Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, U.S.A . email: hrosen802@gmail.com

AN EARLIER FRACTAL GRAPH

Abstract

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is additive if $f(x+y)=f(x)+f(y)$ for all real numbers x and y. We give examples of an additive function whose graph is fractal.

1 Introduction

A fractal subset X of Euclidean space \mathbb{R}^{n} can be self-similar in the sense that X be of a shape similar to arbitrarily tiny portions of itself. Sometimes the fractal similarity dimension k of an object can be obtained by scaling it up with a zoom-up factor of n, to create a similar larger object comprised of m congruent copies of the original; in this case, k, n, and m satisfy the equation $n^{k}=m$. By definition, X is fractal if its topological dimension, $\operatorname{dim}_{T} X$, is less than its Hausdorff dimension, $\operatorname{dim}_{H} X$.

The continuous nowhere differentiable real function,

$$
W(x)=\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \pi x\right),
$$

where $0<a<1$ and b is an odd integer with $a b>1+\frac{3 \pi}{2}$, presented by Weierstrass in 1872, turns out to have a fractal graph; see [1, 4]. According to [2], half a century earlier and prior to 1821, Cauchy found that a real additive function is either continuous or totally discontinuous. Later, Hamel developed a method for constructing such a discontinuous additive function. A Hamel basis for \mathbb{R} is a subset $\left\{x_{\alpha}: \alpha \in A\right\}$ of real numbers such that each real number x can be expressed uniquely as $x=\sum_{\alpha \in A} r_{\alpha} x_{\alpha}$, where all but finitely many

[^0]of the rational numbers r_{α} are zero. Hamel defined an additive function f by first defining it any way whatsoever on this Hamel basis and then extending it to any $x=\sum_{\alpha \in A} r_{\alpha} x_{\alpha} \in \mathbb{R}$ by defining $f(x)=\sum_{\alpha \in A} r_{\alpha} f\left(x_{\alpha}\right)$. In 1942, F. B. Jones used a Hamel basis for \mathbb{R} to construct both connected graphs and disconnected graphs of discontinuous additive functions on \mathbb{R}; see [2]. We show that for some additive function, its connected graph is fractal.

2 Preliminary results

The topological dimension of a continuous real function is 1 by [4, Exercise 1.8]. In fact, $\operatorname{dim}_{T} f \leq 1$ for the graph of an arbitrary function $f: \mathbb{R} \rightarrow \mathbb{R}$. This follows because for each $(x, f(x)) \in f$, there are arbitrarily small open squares S centered at $(x, f(x))$ whose horizontal boundary edges contain no open interval subset lying in the graph of f and whose vertical boundary edges each contain at most one point of the graph of f. Otherwise, some $(x, f(x))$ would be the center of an open square S such that each concentric open square inside S would have a horizontal boundary edge containing an open interval subset lying in the graph of f. Then the projection of all those open intervals into the x-axis would give uncountably many disjoint open intervals in the separable space \mathbb{R}, which is impossible. Since $\operatorname{dim}_{T}(f \cap b d(S)) \leq 0, \operatorname{dim}_{T} f \leq 1$.

If three vertices of a parallelogram belong to the graph of an additive function $f: \mathbb{R} \rightarrow \mathbb{R}$, then it follows that its fourth vertex also belongs. Moreover, $f(r x+s y)=r f(x)+s f(y)$ for all rational numbers r and s; see [2]. In Theorem 3 of [2], Jones gives an example of a discontinuous additive real function f with totally disconnected graph for which $\operatorname{dim}_{T} f=0$ and $\operatorname{dim}_{H} f=1$. Hence its graph is fractal. In Theorem 4 of [2], he constructs an example of a discontinuous additive real function f which has a connected graph because its graph intersects each perfect set in \mathbb{R}^{2} not lying in the union of countably many vertical lines and therefore intersects each continuum in \mathbb{R}^{2} not lying wholly in a vertical line. His same construction remains valid if we simply replace "perfect set" with "closed set," and upon doing so, we can now show that $\operatorname{dim}_{H} f=2$.

