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Uniformly convex operators and
martingale type

Jörg Wenzel

Abstract

The concept of uniform convexity of a Banach space was gen-
eralized to linear operators between Banach spaces and studied by
Beauzamy [1]. Under this generalization, a Banach space X is uni-
formly convex if and only if its identity map IX is. Pisier showed
that uniformly convex Banach spaces have martingale type p for some
p > 1. We show that this fact is in general not true for linear op-
erators. To remedy the situation, we introduce the new concept of
martingale subtype and show, that it is equivalent, also in the oper-
ator case, to the existence of an equivalent uniformly convex norm
on X. In the case of identity maps it is also equivalent to having
martingale type p for some p > 1.

Our main method is to use sequences of ideal norms defined on the
class of all linear operators and to study the factorization of the finite
summation operators. There is a certain analogy with the theory of
Rademacher type.

1. Introduction

Banach spaces admitting an equivalent uniformly convex norm enjoy sev-
eral equivalent characterizations. Among others, they are the superreflexive
Banach spaces, i. e. not only is such a Banach space X reflexive, but every
Banach space whose finite dimensional subspaces can be found (uniformly)
in X is reflexive.

A connection with martingales was studied by Pisier [14]. For 1 < p ≤ 2,
a Banach space X has martingale type p if there exists a constant c ≥ 0
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such that ( ∫ 1

0

∥∥∥ n∑
k=1

dk(t)
∥∥∥p

dt
)1/p

≤ c
( n∑

k=1

∫ 1

0

‖dk(t)‖pdt
)1/p

for all X-valued martingale difference sequences d1, . . . , dn.

For our purpose the fundamental result of Pisier’s paper [14, Thm. 3.2,
p. 340] combined with James’s and Enflo’s investigations [10, Thm. 4, p. 903],
[6, p. 281] can be summarized as follows. (See further down for detailed
definitions.)

Theorem 1. For a Banach space X the following properties are equivalent:

(i) X has martingale type p for some p > 1,

(ii) X is superreflexive,

(iii) X admits an equivalent uniformly convex norm,

(iv) X does not factor the finite summation operators Σn uniformly.

If one is interested in linear operators between Banach spaces instead of
just Banach spaces, the above theorem is no longer true, as can be seen by
examples (see Example 3 at the end). The aim of this paper is to prove an
operator-theoretic replacement of Theorem 1; see Theorem 2 in Section 5.

The main difficulties arising in this setting are the lack of a suitable
substitute of J-convexity in the operator case (see Beauzamy [2, p. 265] for
a definition of J-convexity) and the fact that the submultiplicativity of the
martingale type ideal norms can no longer be exploited.

The following general method has turned out to be useful to generalize
Banach space-theoretic results to results about operators.

Given a sequence of parameters (αn) associating with every operator
T : X → Y a sequence of non-negative numbers (αn(T )), let αn(∞) :=
sup αn(T ), where the supremum is taken over all operators T : X → Y
of norm 1 and all Banach spaces X and Y . Then the sequence (αn(∞))
describes the ‘worst’ behavior that can occur for an operator T . In the Ba-
nach space case, one is mostly interested in the boundedness of the sequence
(αn(IX)) of the identity map of a Banach space X, i. e. αn(IX) = O(1). In
the operator case, the behavior αn(T )/αn(∞) → 0, i. e. αn(T ) = o(αn(∞))
is much more useful. Another beautiful example for this heuristic in the con-
text of Rademacher and Gauss type is given by Hinrichs in [9].

In particular, taking as αn(T ) the martingale type ideal norm τ n(T )
formed with n martingale differences, the condition τ n(T ) = o(

√
n) will be

the right replacement for Condition (i) in Theorem 1.
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Let us quickly review the contents of this article. In Section 2 we intro-
duce martingale and Haar (co)type ideal norms, which are close relatives.
The main result of this section is that all the o-conditions described above
for these four types of ideal norms yield equivalent properties. In Section 3
we establish the connection of the martingale type ideal norms with the
factorization of the finite summation operators. To do so, we use a variant
of the martingale type ideal norms, namely the equal norm martingale type
ideal norms. In Section 4 we repeat the definitions of uniform convexity and
uniform smoothness of linear operators, introduce the super weakly compact
operators and give various characterizations due to Beauzamy [1] connecting
the two concepts. Since the main emphasis of this article is on the connec-
tion with martingales, we are rather brief here and give mostly references for
the proofs. Finally in Section 5 we formulate and prove our main theorem
and provide an example of an operator, for which Theorem 1 is false.

To finish this introduction, let us point out some notational conventions
used throughout. We write BX for the unit ball of a Banach space X and
IX for its identity map. Furthermore, the reader has already realized, that
we use Landau’s big-O and little-o notation.

2. Martingale type and cotype

First of all, we introduce the martingale type and cotype ideal norms. They
were first considered by Pisier in [14, Rem. 3.3, p. 346]. We also consider
Haar type and cotype ideal norms as restrictions of martingale type and
cotype ideal norms to special classes of martingales. An operator is said
to have the corresponding subtype or subcotype, if these sequences of ideal
norms behave just a little better than the worst case. The main result of
this section will be that all four possible subtype and subcotype properties
coincide.

