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THE MCSHANE INTEGRAL IN THE LIMIT

Abstract

We introduce the notion of the McShane integral in the limit for
functions defined on a σ-finite outer regular quasi Radon measure space
(S,Σ, T , µ) into Banach space X and we study its relation with the
generalized McShane integral introduced by D. H. Fremlin [2]. It is
shown that if a function from S into X is McShane integrable in the limit
on S and scalarly locally τ -upper McShane bounded for some τ > 0,
then it is McShane integrable on S. On the other hand, we prove that
if X-valued function is McShane integrable in the limit on S, then it is
McShane integrable on each member of an increasing sequence (S`)`≥1

of measurable sets of finite measure with union S. We also prove a
Beppo Levi’s version Theorem for this new integral.

1 Introduction

In [2], D. H. Fremlin generalized the classical McShane integral to the case of
an arbitrary σ-finite outer regular quasi Radon measure space (S,Σ, T , µ). It
turns out that for any McShane integrable function taking values in Banach
space (X, ‖.‖), the McShane integral on S can be approximated with respect
to the norm ‖.‖ by sequence consisting of McShane sums.

In a previous paper [12], we defined a new method of integrability, named weak
McShane integrability, for functions defined on σ-finite outer regular quasi
Radon measure space (S,Σ, T , µ) into a Banach space X; “roughly speaking,
a function f from S into X is weakly McShane integrable on S if all sequences
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consisting of McShane sums of f corresponding to some class of generalized
McShane partitions of S converge to the same limit with respect to the weak
topology.” Then we studied its relation with the Pettis integral, and we proved
that a function from S into X is weakly McShane integrable on each member
of Σ if and only if it’s Pettis and weakly McShane integrable on S. We also
proved that if a function is weakly McShane integrable on S, then it is Pettis
integrable on each member of an increasing sequence of measurable sets of
finite measure with union S. Moreover, it can be seen from this methods that
for weakly sequentially complet spaces or spaces that do not contain a copy
of c0, a weakly McShane integrable function on S is is always Pettis integrable.

In the above cited work we also presented an example of a weakly McShane
integrable function but not McShane integrable. The aim of this work is to
introduce a new notion of McShane integrability named McShane integrability
in the limit, which is situated between McShane integrability and weak Mc-
Shane integrability for functions defined on σ-finite outer regular quasi Radon
measure space (S,Σ, T , µ) into a Banach space X. In this work we investi-
gate the relation that may exist between this new integral and the McShane
integral. More precisely, we seek to determine when a McShane integrable in
the limit function is also McShane integrable. For this purpose, we introduced
the concept of the locally upper McShane boundedness. It used to pass from
McShane integrability in the limit to McShane integrability. This depends
on an exhaustion-type lemma (Lemma 4.1). It is shown that if a function
from S into X is McShane integrable in the limit on S and scalarly locally
τ -upper McShane bounded for some τ > 0, then it is McShane integrable on
S (Theorem 4.1). On the other hand, we prove that if an X-valued function is
McShane integrable in the limit on S, then it is McShane integrable on each
member of an increasing sequence (S`)`≥1 of measurable sets of finite measure
with union S (Theorem 4.2). In Section 5 we extend a Beppo Levi’s theorem
to the space of McShane integrable in the limit vector-valued functions (The-
orem 5.1). In the case of the McShane integral this theorem is proved by C.
Swartz [13], but only for the functions defined on R. As an application of this
theorem we prove that the space of McShane integrable in the limit functions
equipped with the Pettis norm is not complete.

