Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, U.S.A. email: hrosen802@gmail.com

AN EARLIER FRACTAL GRAPH

Abstract

A function $f : \mathbb{R} \to \mathbb{R}$ is additive if f(x + y) = f(x) + f(y) for all real numbers x and y. We give examples of an additive function whose graph is fractal.

1 Introduction

A fractal subset X of Euclidean space \mathbb{R}^n can be *self-similar* in the sense that X be of a shape similar to arbitrarily tiny portions of itself. Sometimes the fractal similarity dimension k of an object can be obtained by scaling it up with a zoom-up factor of n, to create a similar larger object comprised of m congruent copies of the original; in this case, k, n, and m satisfy the equation $n^k = m$. By definition, X is *fractal* if its topological dimension, dim_T X, is less than its Hausdorff dimension, dim_H X.

The continuous nowhere differentiable real function,

$$W(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x),$$

where 0 < a < 1 and b is an odd integer with $ab > 1 + \frac{3\pi}{2}$, presented by Weierstrass in 1872, turns out to have a fractal graph; see [1, 4]. According to [2], half a century earlier and prior to 1821, Cauchy found that a real additive function is either continuous or totally discontinuous. Later, Hamel developed a method for constructing such a discontinuous additive function. A *Hamel basis* for \mathbb{R} is a subset $\{x_{\alpha} : \alpha \in A\}$ of real numbers such that each real number x can be expressed uniquely as $x = \sum_{\alpha \in A} r_{\alpha} x_{\alpha}$, where all but finitely many

Mathematical Reviews subject classification: Primary: 26A15, 28A78, 28A80

Key words: additive real function, fractal graph

Received by the editors March 1, 2018

Communicated by: Zoltán Buczolich

of the rational numbers r_{α} are zero. Hamel defined an additive function f by first defining it any way whatsoever on this Hamel basis and then extending it to any $x = \sum_{\alpha \in A} r_{\alpha} x_{\alpha} \in \mathbb{R}$ by defining $f(x) = \sum_{\alpha \in A} r_{\alpha} f(x_{\alpha})$. In 1942, F. B. Jones used a Hamel basis for \mathbb{R} to construct both connected graphs and disconnected graphs of discontinuous additive functions on \mathbb{R} ; see [2]. We show that for some additive function, its connected graph is fractal.

2 Preliminary results

The topological dimension of a continuous real function is 1 by [4, Exercise 1.8]. In fact, $\dim_T f \leq 1$ for the graph of an arbitrary function $f : \mathbb{R} \to \mathbb{R}$. This follows because for each $(x, f(x)) \in f$, there are arbitrarily small open squares S centered at (x, f(x)) whose horizontal boundary edges contain no open interval subset lying in the graph of f and whose vertical boundary edges each contain at most one point of the graph of f. Otherwise, some (x, f(x)) would be the center of an open square S such that each concentric open square inside S would have a horizontal boundary edge containing an open interval subset lying in the graph of f. Then the projection of all those open intervals into the x-axis would give uncountably many disjoint open intervals in the separable space \mathbb{R} , which is impossible. Since $\dim_T (f \cap bd(S)) \leq 0$, $\dim_T f \leq 1$.

If three vertices of a parallelogram belong to the graph of an additive function $f: \mathbb{R} \to \mathbb{R}$, then it follows that its fourth vertex also belongs. Moreover, f(rx + sy) = rf(x) + sf(y) for all rational numbers r and s; see [2]. In Theorem 3 of [2], Jones gives an example of a discontinuous additive real function f with totally disconnected graph for which $\dim_T f = 0$ and $\dim_H f = 1$. Hence its graph is fractal. In Theorem 4 of [2], he constructs an example of a discontinuous additive real function f which has a connected graph because its graph intersects each perfect set in \mathbb{R}^2 not lying in the union of countably many vertical lines and therefore intersects each continuum in \mathbb{R}^2 not lying wholly in a vertical line. His same construction remains valid if we simply replace "perfect set" with "closed set," and upon doing so, we can now show that $\dim_H f = 2$.

3 Main result

Theorem 1. Jones's additive function $f : \mathbb{R} \to \mathbb{R}$ whose graph intersects each closed set in \mathbb{R}^2 not lying in the union of countably many vertical lines has a fractal graph.

PROOF. For completeness, we first provide details for Jones' argument found in [2]. Since the collection of all closed subsets of \mathbb{R}^2 whose x-projection is