Let us start by considering an arbitrary martingale (fk) defined on [0, 1)
with values in a Banach space X and adapted to a filtration F0 ⊆ F1 ⊆ . . .
of finitely generated σ-algebras. We denote by Ek the operator of conditional
expectation with respect to the σ-algebra Fk.

In particular, taking for Fk the σ-algebra generated by the dyadic inter-
vals

∆
(j)
k :=

[j − 1

2k
,

j

2k

)
,

we obtain the so called Walsh-Paley or dyadic martingales. Since the corre-
sponding martingales fn are just linear combinations of the Haar functions
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χ
(j)
k for k = 0, . . . , n and j = 1, . . . , 2k−1, we also use the term Haar poly-

nomials to denote the functions fn in this case. Remember, that the Haar
functions χ

(j)
k are defined by

χ
(j)
k (t) :=


+2(k−1)/2 if t ∈ ∆

(2j−1)
k ,

−2(k−1)/2 if t ∈ ∆
(2j)
k ,

0 otherwise.

We let χ
(0)
0 ≡ 1.

We will mainly deal with the sequence of martingale differences (dk)
instead of (fk), where d1 = f1 and dk = fk − fk−1 for k > 1. The Banach
space of square integrable X-valued functions on [0, 1) is denoted by [L2, X].
For f ∈ [L2, X] we write

‖f |L2‖ :=
( ∫ 1

0

‖f(t)‖2 dt
)1/2

.

The fact that ‖Ekf |L2‖ ≤ ‖f |L2‖ for all f ∈ [L2, X] and k ∈ N will be
frequently used.

With each operator T : X → Y we associate the operator [L2, T ] :
[L2, X] → [L2, Y ], defined by

[L2, T ]f(t) := T
(
f(t)

)
.

For any two functions f ∈ [L2, X] and g′ ∈ [L2, Y
′] we write〈

[L2, T ]f, g′〉 :=

∫ 1

0

〈
Tf(t), g′(t)

〉
dt.

Definition. For T : X → Y , the n-th martingale type ideal norm τ (T |Mn)
is the smallest constant c ≥ 0 such that∥∥∥ n∑

k=1

[L2, T ]dk

∣∣∣L2

∥∥∥ ≤ c
( n∑

k=1

‖dk|L2‖2
)1/2

for all X-valued martingale difference sequences d1, . . . , dn adapted to any
filtration on [0, 1).

The n-th martingale cotype ideal norm γ(T |Mn) is the smallest constant
c ≥ 0 such that ( n∑

k=1

∥∥[L2, T ]dk

∣∣L2

∥∥2
)1/2

≤ c
∥∥∥ n∑

k=1

dk

∣∣∣L2

∥∥∥
for all X-valued martingale difference sequences d1, . . . , dn adapted to any
filtration on [0, 1).
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Note that, for norm one operators, both sequences, (τ (T |Mn)) and
(γ(T |Mn)), are bounded by 2

√
n and therefore the following definition makes

sense.

Definition. An operator T : X → Y has martingale subtype or martingale
subcotype if τ (T |Mn)/

√
n → 0 or γ(T |Mn)/

√
n → 0, respectively.

For convenience we introduce the following notation for the dyadic trees:

D
n
m := {(k, j) : k = m, . . . , n; j = 1, . . . , 2k−1} for 1 ≤ m ≤ n.

We let D
n
0 := D

n
1 ∪ {(0, 0)}.

Definition. For T : X → Y , the Haar type ideal norm τ (T |H(Dn
m)) asso-

ciated with the index set D
n
m is the smallest constant c ≥ 0 such that∥∥∥ ∑

Dn
m

Tx
(j)
k χ

(j)
k

∣∣∣L2

∥∥∥ ≤ c
(∑

Dn
m

‖x(j)
k ‖2

)1/2

for all (x
(j)
k ) ⊆ X.

The Haar cotype ideal norm γ(T |H(Dn
m)) associated with the index set

D
n
m is the smallest constant c ≥ 0 such that( ∑

Dn
m

‖Tx
(j)
k ‖2

)1/2

≤ c
∥∥∥∑

Dn
m

x
(j)
k χ

(j)
k

∣∣∣L2

∥∥∥
for all (x

(j)
k ) ⊆ X.

As before, we will be interested in the suboptimal behavior of these
sequences.

Definition. An operator T : X → Y has Haar subtype or Haar subcotype
if τ (T |H(Dn

0 ))/
√

n → 0 or γ(T |H(Dn
0 ))/

√
n → 0, respectively.

It is easily verified that

τ (T |H(Dn
1 )) ≤ τ (T |H(Dn

0 )) ≤ 2 τ (T |H(Dn
1 )),

γ(T |H(Dn
1 )) ≤ γ(T |H(Dn

0 )) ≤ 3 γ(T |H(Dn
1 )).

Since for any (x
(j)
k ) ⊆ X the sequence of functions dk :=

∑2k−1

j=1 x
(j)
k χ

(j)
k forms

a sequence of martingale differences, we obviously have

(2.1) τ (T |H(Dn
1 )) ≤ τ (T |Mn) and γ(T |H(Dn

1 )) ≤ γ(T |Mn).