2 Preliminaries

In the sequel, X stands for a Banach space whose norm is denoted by ‖.‖, and
X∗ for the topological dual of X. The closed unit ball of X∗ is denoted by
BX∗ . Let (S,Σ, µ) be a positive measure space. By Σf we denote the collection



The McShane Integral in the Limit 285

of all measurable sets of finite measure. for each E ∈ Σ with µ(E) > 0, we
denote Σ+(E) = {A ⊆ E : µ(A) > 0} and denote Σ+(S) by just Σ+. L1

R(µ)
we denote the Banach space of all (equivalence classes of) Σ-measurable and
µ-integrable real-valued functions on S. A function f : S → X is said to be
scalarly integrable if for every x∗ ∈ X∗, the real-valued function 〈x∗, f〉 is a
member of L1

R(µ). We say also that f is Dunford integrable. If f : S → X is
a scalarly integrable function, then for each E ∈ Σ, there is x∗∗E ∈ X∗∗ such
that

〈x∗, x∗∗E 〉 =

∫
E

〈x∗, f〉 dµ.

The vector x∗∗E is called the Dunford integral of f over E. In the case that
x∗∗E ∈ X for all E ∈ Σ, then f is called Pettis integrable and we write
(Pe)-

∫
E
f dµ instead of x∗∗E to denote the Pettis integral of f over E. The

spaces of (equivalence class of) all Pettis integrable functions forms a normed
linear space under the Pettis (semi) norm

‖f‖Pe = sup
x∗∈BX∗

∫
S

|〈x∗, f〉| dµ.

If f : S → X is a Pettis integrable function, then the set {〈x∗, f〉 : x∗ ∈ BX∗}
is relatively weakly compact in L1

R(µ) (see [9], p. 162).

Definition 2.1. (Definition 246A, [4]). A subset H of L1
R(µ) is uniformly

integrable if for every ε > 0 we can find a set E ∈ Σf and an M ≥ 0 such that∫
S

(|h| −M1E)+ dµ ≤ ε for every h ∈ H,

where (|h| −M1E)+ := max(|h| −M1E , 0).

• Let ϕ ∈ L1
R+(µ). Then {h ∈ L1

R(µ) : |h| ≤ ϕ} is uniformly integrable.

Definition 2.2. A subset H of L1
R(µ) is equi-continuous if for every ε > 0

there are E ∈ Σf and a η > 0 such that |
∫
F
h dµ| ≤ ε for every h ∈ H and for

every F ∈ Σ with µ(F ∩ E) ≤ η.

Note that a subset H of L1
R(µ) is equi-continuous if and only if

limn→∞ suph∈H |
∫
Fn
h dµ| = 0 for every non-increasing sequence (Fn)n≥1 in

Σ with empty intersection.
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Theorem 2.1. ([4], Theorem 246G). A subset H of L1
R(µ) is uniformly inte-

grable if and only if

(1) suph∈H |
∫
A
h dµ| < ∞ for every µ-atom (in the measure space sense (see

[10], 211I)) A ∈ Σ and

(2) H is equi-continuous.

Note ([4], Corollary 246I) that in case (S,Σ, µ) is a probability space, (1) and
(2) may be replaced with

lim
λ→∞

sup
h∈H

∫
{t∈S:|h(t)|≥λ}

|h| dµ = 0.

Theorem 2.2. ([4], Theorem 247C). A subset H of L1
R(µ) is uniformly inte-

grable if and only if it is relatively weakly compact in L1
R(µ).

The following well known result ([7], [9]), which is the Pettis analogous of the
classical Vitali convergence theorem, will play a key role in this work. An
alternative proof based on the Eberlein-Smulyan-Grothendieck theorem can
be found in [1].

Theorem 2.3. Let f : S → X be a scalarly integrable function satisfying the
following two conditions:

(1) {〈x∗, f〉 : x∗ ∈ BX∗} is relatively weakly compact in L1
R(µ).

(2) There exists a sequence (fn) of Pettis integrable functions from S into X
such that

lim
n→∞

∫
E

〈x∗, fn〉 dµ =

∫
E

〈x∗, f〉 dµ,

for each x∗ ∈ X∗ and each E ∈ Σ.

Then f is Pettis integrable.