3 Main result

Theorem 1. Jones's additive function $f: \mathbb{R} \rightarrow \mathbb{R}$ whose graph intersects each closed set in \mathbb{R}^{2} not lying in the union of countably many vertical lines has a fractal graph.
Proof. For completeness, we first provide details for Jones' argument found in [2]. Since the collection of all closed subsets of \mathbb{R}^{2} whose x-projection is
uncountable has cardinality c, this collection has a well ordering $\Gamma=\left\{F_{\gamma}\right.$: $\gamma<c\}$ where each element F_{γ} is preceded by less than c-many elements of Γ. Let $\left(x_{1}, y_{1}\right)$ denote a point of F_{1} such that $x_{1} \neq 0$. Define $f\left(x_{1}\right)=y_{1}$ and $f\left(r_{1} x_{1}\right)=r_{1} f\left(x_{1}\right)$ for all rational numbers r_{1}. Assume that γ is a fixed ordinal less than c and that $f\left(x_{\alpha}\right)$ is defined for all $\alpha<\gamma$ such that $x_{\alpha} \neq 0$, $\left(x_{\alpha}, f\left(x_{\alpha}\right)\right) \in F_{\alpha}$, and if $x=\sum_{\beta \leq \alpha} r_{\beta} x_{\beta}$ where all but finitely many of the rational numbers r_{β} are 0 , then $f(x)=\sum_{\beta \leq \alpha} r_{\beta} f\left(x_{\beta}\right)$. Each element of Γ must contain points of c distinct vertical lines because the element's x projection is an uncountable F_{σ}-set which contains a Cantor set, and $f(x)$ is so far defined for less than c values of x. Therefore, let $\left(x_{\gamma}, y_{\gamma}\right)$ denote a point of F_{γ} such that $x_{\gamma} \neq 0$ and $x_{\gamma} \notin \operatorname{LIN}\left(\left\{x_{\alpha}: \alpha<\gamma\right\}\right)$, with LIN (C) denoting the linear subspace of \mathbb{R} over the rationals set \mathbb{Q} generated by a subset C of \mathbb{R}. Define $f\left(x_{\gamma}\right)=y_{\gamma}$, and if $x=\sum_{\alpha \leq \gamma} r_{\alpha} x_{\alpha}$ where not more than a finite number of the rational numbers r_{α} are different from 0 , define $f(x)=\sum_{\alpha \leq \gamma} r_{\alpha} f\left(x_{\alpha}\right)$. By transfinite induction, the resulting function f is single-valued on the set $\left\{x_{\alpha}: \alpha<c\right\}$, which is linearly independent over \mathbb{Q}, and therefore single-valued on $\operatorname{LIN}\left(\left\{x_{\alpha}: \alpha<c\right\}\right)$, and the graph of f intersects every closed set in \mathbb{R}^{2} not contained in the union of a countable collection of vertical lines. By Theorem 4.2.1 of [3], this linearly independent set $\left\{x_{\alpha}: \alpha<c\right\}$ is a subset of a Hamel basis H_{o} of \mathbb{R}. Define f arbitrarily on $H_{o} \backslash\left\{x_{\alpha}: \alpha<c\right\}$. By Theorem 5.2.2 of [3], the restriction $f \mid H_{o}$ has a unique additive extension $f: \mathbb{R} \rightarrow \mathbb{R}$. Finally, according to Theorem 2 of [2], the graph of f is connected because it contains a point of each continuum in \mathbb{R}^{2} not contained in a vertical line. Therefore $\operatorname{dim}_{T} f=1$.