No reverse estimate is known. In the limiting case where one of these se-
quences of ideal norms behaves like o(

√
n) we have, however, equivalence.
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Proposition 1. For any operator T : X → Y the following properties are
equivalent:

(i) T has martingale subtype,

(ii) T has martingale subcotype,

(iii) T has Haar subtype,

(iv) T has Haar subcotype.

We postpone the proof of Proposition 1 in order to provide some pre-
requisites. The main idea of the proof is contained in the following lemma.

Lemma 1. Let T : X → Y , then we have

τ (T |M2n)

2n/2
≤ 3

γ(T |H(Dn
0 ))

n1/2
.

Proof. Given any sequence (d1, . . . , d2n) of X-valued martingale differences,

define a function Fn : [0, 1) × [0, 1) → X by Fn(s, t) := di(t) if s ∈ ∆
(i)
n .

Obviously∫ 1

0

∫ 1

0

‖Fn(s, t)‖2 dt ds =
2n∑
i=1

∫
∆

(i)
n

∫ 1

0

‖Fn(s, t)‖2 dt ds =
1

2n

2n∑
i=1

‖di|L2‖2.

Viewing Fn( · , t) as a Haar polynomial, we have

Fn(s, t) =
∑
Dn

0

x
(j)
k (t) χ

(j)
k (s)

where the functions x
(j)
k are defined by x

(j)
k (t) :=

∫ 1

0
Fn(s, t) χ

(j)
k (s) ds. By

the definition of γ(T |H(Dn
0 )) we have∑

Dn
0

‖Tx
(j)
k (t)‖2 ≤ γ(T |H(Dn

0 ))2
∥∥∥ ∑

Dn
0

x
(j)
k (t) χ

(j)
k

∣∣∣L2

∥∥∥2

.

Integration with respect to t ∈ [0, 1) yields∑
Dn

0

‖[L2, T ]x
(j)
k |L2‖2 ≤ γ(T |H(Dn

0 ))2 ‖Fn|L2‖2(2.2)

= γ(T |H(Dn
0 ))2 1

2n

2n∑
i=1

‖di|L2‖2.
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Letting N
(j)
k := {i : ∆

(i)
n ⊆ ∆

(j)
k } and observing that N

(j)
k−1 = N

(2j−1)
k ∪

N
(2j)
k , we obtain for x

(j)
k

x
(j)
k (t) =

∫ 1

0

Fn(s, t) χ
(j)
k (s) ds = 2(k−1)/2

(∫
∆

(2j−1)
k

Fn(s, t) ds −
∫

∆
(2j)
k

Fn(s, t) ds
)

= 2(k−1)/2−n
( ∑

N
(2j−1)
k

di(t) −
∑
N

(2j)
k

di(t)
)
.

This implies that

(2.3) ‖[L2, T ]x
(j)
k |L2‖ = 2(k−1)/2−n

∥∥∥ ∑
N

(2j−1)
k

[L2, T ]di −
∑
N

(2j)
k

[L2, T ]di

∣∣∣L2

∥∥∥.

Since the conditional expectation operator has norm one in [L2, X] it now
follows that∥∥∥ ∑

N
(2j−1)
k

[L2, T ]di

∣∣∣L2

∥∥∥ ≤
∥∥∥ ∑
N

(2j−1)
k

[L2, T ]di −
∑
N

(2j)
k

[L2, T ]di

∣∣∣L2

∥∥∥
and therefore by the triangle inequality∥∥∥∑

N
(j)
k−1

[L2, T ]di

∣∣∣L2

∥∥∥ ≤
∥∥∥ ∑
N

(2j−1)
k

[L2, T ]di −
∑
N

(2j)
k

[L2, T ]di

∣∣∣L2

∥∥∥ + 2
∥∥∥ ∑
N

(2j−1)
k

[L2, T ]di

∣∣∣L2

∥∥∥
≤ 3

∥∥∥ ∑
N

(2j−1)
k

[L2, T ]di −
∑
N

(2j)
k

[L2, T ]di

∣∣∣L2

∥∥∥.(2.4)

Using (2.2), (2.3) and (2.4) the proof completes as follows:

∥∥∥ 2n∑
i=1

[L2, T ]di

∣∣∣L2

∥∥∥ =

(
1

n

n∑
k=1

∥∥∥ 2k−1∑
j=1

∑
N

(j)
k−1

[L2, T ]di

∣∣∣L2

∥∥∥2
)1/2

≤
(

1

n

n∑
k=1

( 2k−1∑
j=1

∥∥∥ ∑
N

(j)
k−1

[L2, T ]di

∣∣∣L2

∥∥∥)2
)1/2

≤ 3

(
1

n

n∑
k=1

2k−1

2k−1∑
j=1

∥∥∥ ∑
N

(2j−1)
k

[L2, T ]di −
∑
N

(2j)
k

[L2, T ]di

∣∣∣L2

∥∥∥2
)1/2

≤ 3
(22n

n

n∑
k=1

2k−1∑
j=1

‖[L2, T ]x
(j)
k |L2‖2

)1/2

≤ 3 γ(T |H(Dn
0 ))

(2n

n

2n∑
i=1

‖di|L2‖2
)1/2

.