3 The McShane integral in the limit

In this section, we introduce the concept of the McShane integral in the limit
and we investigate some of its properties. For this purpose, we need to intro-
duce some terminology. Assume that (S,Σ, µ) is a σ-finite positive measure
space and T ⊂ Σ a topology on S making (S, T ,Σ, µ) a quasi-Radon measure
space which is outer regular, that is, such that

µ(E) = inf{µ(G) : E ⊂ G, G ∈ T } (E ∈ Σ).
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Recall that if (S, T ,Σ, µ) is any σ-finite outer regular quasi Radon measure
space, and A ⊂ S is any set (not necessarily measurable), so is (A,A∩ T , A∩
Σ, µ|A). For an extensive study of quasi-Radon measure spaces, the reader
is referred to ([6], Chapter 41). A partial McShane partition is a countable
(may be finite) collection {(Ei, ti)}i∈I , where the Ei’s are pairwise disjoint
measurable subsets of S with finite measure and ti is a point of S for each
i ∈ I. A generalized McShane partition of S is an infinite partial McShane
partition {(Ei, ti)}i≥1 such that µ(S\∪i=∞i=1 Ei) = 0. A gauge on S is a function
∆ : S → T such that t ∈ ∆(t) for every t ∈ S. For a given ∆ on S, we say that
a partial McShane partition {(Ei, ti)}i∈I is subordinate to ∆ if Ei ⊂ ∆(ti) for
every i ∈ I. Let f : S → X be a function. We set

σn(f,P∞) :=

i=n∑
i=1

µ(Ei)f(ti),

for each infinite partial McShane partition P∞ = {(Ei, ti)}i≥1.

From now on (S, T ,Σ, µ) is a σ-finite outer regular quasi-Radon measure space.

Definition 3.1. ([2]).
(1) A function f : S → X is McShane integrable (M-integrable for short),
with McShane integral $, if for every ε > 0 there is a gauge ∆ : S → T such
that

lim sup
n→∞

‖σn(f,P∞)−$‖ ≤ ε,

for every generalized McShane partition P∞ of S subordinate to ∆. We set
$ := (M)-

∫
S
f dµ.

(2) f is M-integrable on a measurable subset E of S, if the function 1Ef is
M-integrable on S. We set (M)-

∫
E
f dµ := (M)-

∫
S

1Ef dµ.

Remark 3.1. A function f : S → X is M-integrable, with McShane integral
$, if and only if there is a sequence of gauges (∆m) from S into T such that

lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

‖σn(f,P∞)−$‖ = 0,

where Π∞(∆m) denotes the collection of all generalized McShane partitions
of S subordinate to ∆m.

Before proceeding further, we list below some basic properties of the McShane
integral that will be needed in this work. They are borrowed from [2].
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Theorem 3.1 ( [2]). Let f : S → X be a function.
(1) If f is M-integrable on S, then the restriction f|A is M-integrable on S
(with respect to the σ-finite outer regular quasi-Radon measure space (A,A ∩
T , A ∩ Σ, µ|A)), for every A ⊂ S.

(2) Let E ∈ Σ. Then f isM-integrable on E if and only if f|E isM-integrable
on E, and in this case the integrals are equal.

(3) Suppose X = R. Then f is M-integrable, if and only if it is integrable in
the ordinary sense, and the two integrals are equal.

Recall that for compact Radon measure space (S, T ,Σ, µ), generalized Mc-
Shane partitions can be replaced by finite strict generalized McShane parti-
tions of S (that is, finite partial McShane partitions {(Ei, ti)}1≤i≤p such that

∪i=pi=1Ei = S):

Proposition 3.1 (Proposition 1E, [2]). Suppose that (S, T ,Σ, µ) is a compact
Radon measure space and let f : S → X be a function. Then f isM-integrable
on S, with McShane integral $, if and only if for every ε > 0 there is a gauge
∆ : S −→ T such that

‖
i=p∑
i=1

µ(Ei)f(ti)−$‖ ≤ ε,

for all finite strict generalized McShane partitions (Ei, ti)1≤i≤p of S subordi-
nate to ∆.

