), P (τ, x0, p0) = P (τ, 0, x0, p0),
p0(τ, 0, x0, p0) = p0(τ, x0, p0), σ(t, x0, p0) = σ(t, 0, x0, p0) and S(t, x, x0) =
S(t, 0, x, x0). We will use this notation throughout the rest of this paper.

The following results (and their proofs) are stochastic versions of the well
known method of characteristics for solving the Hamilton-Jacobi equation
(see e.g. [K3]).

Theorem 5.2 Let H(x, p) and c(x) satisfy (D1). The function (t, x) �→
S(t, t0, x, x0), as a function of the variables (t, x), satisfies the Hamilton-
Jacobi equation

(5.8) dS + H

(
x,

∂S

∂x

)
dt + c(x) dξt = 0

in the domain (t0, T ) × R
d for the stopping time T with P(T > 0) = 1.

Moreover, we have

(5.9)
∂S

∂x
(t, t0, x, x0) = p(t, t0, x, x0),

∂S

∂x0

(t, t0, x, x0) = −p0(t, t0, x, x0).

Proof. Without loss of generality we may assume that t0 = 0.

Step 1. We start with the proof of the first relation in (5.9). This equality
can be rewritten as

∂S

∂x
(t,X(t, x0, p0), x0) = P (t, x0, p0)

which is, by (5.5),

(5.10)
∂σ

∂p0

(t, x0, p0)
∂p0

∂x
(t,X(t, x0, p0), x0) = P (t, x0, p0).

Due to (5.4),

(5.11)

(
∂p0

∂x
(t,X(t, x0, p0), x0)

)−1

=
∂X

∂p0

(t, x0, p0).

It follows that the first equation in (5.9), using (5.10), has the form

(5.12)
∂σ

∂p0

(t, x0, p0) = P (t, x0, p0)
∂X

∂p0

(t, x0, p0).
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Since X(t), ∂X(t)/∂p0 are continuous and of bounded variation, we get
from Itô’s formula that

(5.13) dP
∂X

∂p0

= P d
∂X

∂p0

+
∂X

∂p0

dP.

The left-hand side of (5.12) can be expressed using (5.3). Together with (5.13)
we calculate that its Itô differential gives

∂

∂p0

(
P

∂X

∂t
− H

)
dt − ∂c(X)

∂p0

dξt = P d
∂X

∂p0

+
∂X

∂p0

dP.

Notice that we need the fact that

∂

∂p0

∫ t

0

∂c(X(τ))

∂x
dξτ =

d∑
i=1

∫ t

0

∂2ci(X(τ))

∂p0∂x
dξi,τ ,

which is justified by a special case of Theorem 36.9 [M], p. 258. Since
by (4.1) dP = (∂H/∂x) dt + (∂c/∂x) dξt, we find

∂P

∂p0

∂X

∂t
dt + P

∂2X

∂p0∂t
dt − ∂H

∂x

∂X

∂p0

dt − ∂H

∂p

∂P

∂p0

dt − ∂X

∂p0

∂c

∂x
dξt

= P
∂2X

∂p0∂t
dt − ∂X

∂p0

(
∂H

∂x
dt +

∂c

∂x
dξt

)
.(5.14)

As ∂X/∂t = P we find that (5.14) holds for all t < T (ω), and the first part
of (5.9) is established.

Step 2. Using (5.5) we get

∂S

∂x0

=
∂σ

∂x0

+
∂σ

∂p0

∂p0(t, x, x0)

∂x0

and so, by (5.4), we rewrite the second formula in (5.9) as

(5.15)
∂σ

∂x0

− ∂σ

∂p0

(
∂X

∂p0

)−1
∂X

∂x0

= −p0.

The relation

∂

∂α

([
P (τ)

∂X(τ)

∂τ
− H(X(τ), P (τ))

]
dτ − c(X(τ)) dξτ

)
= dτ

(
P (τ)

∂X(τ)

∂α

)
where α = x0 or α = p0, and definition (5.3) imply

(5.16)
∂σ

∂x0

=

(
P (τ)

∂X(τ)

∂x0

)∣∣∣∣t
0

,
∂σ

∂p0

=

(
P (τ)

∂X(τ)

∂p0

)∣∣∣∣t
0

.
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Using (5.16) and the fact that

∂X(τ)

∂x0

∣∣∣∣
τ=0

= 1,
∂X(τ)

∂p0

∣∣∣∣
τ=0

= 0

gives (5.15).