�
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We next observe that the martingale and Haar type and cotype ideal
norms are dual to each other.

Proposition 2. For 0 ≤ m < n we have

γ(T |H(Dn
m)) ≤ τ (T ′|H(Dn

m)) ≤ 2 γ(T |H(Dn
m)),

γ(T ′|H(Dn
m)) ≤ τ (T |H(Dn

m)) ≤ 2 γ(T ′|H(Dn
m)).

If m = 0, we can omit the factors 2 and have equality. On the other hand

γ(T |Mn) ≤ 2 τ (T ′|Mn) ≤ 4 γ(T |Mn),

γ(T ′|Mn) ≤ 2 τ (T |Mn) ≤ 4 γ(T ′|Mn).

Proof. The proof can be obtained using standard duality techniques and is
left to the reader. �

We can now prove Proposition 1.

Proof. It follows from Lemma 1 and (2.1) that

τ (T |M2n)

2n/2
≤ 3

γ(T |H(Dn
0 ))

n1/2
≤ 6

γ(T |Mn))

n1/2
.

Since the same is true for T ′, it follows from Proposition 2 that

γ(T |M2n)

2n/2
≤ 6

τ (T |H(Dn
0 ))

n1/2
≤ 12

τ (T |Mn))

n1/2
.

Hence if one of these quotients tends to zero, all the others tend to zero too,
which proves the proposition by virtue of the monotonicity of the involved
ideal norms. �

3. Equal norm martingale type

Definition. For T : X → Y , the n-th equal norm martingale type ideal
norm τ ◦(T |Mn) is the smallest constant c ≥ 0 such that∥∥∥ n∑

k=1

[L2, T ]dk

∣∣∣L2

∥∥∥ ≤ c
( n∑

k=1

‖dk|L2‖2
)1/2

for all X-valued martingale difference sequences d1, . . . , dn adapted to any
filtration on [0, 1) under the additional assumption that ‖d1|L2‖ = · · · =
‖dn|L2‖.

The quantities τ ◦(T |Mn) can also be defined in a different way.
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Lemma 2. For T : X → Y , the ideal norm τ ◦(T |Mn) is the smallest
constant c ≥ 0 such that

(3.1)
∥∥∥ n∑

k=1

[L2, T ]dk

∣∣∣L2

∥∥∥ ≤ c n1/2 sup
k=1,...,n

‖dk|L2‖

for all X-valued martingale difference sequences d1, . . . , dn adapted to any
filtration on [0, 1).

Proof. For the time being denote by τ ◦◦(T |Mn) the smallest constant such
that (3.1) holds. It is obvious that for ‖d1|L2‖ = · · · = ‖dn|L2‖∥∥∥ n∑

k=1

[L2, T ]dk

∣∣∣L2

∥∥∥ ≤ τ ◦◦(T |Mn) n1/2 sup
k=1,...,n

‖dk|L2‖2

= τ ◦◦(T |Mn)
( n∑

k=1

‖dk|L2‖2
)1/2

.

Therefore τ ◦(T |Mn) ≤ τ ◦◦(T |Mn).

On the other hand, let d1, . . . , dn be an arbitrary sequence of martingale
differences. It follows that for d̃k := dk/‖dk|L2‖∥∥∥ n∑

k=1

[L2, T ]d̃k

∣∣∣L2

∥∥∥ ≤ τ ◦(T |Mn) n1/2.

But the same is true for ζkd̃k instead of d̃k, where |ζk| = 1. An extreme
point argument then yields that∥∥∥ n∑

k=1

[L2, T ]αkd̃k

∣∣∣L2

∥∥∥ ≤ τ ◦(T |Mn) n1/2

whenever |αk| ≤ 1. In particular, we may take

αk :=
‖dk|L2‖

sup
h=1,...,n

‖dh|L2‖ ,

which shows that τ ◦◦(T |Mn) ≤ τ ◦(T |Mn). �
Obviously we have

τ ◦(T |Mn) ≤ τ (T |Mn).

The main purpose of this section is to prove a reverse estimate. We follow an
approach similar to Bourgain/Kalton/Tzafriri in [3, Thm. 3.1., p. 160] where
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they show that equal norm Rademacher type 2 is equivalent to ordinary
Rademacher type 2. The main idea is contained in the following construction
of ‘glueing’ together m copies of a given martingale of length n, which yields
a martingale of length mn with smaller differences. An appropriate blocking
of this longer martingale will then give a martingale of length of order n and
nearly equal L2-norms.

Let φm
j : [ j−1

m
, j

m
) → [0, 1) be defined by φm

j (t) := mt − j + 1. Given a
function f : [0, 1) → X, we denote by Φm

j f the function

Φm
j f(t) :=

{
f(φm

j (t)) if t ∈ [ j−1
m

, j
m

),

0 otherwise.