Lemma 3.1 ( The strong Saks-Henstock Lemma). (Lemma 3B, [2]).
Let f : S → X be a function M-integrable on S and ε > 0. Then there exists
a gauge ∆ : S −→ T such that

sup
{(Ei,ti)}1≤i≤p∈PΠf (∆)

‖
i=p∑
i=1

µ(Ei)f(ti)− (M)-

∫
∪i=p

i=1Ei

f dµ‖ ≤ ε,

where PΠf (∆) denotes the collection of all finite partial McShane partitions
of S subordinate to ∆.

Definition 3.2. (Definition 3.2, [12]). (1) A function f : S → X is said
to be weakly McShane integrable (WM-integrable for short) on S, with weak
McShane integral $, if there is a sequence of gauges (∆m) from S into T such
that the following property holds

(∗) lim
m→∞

lim sup
n→∞

|〈x∗, σn(f,Pm∞)〉 − 〈x∗, $〉| = 0,
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for every x∗ ∈ X∗ and for every sequence (Pm∞) of generalized McShane par-
titions of S adapted to (∆m) (i.e. Pm∞ is subordinate to ∆m for each m ≥ 1).

We set $ = (WM)-
∫
S
f dµ.

(2) f is WM-integrable on a measurable subset E of S, if the function 1Ef is
WM-integrable on S. We set (WM)-

∫
E
f dµ := (WM)-

∫
S

1Ef dµ.

(3) f is WM-integrable on Σ, if it is WM-integrable on every measurable
subset of S.

According to (Proposition 3.2, [12]), (∗) may be replaced with:

lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, $〉| = 0 for all x∗ ∈ X∗,

where Π∞(∆m) denotes the collection of all generalized McShane partitions
of S subordinate to ∆m.

Lemma 3.2 ( The weak Saks-Henstock lemma). (Lemma 3.2, [12]).
Let f : S → X be a WM-integrable function. Then there exists a sequence
(∆m) of gauges from S into T such that

lim
m→∞

sup
{(Ei,ti)}1≤i≤p∈PΠf (∆m)

|〈x∗,
i=p∑
i=1

µ(Ei)f(ti)〉 −
∫
∪i=p

i=1Ei

〈x∗, f〉 dµ| = 0

for all x∗ ∈ X∗,

where PΠf (∆m) denotes the collection of all finite partial McShane partitions
of S subordinate to ∆m.

Now we define our new notion of McShane integrability namely McShane
integrability in the limit:

Definition 3.3. (1) A function f : S → X is said to be McShane intgrable in
the limit (M-integrable in the limit for short) on S, with McShane integral in
the limit $, if for every ε > 0 there is a gauge ∆ : S → T such that

lim sup
n→+∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, $〉| ≤ ε,
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for all x∗ ∈ BX∗ and for every generalized McShane partition P∞ of S subor-
dinate to ∆. We set $ := (ML)-

∫
S
f dµ.

(2) f is M-integrable in the limit on a measurable subset E of S, if the
function 1Ef is M-integrable in the limit on S. We set (ML)-

∫
E
f dµ =

(ML)-
∫
S

1E .f dµ.

(3) f is M-integrable in the limit on Σ, if it is M-integrable in the limit on
every measurable subset of S.

The McShane integral in the limit is the concept intermediate between to the
McShane integral and the weak McShane integral:

Proposition 3.2. Let f : S → X be a function. Then, f is M-integrable on
S =⇒ f is M-integrable in the limit on S =⇒ f is WM-integrable on S.

Proof. The first implication is obvious. For a proof of the second implication.
Assume that f is M-integrable in the limit on S. Then for each m ≥ 1 there
is a gauge ∆m : S −→ T such that

sup
P∞∈Π∞(∆m)

lim sup
n→+∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, (ML)-

∫
S

f dµ〉| ≤ 1

m
,

for all x∗ ∈ BX∗ , where Π∞(∆m) denotes the collection of all generalized
McShane partitions of S subordinate to ∆m, by letting m→ +∞, we conclude
that f is WM-integrable on S.

The next theorem provides the linearity properties of the McShane integral in
the limit.