Step 3. To prove (5.8), let us first rewrite it as

dσ(t, x0, p0) +
∂σ

∂p0

dp0 + H(x, p(t, x0, x))dt + c(x) dξt = 0.

Because of (5.3) we find

P (t, x0, p0)
∂X

∂t
(t, x0, p0) dt − H(X(t, x0, p0), P (t, x0, p0)) dt

− c(X(t, x0, p0)) dξt +
∂σ

∂p0

dp0 + H(x, p(t, x, x0)) dt + c(x) dξt = 0.

By construction, X(τ, x0, p0) = x, P (t, x0, p0) = p and expressing ∂σ/∂p0

by (5.12) gives

(5.17) P (t, x0, p0)
∂X

∂t
(t, x0, p0) dt + P (t, x0, p0)

∂X

∂p0

(t, x0, p0) dp0 = 0.

Differentiating (5.4) with respect to t we get

dX(t, x0, p0(t, x0, x)) =
∂X

∂t
(t, x0, p0) dt +

∂X

∂p0

(t, x0, p0) dp0 = 0.

Thus (5.17) is always satisfied and (5.8) follows. �

Corollary 5.1 Under the assumption of the Theorem 5.2 we have for 0 �
t0 < t < T

∂2S(t, t0, x, x0)

∂x2
=

1

t − t0
(Ed + O(t − t0)),(5.18)

∂2S(t, t0, x, x0)

∂x2
0

=
1

t − t0
(Ed + O(t − t0)),(5.19)

∂2S(t, t0, x, x0)

∂x∂x0

= − 1

t − t0
(Ed + O(t − t0)),(5.20)

where O(·) is uniform with respect to x0, x.
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Proof. Assume again that t0 = 0. From (5.9) and (5.11) we deduce the
equality

∂2S(t, x, x0)

∂x2
=

∂P

∂p0

(t, x0, p0)

(
∂X

∂p0

(t, x0, p0)

)−1

.

Now (4.5), (4.6) imply the first formula in Corollary 5.1. The same argument
can be used to prove the remaining formulae. �

Theorem 5.3 We assume that H(x, p), c(x) and S0(x) satisfy conditions
(D1), (D2). Then for 0 � t0 < t < T (ω) the formula

(5.21) S(t, t0, x) = S0(x0)+

∫ t

t0

(
p̃(τ) dx̃(τ)−H(x̃(τ), p̃(τ)) dτ−c(x̃(τ)) dξτ

)
(where the integral is taken along the trajectory x̃(τ) = X(τ, t0, x0,∇S0(x0)),
p̃(τ) = P (τ, t0, x0,∇S0(x0)) and x0 = x0(t, t0, x) is the inverse map of D2)
gives the unique classical solution of the Cauchy problem for the equation

(5.22) dS + H

(
x,

∂S

∂x

)
dt + c(x) dξt = 0

with initial function S0(x). One can rewrite formula (5.21) in the equivalent
form

(5.23) S(t, t0, x) = (S0(x0) + S(t, t0, x, x0))
∣∣
x0=x0(t,t0,x)

.

Proof. The definition of the two-point function (5.5) implies the equivalence
of (5.21) and (5.23). From the system (5.1) we see that X(t, t0, x0, p0) is
continuous in t and, using the implicit function theorem, we obtain from (D2)
that x0 = x0(t, t0, x) is continuous in t. So, [x0, x0] = 0 and Itô’s formula for
this equation gives

dtS(t, t0, x)

= ∇S0(x0)dtx0(t, t0, x) +
∂S(t, t0, x, x0)

∂t
dt +

∂S(t, t0, x, x0)

∂x0

dtx0(t, t0, x)

=
∂S(t, t0, x, x0)

∂t
dt.