Given a sequence of martingale differences (dk), the sequence of martingale
differences

Φm
1 d1, . . . , Φ

m
md1, Φ

m
1 d2, . . . , Φ

m
md2, . . . , Φ

m
1 dn, . . . , Φ

m
mdn

is adapted to the filtration

Φm
1 F1, . . . , Φ

m
mF1, Φ

m
1 F2, . . . , Φ

m
mF2, . . . , Φ

m
1 Fn, . . . , Φ

m
mFn,

where Φm
j Fk is the σ-algebra generated by all sets A ⊆ [0, 1) such that

φm
j (A) ∈ Fk and by all its predecessor σ-algebras.

Observe that
(3.2)∥∥∥ n∑

k=1

m∑
j=1

Φm
j dk

∣∣∣L2

∥∥∥ =
∥∥∥ n∑

k=1

dk

∣∣∣L2

∥∥∥ and ‖Φm
j dk|L2‖2 =

1

m
‖dk|L2‖2.

Moreover, all differences Φm
j dk in any block of length at most m have disjoint

support.

Lemma 3. The sequence (τ ◦(T |Mn)) is non-decreasing.

Proof. Let d1, . . . , dn be X-valued martingale differences such that ‖dk|L2‖ =
1. For m := n + 1 the construction above yields a martingale difference se-
quence of length n(n + 1). Define a new sequence of martingale differences
d̃1, . . . , d̃n+1 by blocking n consecutive terms:

d̃h := Φm
n−h+3dh−1 + · · · + Φm

n+1dh−1 + Φm
1 dh + . . . Φm

n−h+1dh.

Since ‖d̃h|L2‖ =
√

n
n+1

it follows that∥∥∥ n∑
k=1

[L2, T ]dk

∣∣∣L2

∥∥∥ =
∥∥∥ n+1∑

h=1

[L2, T ]d̃h

∣∣∣L2

∥∥∥ ≤ τ ◦(T |Mn+1)
( n∑

k=1

‖dk|L2‖2
)1/2

,

which proves that τ ◦(T |Mn) ≤ τ ◦(T |Mn+1). �
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Lemma 4. τ (T |Mn) ≤ 16 τ ◦(T |Mn).

Proof. Let d1, . . . , dn be X-valued martingale differences. By scaling we
may assume that

∑n
k=1 ‖dk|L2‖2 = 1.

Let l be such that 4l ≤ 16 n < 4l+1 and m := 4l. For h = 1, 2 . . . define

Fh :=
{

k :
1

2h
< ‖dk|L2‖ ≤ 2

2h

}
and F :=

l⋃
h=1

Fh.

First of all, we estimate the sum of all the differences with small norm:∥∥∥∑
k �∈F

[L2, T ]dk

∣∣∣L2

∥∥∥ ≤ τ (T |Mn)
( ∑

k �∈F

‖dk|L2‖2
)1/2

≤ τ (T |Mn) (n4−l)1/2 ≤ 1

2
τ (T |Mn).(3.3)

Here we used, that the sequence (τ (T |Mn)) is obviously non-decreasing and
that 16n < 4l+1.

For the martingale difference sequence (dk) with k ∈ F we apply the
glueing technique described above. Then it follows from (3.2) that for k ∈ Fh

1

m4h
< ‖Φm

j dk|L2‖2 =
1

m
‖dk|L2‖2 ≤ 4

m4h
.

Therefore by disjointness, for any subset L ⊆ {1, . . . ,m} of cardinality |L| =
4h

1

m
<

∥∥∥ ∑
i∈L

Φm
i dk

∣∣∣L2

∥∥∥2

≤ 4

m
.

Writing L
(h)
j := {4h (j − 1) + 1, . . . 4hj} and d̃k

j :=
∑

i∈L
(h)
j

Φm
i dk we obtain a

martingale of length

N :=
l∑

h=1

∑
k∈Fh

4l−h ≤ 4l

l∑
h=1

∑
k∈Fh

‖dk|L2‖2 ≤ 4l ≤ 16n.

It follows from Lemma 3 that τ ◦(T |MN) ≤ τ ◦(T |M16n) and therefore, we
obtain from Lemma 2 that∥∥∥ l∑

h=1

∑
k∈Fh

4l−h∑
j=1

[L2, T ]d̃k
j

∣∣∣L2

∥∥∥ ≤ τ ◦(T |MN) sup ‖d̃k
j |L2‖

√
N

≤ τ ◦(T |M16n)
2√
m

2l = 2 τ ◦(T |M16n).
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This shows that

(3.4)
∥∥∥∑

k∈F

[L2, T ]dk

∣∣∣L2

∥∥∥ ≤ 2 τ ◦(T |M16n).

Putting together (3.3) and (3.4) we obtain

τ (T |Mn) ≤ 1

2
τ (T |Mn) + 2 τ ◦(T |M16n),

which implies τ (T |Mn) ≤ 4 τ ◦(T |M16n). Finally the assertion follows from
the trivial fact that τ ◦(T |M16n) ≤ 4 τ ◦(T |Mn). �

The summation operator Σ : l1 → l∞ is defined by

Σ(ξk) :=
( k∑

h=1

ξh

)
,

while the finite summation operators Σn : ln1 → ln∞ act between the finite
dimensional spaces and are defined in the same way.

The significance of the ideal norms τ ◦(T |Mn) is due to the following
fact, which establishes the connection with the factorization of the finite
summation operators.