Theorem 3.2. Let f , g: S → X be two functions.
(1) If f and g are M-integrable in the limit on S and α ∈ R, then αf + g is
M-integrable in the limit on S, and we have

(ML)-

∫
S

αf + g dµ = α(ML)-

∫
S

f dµ+ (ML)-

∫
S

g dµ

(2) if f is M-integrable in the limit on S and if f = g µ-p.p, then g is M-
integrable in the limit on S, and we have

(ML)-

∫
S

g dµ = (ML)-

∫
S

f dµ.
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(3) If f is M-integrable in the limit on E, then it is scalarly integrable on E
(that is, 〈x∗, f〉 is Lebesgue integrable on E for all x∗ ∈ X∗), and we have∫

E

〈x∗, f〉 dµ = 〈x∗, (ML)-

∫
E

f dµ〉 for all x∗ ∈ X∗.

(4) If f is M-integrable in the limit on Σ, then is Pettis integrable, and we
have

(ML)-

∫
E

f dµ = (Pe)-
∫
E

f dµ for all E ∈ Σ.

Proof. We will prove (2) only; the rest of the proof is straightforward. Set
θ := f − g. Since θ := 0 µ-a.e., by ([2], Corollary 2G), θ is M-integrable on
S, therefore M-integrable in the limit on S. In turn, by (1), g = f + θ is
M-integrable in the limit on S.

Proposition 3.3. Let f : S → X be a function. If f is M-integrable in the
limit on S, then for every ε > 0, there is a gauge ∆ : S −→ T such that

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 −
∫
E

〈x∗, f〉 dµ| ≤ ε

for all E ∈ Σ, for all x∗ ∈ BX∗ , and for every generalized McShane partition
P∞ of E subordinate to ∆.

Proof. Let ε > 0 By theorem 3.2(3) and theorem 3.1(3), there is a gauge ∆
from S to T such that

sup
P∞∈Π∞(∆)

lim sup
n→+∞

|〈x∗, σn(f,P∞)〉 −
∫
S

〈x∗, f〉 dµ| ≤ ε

2
,

for all x∗ ∈ BX∗ . Let E ∈ Σ. We can then repeat mutatis mutandis the
arguments used in the proof of [2], Theorem 1N) for each function 〈x∗, f〉,
x∗ ∈ BX∗ to obtain

(3.3.1) sup
P∞,Q∞∈Π∞|E(∆)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, σn(f,Q∞)〉| ≤ ε

2
.

On the other hand, as 〈x∗, f〉|E isM-integrable (by Theorem 3.2(4) and The-
orem 3.1(2)-(3)) we may select a gauge Λ from S to T (which may depend on
x∗) with Λ(t) ⊂ ∆(t) for all t ∈ S such that

(3.3.2) sup
Q∞∈Π∞|E(Λ)

lim sup
n→∞

|〈x∗, σn(f,Q∞)〉 −
∫
E

〈x∗, f〉 dµ| ≤ ε

2
.
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Now, by the triangle inequality and the fact that Λ(t) ⊂ ∆(t) for all t ∈ S, we
have

sup
P∞∈Π∞|E(∆)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 −
∫
E

〈x∗, f〉 dµ|

≤ sup
P∞∈Π∞|E(∆),Q∞∈Π∞|E(Λ)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, σn(f,Q∞)〉|

+ sup
Q∞∈Π∞|E(Λ)

lim sup
n→∞

|〈x∗, σn(f,Q∞)〉 −
∫
E

〈x∗, f〉 dµ|

≤ sup
P∞,Q∞∈Π∞|E(∆)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, σn(f,Q∞)〉|

+ sup
Q∞∈Π∞|E(Λ)

lim sup
n→∞

|〈x∗, σn(f,Q∞)〉 −
∫
E

〈x∗, f〉 dµ|.

Hence, by (3.3.1) and (3.3.2)

sup
P∞∈Π∞|E(∆)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 −
∫
E

〈x∗, f〉 dµ| ≤ ε.