In the last equality we used ∇S0(x0) = p0 in conjunction with (5.9). From
Theorem 5.2 we know that

∂S(t, t0, x, x0)

∂t
dt = dtS(t, t0, x, x0) = −H

(
x,

∂S(t, t0, x, x0)

∂x

)
dt − c(x) dξt,

and the theorem follows. �
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Appendix

In the proof of Proposition 3.1 we used some technical estimates which are
not directly related to the arguments of Section 3.

Lemma A.1 For y1, . . . , yn � 1 one has

n∏
l=1

(y1 + · · · + yl)Γ(yl) >
1

2n
Γ(n + 1)

(
Γ

(
y1 + · · · + yn

n
+ 1

))n

.

Proof. Since y1 + · · · + yl > l − 1 we easily see

(A.1)

n∏
l=1

(y1 + · · · + yl) >
n!

2n

n∏
l=1

y1 + · · · + yl + l − 1

l
.

We are going to prove by induction that

(A.2)

n∏
l=1

y1 + · · · + yl + l − 1

l
�

∏
1�l�n
il>0

il∏
s=1

(yl + s − 1)

for some i1, . . . , in � 0 such that i1 + · · · + in = n. Indeed, for n = 1 we
take i1 = 1. Assume that (A.2) is true for n − 1 and let B = min{y1 +
i1, . . . , yn−1 + in−1, yn}. Then

y1 + · · · + yn + n − 1

n
=

(y1 + i1) + · · · + (yn−1 + in−1) + yn

n
� B.

If B = yr + ir for some 1 � r � n − 1 we take jr = ir + 1, js = is for s �= r
and jn = 0. Otherwise we put jn = 1, js = is, s = 1, . . . , n − 1. Then the
inequality (A.2) holds for (j1, . . . , jn), and all n.

Combining (A.1) and (A.2) we get

n∏
l=1

(y1 + · · · + yl)Γ(yl) >
n!

2n

n∏
l=1

Γ(yl + il).

The Lemma follows since the Gamma-function is log-convex, cf. [A]. �
Lemma A.2 We define qk by the following recursion formula

(A.3) q0 = 1, qk =

k−1∑
m=0

3

(k − m)m!
qk−m−1, k ∈ N.

Then

(A.4) qk � (26)k

(ln(k + 1))
k
2

, k ∈ N.
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Proof. With ak,l = 3/[(l + 1)(k − l − 1)!] formula (A.3) reads

qk =

k−1∑
l=0

ak,lql, k � 1.

Clearly,

(A.5) qk =
∑

i1,...,in,
k=i0>...>in=0

ai0,i1 . . . ain−1,in .

Notice that

(A.6) ai0,i1 . . . ain−1,in =

n−1∏
s=0

3

(is+1 + 1)Γ(is − is+1)
.

Lemma A.1 implies that for b1, . . . , br � 1

Γ(bn)

n−1∏
l=1

(b1 + · · · + bl)Γ(bl) � 1

2n

Γ(n + 1)

b1 + · · · + bn

(
Γ

(
b1 + · · · + bn

n
+ 1

))n

.

If bl = in−l − in−l+1, l = 2, . . . , n, b1 = in−1 − in + 1, then

b1 + · · · + bn = i0 − in + 1 = k + 1,

and it follows that

B := Γ(i0 − i1)
n−1∏
s=1

(is + 1)Γ(is − is+1) � 1

2n

Γ(n + 1)

k + 1

(
Γ

(
k + 1

n
+ 1

))n

.

Recall that n � k − 1. Because of the inequalities Γ(b + 1) � b
b
2 for b � 2,

Γ(b + 1) � 2−1b
b
2 for 1 � b � 2 and nn−kkk � 2−k (ln(k + 1))k we have

B � 1

4n

n
n
2

k + 1

(
k

n

)k
2

� 1

k4k

(
nn−kkk

) 1
2 � 1

k8k
(ln(k + 1))

k
2 .

Consequently, the right-hand side of (A.6) does not exceed 3nB−1 and so

qk � 2k max
k=i0>...>in=0

ai0,i1 . . . ain−1,in � k(48)k

(ln(k + 1))
k
2

,

where we used that the number of terms in (A.5) is equal to

k∑
n=1

(
k − 1

n − 1

)
= 2k−1.