Proposition 3. There exists a factorization Σn = Bn[L2, T ]An of the finite
summation operator Σn, such that ‖Bn‖ ‖An‖ ≤ 6

√
n/τ ◦(T |M2n).

Proof. There is nothing to prove for T = 0. For T �= 0, by definition, for
all 0 < δ < 1, there exists a sequence of martingale differences d1, . . . , d2n

such that ‖dk|L2‖ = 1 and

∥∥∥ 2n∑
k=1

[L2, T ]dk

∣∣∣L2

∥∥∥ > δ τ ◦(T |M2n)
√

2n.

Choose g′ ∈ [L2, Y
′] such that ‖g′|L2‖ = 1 and

〈 2n∑
k=1

[L2, T ]dk, g
′
〉

> δ τ ◦(T |M2n)
√

2n.

Let

F :=
{

k :
〈
[L2, T ]dk, g

′〉 > τ ◦(T |M2n)
δ

4
√

2n

}
.
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It follows from Lemma 3 that〈 ∑
k∈F

[L2, T ]dk, g
′
〉
≤

∥∥∥ ∑
k∈F

[L2, T ]dk

∣∣∣L2

∥∥∥ ‖g′|L2‖ ≤ τ ◦(T |M2n)|F|1/2

and therefore

δ τ ◦(T |M2n)
√

2n <
〈 ∑

k∈F

[L2, T ]dk, g
′
〉

+
∑
k �∈F

〈
[L2, T ]dk, g

′〉
≤ τ ◦(T |M2n)|F|1/2 + 2n τ ◦(T |M2n)

δ

4
√

2n
.

This shows that m := |F| ≥ δ2 9n/8. Choosing δ appropriately, we may
arrange that m ≥ n. In particular, we find elements i1 < · · · < in in F.

We can now define An : ln1 → [L2, X] by

Anek :=
dik〈

[L2, T ]dik , g
′〉

and Bn : [L2, Y ] → ln∞ by

Bnf :=
( 〈f, Eikg

′〉 )n

k=1
. �

4. Uniform convexity and smoothness and super weakly
compact operators

We now show, how the concepts above connect to the theory of weakly
compact operators.

First of all, we repeat the classical definitions of uniform convexity and
uniform smoothness of Banach spaces in the more general case of linear
operators between Banach spaces. See e. g. Beauzamy [1, Def. 7, p. 121].

Definition. An operator T : X → Y is uniformly convex if for all ε > 0
there exists δ > 0 such that

for ‖x±‖ = 1 with
‖x+ + x−‖

2
≥ 1 − δ it follows that

‖Tx+ − Tx−‖
2

≤ ε .

The operator T is uniformly smooth if for all ε > 0 there exists δ > 0 such
that

for ‖y‖ = 1 and ‖x‖ ≤ δ it follows that
‖y + Tx‖ + ‖y − Tx‖

2
≤ 1 + ε ‖x‖ .
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Using an equivalent norm on the target space Y does not spoil uniform
convexity. This is, however, not the case for the source space X. Similarly,
uniform smoothness depends on the special choice of the norm on the target
space. We are therefore rather interested in uniformly convex renormable
and uniformly smooth renormable operators.

Definition. An operator T : X → Y is uniformly convex renormable if
there exists an equivalent norm ||| · ||| on X such that T : [X, ||| · |||] → Y
is uniformly convex.

An operator T : X → Y is uniformly smooth renormable if there exists
an equivalent norm ||| · ||| on Y such that T : X → [Y, ||| · |||] is uniformly
smooth.

The above properties are equivalent to T factoring through a uniformly con-
vex or uniformly smooth Banach space, respectively; see [13, Prop. 7.10.11].

As in the case of Banach spaces, we can easily show that the concepts of
uniform convexity and smoothness are dual to each other. See Lindenstrauss
[11, Thm. 1] for a proof in the Banach space case, which can easily be carried
over to linear operators.

Proposition 4. An operator T : X → Y is uniformly convex if and only if
its dual T ′ : Y ′ → X ′ is uniformly smooth.

The operator T is uniformly smooth if and only if T ′ is uniformly convex.

Next we introduce super weakly compact operators, whose Banach space
counterparts are the superreflexive Banach spaces, and show their connection
with the factorization of the summation operators. Again, this basically
follows from the, by now, classical proof that superreflexive Banach spaces
do not factor the summation operators uniformly, cf. James [10], Beauzamy
[2, Prop. 7, p. 236], or Heinrich [7, Thm. 5.1, p. 29].

Definition. An operator T : X → Y is weakly compact, if the image of the
closed unit ball of X under T is relatively weakly compact in Y .

For the theory of ultraproducts of Banach spaces and linear operators,
we refer to Heinrich’s papers [7, 8]. We mainly use the notation of Pietsch/
Wenzel [13].

Definition. An operator T : X → Y is super weakly compact, if all its
ultrapowers T U : XU → Y U are weakly compact.

The summation operator is the typical non-weakly compact operator.

Example 1. The summation operator Σ is not weakly compact.
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Definition. An operator T : X → Y is said to factor the summation op-
erator Σ, if there exist operators A : l1 → X and B : Y → l∞ such that
Σ = BTA.