As a consequence of Proposition 3.3, we have:

Corollary 3.1. Let f : S → X be a function and let F ∈ Σ. If f is M-
integrable in the limit on S and Pettis integrable on F (that is, 1F f is Pettis
integrable), then f|E∩F is M-integrable in the limit on E∩F for every E ∈ Σ,
and we have

(ML)-

∫
E∩F

f|E∩F dµ = (Pe)-
∫
E

1F f dµ.

Corollary 3.2. A function f : S → X is M-integrable in the limit on Σ if
and only if it is M-integrable in the limit on S and Pettis integrable, and the
corresponding integrals are equal.

Proof. The only “if part” is proved by Theorem 3.2(4). Whereas the “if
part” is a direct consequence of Proposition 3.3 and Corollary 3.1.

Lemma 3.3 (The Saks-Henstock Lemma in the limit). Let f : S → X be a
function M-integrable in the limit on S and ε > 0. Then there exists a gauge
∆ : S −→ T such that

sup
{(Ei,ti)}1≤i≤p∈PΠf (∆)

|〈x∗,
i=p∑
i=1

µ(Ei)f(ti)〉 −
∫
∪i=p

i=1Ei

〈x∗, f〉 dµ| ≤ ε,
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for all x∗ ∈ BX∗ , where PΠf (∆) denotes the collection of all finite partial
McShane partitions of S subordinate to ∆.

Proof. We will follow the same line of reasoning as in the proof of ([2],
Lemma 2B) with suitable modifications. Let x∗ ∈ BX∗ and ε > 0. By the
hypothesis there exists a gauge ∆ : S −→ T such that

sup
P∞∈Π∞(∆)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, (ML)-

∫
S

f dµ〉| ≤ ε

2
.

Let {(Ei, ti)}1≤i≤p be a member of PΠf (∆). Let E := ∪i=pi=1Ei . As 〈x∗, f〉|S\E
is M-integrable (by Theorem 3.1 (3 )), we may select a generalized McShane
partition {(Fi, ui)}i≥1 of S \E (which may depends on x∗) subordinate to ∆
such that

lim sup
n→∞

|〈x∗,
i=n∑
i=1

µ(Fi)f(ui)〉 −
∫
S\E
〈x∗, f〉 dµ| ≤ ε

2
.

Set

Ep+i := Fi and tp+i := ui i ≥ 1.

Then {(Ei, ti)}i≥1 is a generalized McShane partition of S that is subordinate
to ∆ and

|〈x∗,
i=p∑
i=1

µ(Ei)f(ti)−
∫
E

〈x∗, f〉 dµ| = |〈x∗,
i=p+n∑
i=1

µ(Ei)f(ti)〉 −
∫
S

〈x∗, f〉 dµ

− 〈x∗,
i=n∑
i=1

µ(Fi)f(ui)〉+

∫
S\E
〈x∗, f〉 dµ|

≤ |〈x∗,
i=p+n∑
i=1

µ(Ei)f(ti)〉 −
∫
S

〈x∗, f〉 dµ|

+ |〈x∗,
i=n∑
i=1

µ(Fi)f(ui)〉 −
∫
S\E
〈x∗, f〉 dµ|.

Letting n→∞, we get

|〈x∗,
i=p∑
i=1

µ(Ei)f(ti)〉 −
∫
E

〈x∗, f〉 dµ| ≤ ε

2
+
ε

2
= ε.
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By taking the supremum over {(Ei, ti)}1≤i≤p ∈ PΠf (∆) in this inequality
yields

sup
{(Ei,ti)}1≤i≤p∈PΠf (∆)

|〈x∗,
i=p∑
i=1

µ(Ei)f(ti)〉 −
∫
∪i=p

i=1Ei

〈x∗, f〉 dµ| ≤ ε.

If S is compact the concept of the McShane integral in the limit and the
McShane integral are equivalent:

Corollary 3.3. Suppose that (S, T ,Σ, µ) is a compact Radon measure space
and let f : S → X be a function. Then f is M-integrable on S if and only if
it is M-integrable in the limit on S and the two integrals are equal.

Proof. As consequence of Lemma 3.3 and Proposition 3.1.