�

Lemma A.3 For any m, k, α1, . . . , αn ∈ N with

(A.7) α1 + · · · + αn + m = k, m � n − 1

we have

(A.8) {ln(α1 + 1)}α1
2 . . . {ln(αn + 1)}αn

2 m! � 2−k {ln(ln(k + 2))} k
16 .
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Proof. Denote the left-hand side of (A.8) by I and observe that

I � (
√

ln 2)n � 2−k.

Since
{ln(ln(k + 2))}k

8 � 1 for k � 10,

(A.8) holds for k � 10. If k > 10 we get from (A.7)

α1 + · · · + αn

n
� k − m

m + 1

and so, using the log-convexity of f(x) = {ln(x + 1)}x
2 ,

I �
{

ln

(
α1 + · · · + αn

n
+ 1

) }α1+···+αn
2

m! �
{

ln

(
k − m

m + 1
+ 1

)}k−m
2

m!

Applying Lemma A.4, completes the proof. �

Lemma A.4 For 1 � m < k, k � 10, m, k ∈ N one has

(A.9)

{
ln

(
k + 1

m + 1

)}k−m
2

Γ(m + 1) � 2−k {ln (ln(k + 2))} k
16 .

Proof. We write I for the left-hand side of (A.9) and set x0 = (ln k)−1k.

Case 1. x0 < m < k. We split the proof into three steps. Take x0 < x < k,
x ∈ R.

Step 1. Since (k + 1)/(x + 1) < k/x < ln k we get

ln

(
k + 1

x + 1

)
< ln

(
k

x

)
< ln ln k <

k

ln k
< x,

and so

(A.10)
1

8
ln x >

1

8
ln

(
ln

(
k + 1

x + 1

))
.

Step 2. Using the elementary inequality

ln(1 + a) � ab for 0 < b < 1 and 0 < a <
1

b
− 1

with a = (k − x)/(x + 1), b = 1/(2 ln x), and

0 < a =
k − x

x + 1
� k − x0

x0 + 1
< ln k − 1 < 2 ln x0 − 1 < 2 ln x − 1 =

1

b
− 1.
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we find that

2 ln x ln

(
k + 1

x + 1

)
= 2 ln x ln

(
1 +

k − x

x + 1

)
� k − x

x + 1
,

and therefore,

(A.11)
1

4
ln x � k − x

8

1

ln(k+1
x+1

)

1

x + 1
.

Step 3. Set

f(x) =
k − x

8
ln

(
ln

(
k + 1

x + 1

))
+

1

2
x ln x.

Clearly,

f ′(x) = −1

8
ln

(
ln

(
k + 1

x + 1

))
− k − x

8

1

ln(k+1
x+1

)

1

x + 1
+

1

2
(ln x + 1).

Adding (A.10) and (A.11) we see f ′(x) � 0 and so

(A.12) I � exp{f(x)} � exp {f (x0)} .

Since (k + 1)(x0 + 1)−1 � (3/4) ln k, we find

(A.13) ln

(
k + 1

x0 + 1

)
� ln

(
3 ln k

4

)
� 1

2
(ln ln(k + 2))

1
2 , k � 10,

and so

f (x0) � 1

8
(k − x0)

(
1

2
ln ln ln(k + 2) − 1

)
+

1

2
x0 ln x0

=
k

16
ln ln ln(k + 2) + Z,(A.14)

where

2

k
Z = −1

8

ln ln ln(k + 2)

ln k
+

1

4 ln k
+

3

4
− ln ln k

ln k
� 3

4
− 9

8

ln ln k

ln k
� 0 , k � 10.

Combining (A.12) and (A.14) gives (A.9).

Case 2. Let 1 < x � (k/ ln k). Using (A.13) we have

I �
(

ln

(
k + 1

x + 1

))k−x
2

�
(

ln ln(k + 2)

2

)k
4
(1− 1

ln k
)

� 2−k (ln ln(k + 2))
k
8 .

�
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