The operator T is said to factor the finite summation operators Σn uni-
formly, if there exists a constant c > 0, such that for all n ∈ N we can find
factorizations Σn = BnTAn such that ‖Bn‖ ‖An‖ ≤ c.

The next proposition connects the above concepts.

Proposition 5. Let T : X → Y , then the following properties are equivalent:

(i) T is super weakly compact,

(ii) T U does not factor the summation operator Σ for any ultrafilter U ,

(iii) T does not factor the finite summation operators Σn uniformly.

Proof. The equivalence of (i) and (ii) is due to Lindenstrauss/Pe�lczyński
[12].

Assume that T : X → Y factors the finite summation operators uni-
formly and let U be any non-trivial ultrafilter on N.

Let J be the canonical map from l1 into lU1 induced by the map x �→
(x, x, . . .). Note moreover, that the map (xn) �→ w∗- limU xn induces a well
defined operator Q from lU∞ onto l∞. The last fact is due to the weak-∗-
compactness of the closed unit ball of l∞. Obviously ‖J‖ = ‖Q‖ = 1.

By the assumption, there exists a constant c, such that we find for all
n ∈ N operators An : ln1 → X and Bn : Y → ln∞ satisfying ‖An‖ ≤ 1,
‖Bn‖ ≤ c, and Σn = BnTAn.

Denote furthermore by Jn the canonical embedding of ln∞ into l∞ and
by Qn the projection from l1 onto ln1 .

We obtain a factorization of the summation operator Σ via T U as

Σ = Q(JnΣnQn)UJ = Q(JnBn)UT U(AnQn)UJ.

This proves that (ii) ⇒ (iii).

If on the other hand (ii) does not hold, then T U factors Σ for some
ultrafilter U . In the sense of Heinrich [7, Def. 1.1, p. 7], T U is finitely
representable in T , i. e. for all ε > 0 and each finite dimensional subspace
X̂0 ⊆ XU and finite codimensional subspace Ŷ0 ⊆ Y U there are a finite
dimensional subspace X0 ⊆ X and a finite codimensional subspace Y0 ⊆ Y
and maps R : X̂0 → X0 and S : Y/Y0 → Y U/Ŷ0 such that∥∥Q̂T U Ĵ − SQTJR

∥∥ ≤ ε,
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where J and Ĵ are the canonical embedding maps of X0 and X̂0 and Q and
Q̂ are the canonical quotient maps of Y0 and Ŷ0.

It follows, that for all n ∈ N there is a subspace X0 ⊆ X and a subspace
Y0 ⊆ Y and operators R : ln1 → X0 and S : Y/Y0 → ln∞, such that∥∥Σn − SQTJR

∥∥ ≤ ε.

Moreover, since Σn is injective, by the remark following Definition 1.1 in
[7, p. 8], we can even arrange that ε = 0. This implies that T factors Σn

uniformly. �

It was shown in Beauzamy [1, Thm. I.1, p. 111] that uniformly convex
renormability and super weak compactness are in fact equivalent properties.
See also Heinrich’s paper [7, Thm. 5,p. 29] and the detailed presentation in
Pietsch/Wenzel [13, Sect. 7.6].

One obtains the following equivalences.

Proposition 6. Let T : X → Y , then the following properties are equivalent:

(i) T is super weakly compact,

(ii) T is uniformly convex renormable,

(iii) T does not factor the finite summation operators Σn uniformly.

5. Main theorem

Before we can formulate and prove the main theorem some more prepara-
tions are required.

The following classical result provides the missing link between the op-
erators T and [L2, T ]. It was first proved by Day [5, Thm. 2, p. 504] for
Banach spaces, but Day’s proof can straightforwardly be extended to the
operator case.

Proposition 7. The operator T is uniformly convex if and only if [L2, T ] is
uniformly convex.

Finally, we will need the Haar cotype ideal norms of the finite summation
operators.

Example 2. 1
2
(n + 1)1/2 ≤ γn(Σ2n|H(Dn

0 )) ≤ (n + 1)1/2.
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Proof. Obviously, for any operator T : X → Y∥∥∥∑
Dn

0

Tx
(j)
k χ

(j)
k

∣∣∣L2

∥∥∥ ≤ (n + 1)1/2
( n∑

k=0

∥∥∥ 2k−1∑
j=1

Tx
(j)
k χ

(j)
k

∣∣∣L2

∥∥∥2)1/2

= (n + 1)1/2
( n∑

k=0

2k−1∑
j=1

‖Tx
(j)
k ‖2‖χ(j)

k |L2‖2
)1/2

≤ (n + 1)1/2‖T‖
( ∑

Dn
0

‖x(j)
k ‖2

)1/2

,

where we have used that for fixed k the Haar functions χ
(1)
k , . . . , χ

(2k−1)
k have

disjoint support. This proves the upper estimate by virtue of Proposition 2.

To see the lower estimate, let f : [0, 1) → l2
n

1 be defined by

f(t) := ei if t ∈ ∆
(i)
n ,

where ei is the i-th unit vector in l2
n

1 . Write f as a Haar polynomial

f =
∑
Dn

0

x
(j)
k χ

(j)
k , where x

(j)
k =

∫ 1

0

f(t)χ
(j)
k (t) dt.