Corollary 3.4. Let f : S −→ X be a function and Suppose that the set
{〈x∗, f〉 : x∗ ∈ BX∗} is equi-continuous. Then f is M-integrable on S if and
only if it is M-integrable in the limit on S and the two integrals are equal.

Proof. Let ε > 0. By Saks-Henstock Lemma in the limit (Lemma 3.3), there
is a gauge ∆ : S −→ T such that

sup
{(Fi,ui)}1≤i≤p∈PΠf (∆)

|〈x∗,
i=p∑
i=1

µ(Fi)f(ui)〉 −
∫
∪i=p

i=1Fi

〈x∗, f〉 dµ| ≤ ε

2
,

for all x∗ ∈ BX∗ . Let E ∈ Σf , by hypothesis, there exists η > 0 such that

sup
x∗∈BX∗

|
∫
F

〈x∗, f〉 dµ| ≤ ε

2
,

for all F ∈ Σ with µ(E ∩ F ) ≤ η (Definition 2.2). Let P∞ := {(Ei, ti)}i≥1 be
fixed generalized McShane partition of S subordinate to ∆ and x∗ ∈ BX∗ and
choose an integer n0 ≥ 1 such that µ(E ∩ ∪i=∞i=n Ei) ≤ η for all n ≥ n0. Then

sup
x∗∈BX∗

|
∫
∪i=∞

i=n Ei

〈x∗, f〉 dµ| ≤ ε

2
for all n ≥ n0.

According, using Theorem 3.2 (3), we obtain
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|〈x∗, σn(f,P∞)〉 − 〈x∗, (ML)-

∫
S

f dµ〉|

≤ |〈x∗, σn(f,P∞)〉 −
∫
∪i=n

i=1Ei

〈x∗, f〉 dµ|+ |
∫
∪i=∞

i=n Ei

〈x∗, f〉 dµ|

≤ sup
{(Fi,ui)}1≤i≤p∈PΠf (∆)

|〈x∗,
i=p∑
i=1

µ(Fi)f(ui)〉 −
∫
∪i=p

i=1Fi

〈x∗, f〉 dµ|

+ |
∫
∪i=∞

i=n Ei

〈x∗, f〉 dµ|

≤ ε

2
+ |

∫
∪i=∞

i=n Ei

〈x∗, f〉 dµ|.

for all n ≥ n0. Taking the supremum over BX∗ in the above estimation yields

‖σn(f,P∞)− (ML)-

∫
S

f dµ‖ ≤ ε

2
+ sup
x∗∈BX∗

|
∫
∪i=∞

i=n Ei

|〈x∗, f〉 dµ| ≤ ε,

for all n ≥ n0. Consequently,

lim sup
n→+∞

‖σn(f,P∞)− (ML)-

∫
S

f dµ‖ ≤ ε.

Thus f is M-integrable on S.

Corollary 3.5. Let f : S −→ X a function. On suppose that there is h ∈
L1
R+(µ) such that

(∗∗) ‖f(t)‖ ≤ h(t) a.e.

Then f is M-integrable on S if and only if it is M-integrable in the limit on
S and the two integrals are equal.

Proof. Assume that f is M-integrable in the limit on S. By the inequality
(∗∗), the collection {〈x∗, f〉 : x∗ ∈ BX∗} is equi-continuous. Then f is M-
integrable on S.

Corollary 3.6. Let f : S → X be a function. Then f is M-integrable on S
if and only if it is Pettis integrable and M-integrable in the limit on S, and in
this case the integrals are equal.

Proof. Assume that f isM-integrable in the limit on S and Pettis integrable.
The Pettis integrability of f yields that the set {〈x∗, f〉, x∗ ∈ BX∗} is relatively
compact in L1

R(µ) ([9], p. 162). Then it is equi-continuous (Theorem 2.2).
Consequently f is M-integrable on S.
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Corollary 3.7. A function f : S → X is M-integrable on S if and only if it
is M-integrable in the limit on Σ.

Proof. The proof is consequence of Corollaries 3.1 and 3.6.

In order to pass from McShane integrability in the limit to McShane inte-
grability, we introduce the following new concept of local upper McShane
boundedness.