uncountable has cardinality c, this collection has a well ordering $\Gamma = \{F_{\gamma} :$ $\gamma < c$ } where each element F_{γ} is preceded by less than c-many elements of Γ . Let (x_1, y_1) denote a point of F_1 such that $x_1 \neq 0$. Define $f(x_1) = y_1$ and $f(r_1x_1) = r_1f(x_1)$ for all rational numbers r_1 . Assume that γ is a fixed ordinal less than c and that $f(x_{\alpha})$ is defined for all $\alpha < \gamma$ such that $x_{\alpha} \neq 0$, $(x_{\alpha}, f(x_{\alpha})) \in F_{\alpha}$, and if $x = \sum_{\beta \leq \alpha} r_{\beta} x_{\beta}$ where all but finitely many of the rational numbers r_{β} are 0, then $f(x) = \sum_{\beta \leq \alpha} r_{\beta} f(x_{\beta})$. Each element of Γ must contain points of c distinct vertical lines because the element's xprojection is an uncountable F_{σ} -set which contains a Cantor set, and f(x) is so far defined for less than c values of x. Therefore, let (x_{γ}, y_{γ}) denote a point of F_{γ} such that $x_{\gamma} \neq 0$ and $x_{\gamma} \notin LIN(\{x_{\alpha} : \alpha < \gamma\})$, with LIN(C) denoting the linear subspace of \mathbb{R} over the rationals set \mathbb{Q} generated by a subset C of \mathbb{R} . Define $f(x_{\gamma}) = y_{\gamma}$, and if $x = \sum_{\alpha < \gamma} r_{\alpha} x_{\alpha}$ where not more than a finite number of the rational numbers r_{α} are different from 0, define $f(x) = \sum_{\alpha < \gamma} r_{\alpha} f(x_{\alpha})$. By transfinite induction, the resulting function f is single-valued on the set $\{x_{\alpha} : \alpha < c\}$, which is linearly independent over \mathbb{Q} , and therefore single-valued on $LIN(\{x_{\alpha} : \alpha < c\})$, and the graph of f intersects every closed set in \mathbb{R}^2 not contained in the union of a countable collection of vertical lines. By Theorem 4.2.1 of [3], this linearly independent set $\{x_{\alpha} : \alpha < c\}$ is a subset of a Hamel basis H_o of \mathbb{R} . Define f arbitrarily on $H_o \setminus \{x_\alpha : \alpha < c\}$. By Theorem 5.2.2 of [3], the restriction $f|H_o$ has a unique additive extension $f: \mathbb{R} \to \mathbb{R}$. Finally, according to Theorem 2 of [2], the graph of f is connected because it contains a point of each continuum in \mathbb{R}^2 not contained in a vertical line. Therefore $\dim_T f = 1.$

Now, suppose P is the closed parallelogram region with vertices $v_1(0,0)$, $v_2(x, f(x))$, $v_3(y, f(y))$ lying on the graph of f. By additivity, its fourth vertex $v_4(x + y, f(x) + f(y))$ also belongs to the graph of f. Subdivide P into four congruent closed parallelogram regions P_1 , P_2 , P_3 , and P_4 similar to P such that each P_i has v_i as a vertex along with the centroid of P as a vertex. For i=1,2,3,4, let $\phi_i = \frac{1}{2}I + \frac{1}{2}v_i$, which is a translation of the radial $\frac{1}{2}$ -contraction, $\frac{1}{2}I$, by the amount $\frac{1}{2}v_i$, where I is the identity transformation. Each ϕ_i maps $P \cap f$ onto $P_i \cap f$, and so $P \cap f$ is a fixed set of the transformation $\Phi = \phi_1 \cup \phi_2 \cup \phi_3 \cup \phi_4$, i.e., $\Phi(P \cap f) = P \cap f$. From $\frac{m}{n^k} = 1$ with m = 4 and n = 2, we get that the similarity dimension is k = 2.

To show that $\dim_H(P \cap f) = 2$, suppose $\delta > 0$ and $P \cap f \subset \bigcup_{i=1}^{\infty} U_i$, where each U_i is a relative open subset of P and has diameter $|U_i| < \delta$. Since $B = P \setminus \bigcup_{i=1}^{\infty} U_i$ is a closed set in \mathbb{R}^2 and $B \cap f = \emptyset$, B is contained in the union of countably many vertical lines. Therefore, for each positive number $\varepsilon < \delta$, there exist relative open subsets V_1, V_2, V_3, \ldots of P such that

1. $B \subset \bigcup_{i=1}^{\infty} V_i$,

H. ROSEN

- 2. $|V_i| < \delta$, and
- 3. $\sum_{i=1}^{\infty} |V_i|^2 < \varepsilon$.

Since $P = (\bigcup_{i=1}^{\infty} U_i) \cup B = (\bigcup_{i=1}^{\infty} U_i) \cup (\bigcup_{i=1}^{\infty} V_i)$, its 2-dimensional Hausdorff outer measure obeys

$$H^{2}(P) \leq \lim_{\delta \to 0} \inf_{U_{i}, V_{i}} \sum_{i=1}^{\infty} (|U_{i}|^{2} + |V_{i}|^{2})$$
$$\leq \lim_{\delta \to 0} \inf_{U_{i}} (\sum_{i=1}^{\infty} |U_{i}|^{2} + \varepsilon)$$
$$= \lim_{\delta \to 0} \inf_{U_{i}} \sum_{i=1}^{\infty} |U_{i}|^{2} = H^{2}(P \cap f).$$

So $H^2(P) = H^2(P \cap f)$ and $\dim_H f = \dim_H (P \cap f) = 2$. Therefore the graph of f is fractal.

References

- R. M. Crownover, Introduction to Fractals and Chaos, Jones and Bartlett, Boston, 1995.
- [2] F. B. Jones, Connected and disconnected plane sets and the functional equation f(x) + f(y) = f(x + y), Bull. Amer. Math. Soc., **48** (1942), 115-120.
- [3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Second edition, Edited by Attila Gilányi, Birkhäuser, Boston, 2009.
- [4] M. Yamaguti, M. Hata, and J. Kigami, *Mathematics of Fractals*, Amer. Math. Soc., Translations of Mathematical Monographs, Vol. 167, Providence, R.I., 1997.

454