Obviously

‖f |L2‖ =
∥∥∥∑

Dn
0

x
(j)
k χ

(j)
k

∣∣∣L2

∥∥∥ =
( 1

2n

2n∑
i=1

‖ei‖2
)1/2

= 1.

Writing N
(j)
k := {i : ∆

(i)
n ⊆ ∆

(j)
k }, it follows that

x
(j)
k =

1

2n
2(k−1)/2 (0, . . . , 0 +1, . . . , +1︸ ︷︷ ︸

N
(2j−1)
k

,−1, . . . ,−1︸ ︷︷ ︸
N

(2j)
k

, 0, . . . , 0)

and

Σ2nx
(j)
k =

1

2n
2(k−1)/2 (0, . . . , 0 1, 2, . . . , 2n−k︸ ︷︷ ︸

N
(2j−1)
k

, 2n−k − 1, . . . , 1, 0︸ ︷︷ ︸
N

(2j)
k

, 0, . . . , 0),

which in turn yields ‖Σ2nx
(j)
k ‖ = 2−(k+1)/2. Hence( ∑

Dn
0

∥∥Σ2nx
(j)
k

∥∥2
)1/2

=
1

2
(n + 1)1/2,

which proves the assertion. �
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We are now ready to state our most important result.

Theorem 2. For an operator T : X → Y the following properties are
equivalent:

(i) T has martingale subtype,

(ii) T has martingale subcotype,

(iii) T has Haar subtype,

(iv) T has Haar subcotype,

(v) T is super weakly compact,

(vi) T does not factor the finite summation operators Σn uniformly,

(vii) T is uniformly convex renormable,

(viii) [L2, T ] is uniformly convex renormable,

(ix) T is uniformly smooth renormable.

Proof The equivalence of (i)–(iv) was shown in Proposition 1. The equiva-
lence of (v)–(vii) was shown in Proposition 6. Proposition 7 shows that (vii)
and (viii) are equivalent, hence all the properties (v)–(vii) for T and (v)–(vii)
for [L2, T ] are equivalent.

Assume that (i) does not hold. Then for some c > 0 there are infinitely
many numbers n, such that

τ (T |Mn)√
n

≥ c.

It follows from Lemma 4 that for these numbers

6
√

n

τ ◦(T |M2n)
≤ 6

√
n

τ (T |M2n)
≤ 6

c

and therefore, by Proposition 3 there exist factorizations Σn = Bn[L2, T ]An

such that ‖Bn‖ ‖An‖ ≤ 6/c. Of course, this yields such factorizations for all
n ∈ N and therefore (vi) cannot hold for [L2, T ].

Hence we have shown that (vi) implies (i). On the other hand Example 2
shows that (iv) implies (vi).

So far, we have shown that (i)–(viii) are equivalent. Finally, since by
Proposition 2 properties (i)–(iv) for T are equivalent to the same properties
for T ′, it follows from Proposition 4 that also (ix) is equivalent to (vii) and
hence to all other properties. �
Remark . Note that Pisier’s Theorem 1 can easily be obtained from our The-
orem 2 using the submultiplicativity of the ideal norms τ (IX |Mn). Namely,
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it follows from τ (IX |Mn) = o(n1/2) and the submultiplicativity, that there
is a constant c and a number p0 > 1 such that

τ (IX |Mn) ≤ cn1/p0−1/2 for all n ∈ N.

By Pisier [14], this implies that X has martingale type p for all p < p0.

To formulate the last example, we will need one more definition.

Definition. For T : X → Y , the Haar type p ideal norm τ p(T |H(Dn
1 )), is

the smallest constant c ≥ 0 such that

∥∥∥∑
Dn

1

[L2, T ]x
(j)
k χ

(j)
k

∣∣∣Lp

∥∥∥ ≤ c
( n∑

k=1

∥∥∥ 2k−1∑
j=1

x
(j)
k χ

(j)
k

∣∣∣Lp

∥∥∥p)1/p

for all (x
(j)
k ) ⊆ X.

In particular, τ 2(T |H(Dn
1 )) = τ (T |H(Dn

1 )). An operator T is said to
have martingale type p if the sequence (τ p(T |H(Dn

1 ))) is bounded.

The following example shows that an analogue of the Davis–Figiel–
Johnson–Pe�lczyński Theorem on weakly compact operators (they factor
through a reflexive Banach space; see [4, Cor. 1, p. 314]) cannot hold for
super weakly compact operators, since if T factors through a superreflexive
Banach space then it follows already that it has martingale type p for some
p > 1; see [14, Thm. 3.2, p. 340].

Let t = (τn) be a non-increasing sequence of positive numbers. We
consider the diagonal operator Dt : l1 → l1 defined by Dt(ξk) := (τkξk).

The following fact is proved in [15].

Example 3. τ p(Dt|H(Dn
1 )) =

( ∑n
k=1 |τk|p′

)1/p′

.

Corollary. If τk = 1/(1+log k) then the operator Dt is super weakly compact
but does not have martingale type p for any p > 1 and hence does not factor
through a superreflexive Banach space.
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