Now, suppose P is the closed parallelogram region with vertices $v_{1}(0,0)$, $v_{2}(x, f(x)), v_{3}(y, f(y))$ lying on the graph of f. By additivity, its fourth vertex $v_{4}(x+y, f(x)+f(y))$ also belongs to the graph of f. Subdivide P into four congruent closed parallelogram regions P_{1}, P_{2}, P_{3}, and P_{4} similar to P such that each P_{i} has v_{i} as a vertex along with the centroid of P as a vertex. For $i=1,2,3,4$, let $\phi_{i}=\frac{1}{2} I+\frac{1}{2} v_{i}$, which is a translation of the radial $\frac{1}{2}$-contraction, $\frac{1}{2} I$, by the amount $\frac{1}{2} v_{i}$, where I is the identity transformation. Each ϕ_{i} maps $P \cap f$ onto $P_{i} \cap f$, and so $P \cap f$ is a fixed set of the transformation $\Phi=\phi_{1} \cup \phi_{2} \cup \phi_{3} \cup \phi_{4}$, i.e., $\Phi(P \cap f)=P \cap f$. From $\frac{m}{n^{k}}=1$ with $m=4$ and $n=2$, we get that the similarity dimension is $k=2$.

To show that $\operatorname{dim}_{H}(P \cap f)=2$, suppose $\delta>0$ and $P \cap f \subset \bigcup_{i=1}^{\infty} U_{i}$, where each U_{i} is a relative open subset of P and has diameter $\left|U_{i}\right|<\delta$. Since $B=P \backslash \bigcup_{i=1}^{\infty} U_{i}$ is a closed set in \mathbb{R}^{2} and $B \cap f=\emptyset, B$ is contained in the union of countably many vertical lines. Therefore, for each positive number $\varepsilon<\delta$, there exist relative open subsets $V_{1}, V_{2}, V_{3}, \ldots$ of P such that

1. $B \subset \bigcup_{i=1}^{\infty} V_{i}$,
2. $\left|V_{i}\right|<\delta$, and
3. $\sum_{i=1}^{\infty}\left|V_{i}\right|^{2}<\varepsilon$.

Since $P=\left(\bigcup_{i=1}^{\infty} U_{i}\right) \cup B=\left(\bigcup_{i=1}^{\infty} U_{i}\right) \cup\left(\bigcup_{i=1}^{\infty} V_{i}\right)$, its 2-dimensional Hausdorff outer measure obeys

$$
\begin{aligned}
H^{2}(P) & \leq \lim _{\delta \rightarrow 0} \inf _{U_{i}, V_{i}} \sum_{i=1}^{\infty}\left(\left|U_{i}\right|^{2}+\left|V_{i}\right|^{2}\right) \\
& \leq \lim _{\delta \rightarrow 0} \inf _{U_{i}}\left(\sum_{i=1}^{\infty}\left|U_{i}\right|^{2}+\varepsilon\right) \\
& =\lim _{\delta \rightarrow 0} \inf _{U_{i}} \sum_{i=1}^{\infty}\left|U_{i}\right|^{2}=H^{2}(P \cap f) .
\end{aligned}
$$

So $H^{2}(P)=H^{2}(P \cap f)$ and $\operatorname{dim}_{H} f=\operatorname{dim}_{H}(P \cap f)=2$. Therefore the graph of f is fractal.

References

[1] R. M. Crownover, Introduction to Fractals and Chaos, Jones and Bartlett, Boston, 1995.
[2] F. B. Jones, Connected and disconnected plane sets and the functional equation $f(x)+f(y)=f(x+y)$, Bull. Amer. Math. Soc., 48 (1942), 115-120.
[3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Second edition, Edited by Attila Gilányi, Birkhäuser, Boston, 2009.
[4] M. Yamaguti, M. Hata, and J. Kigami, Mathematics of Fractals, Amer. Math. Soc., Translations of Mathematical Monographs, Vol. 167, Providence, R.I., 1997.

[^0]: Mathematical Reviews subject classification: Primary: 26A15, 28A78, 28A80
 Key words: additive real function, fractal graph
 Received by the editors March 1, 2018
 Communicated by: Zoltán Buczolich