Definition 3.4. Let τ > 0. A function f : S −→ R is said to be locally τ -
upper McShane bounded if for each gauge ∆ : S −→ T and for each E ∈ Σ+,
there is an A ∈ Σ+(E) and generalized McShane partition P∞ = {(Ai, ti)}i≥1

of A subordinate to ∆ such that

1

µ(A)
lim sup
n→+∞

σn(f,P∞) ≤ τ.

A function f : S −→ X is said to be scalarly locally τ -upper McShane bounded
if, for each x∗ ∈ BX∗ , 〈x∗, f〉 is locally τ -upper McShane bounded.

The following technical lemma it used to proof the lemma 4.1 with an exhaustion-
type argument.

Lemma 3.4. Let (ai)i≥1 be a sequence in R and (λi)i≥1 be a sequence in R+

such that
∑i=∞
i=1 λi = 1. Then for each ε > 0, there is i0 ≥ 1 such that

ai0 ≤ rε := lim sup
n→+∞

i=n∑
i=1

λiai + ε.

Proof. Case. 1 If lim supn→+∞
∑i=n
i=1 λiai = +∞, there is nothing to prove.

Case. 2 If lim supn→+∞
∑i=n
i=1 λiai < +∞. Assume that there exists ε > 0

such that
ai > rε for all i ≥ 1.

Then, by taking n large enough, we obtain

i=n∑
i=1

λiai > rε(

i=n∑
i=1

λi).

Finally, passing to the lim supn→+∞ in the previous inequality, we get

rε − ε = lim sup
n→+∞

i=n∑
i=1

λiai ≥ rε( lim
n→+∞

i=n∑
i=1

λi) = rε,

for which is absurd.
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4 McShane integrability in the limit versus McShane in-
tegrability

In this section we attempt to determine a relation that may exist between the
McShane integral in the limit and the McShane integral. The smallest class
of functions for which the two integrals are equivalent is the class of scalarly
locally τ -upper McShane bounded functions:

Theorem 4.1. Let f : S −→ X be a function. If the following two conditions
hold,

(i) f is M-integrable in the limit on S

(ii) f is scalarly locally τ -upper McShane bounded for some τ > 0,

then f is M-integrable on S and the two integrals are equal.

The proof of Theorem 4.1 involves the following exhaustion type Lemma.

Lemma 4.1. Let f : S −→ R a function locally τ -upper McShane bounded
for some τ > 0 and L be a member of Σ+. Then, given any gauge ∆ :
S −→ T , there exists a generalized McShane partition P∞ := {Ei, ti)}i≥1 of
L subordinate to ∆ such that

f(ti) ≤ τ + 1 for all i ≥ 1

Proof. 1 ) Case µ is finite. The proof is an exhaustion-type argument in the
spirit of [10]. Fixed a gauge ∆ : S −→ T .
Let A1 denote the collection of subsets E ∈ Σ+(L) such that there is t ∈ L
for which

E ⊂ ∆(t) and f(t) ≤ τ + 1.

Since f is locally τ -upper McShane bounded, there is A ∈ Σ+(L) and gen-
eralized McShane partition P∞ = {(Ai, ti)}i≥1 of A subordinate to ∆ such
that

1

µ(A)
lim sup
n→+∞

σn(f,P∞) ≤ τ.

Using lemma 3.4, there is (A, tA) ∈ P∞ such that

A ⊂ ∆(tA) and f(tA) ≤ τ + 1.

Thus the collection A1 is not empty. If there is a set E ∈ A1 with µ(S\E) = 0,
then we are finished. Otherwise, let l1 be the smallest positive integer for which
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there is a set E1 ∈ A1 with 1
l1
≤ µ(E1) < µ(L). According there is t1 ∈ L

such that
E1 ⊂ ∆(t1) and f(t1) ≤ τ + 1.

Let A2 denote the collection of subsets E ∈ Σ+(L \ E1) such that there is
t ∈ L such that

E ⊂ ∆(t) and f(t) ≤ τ + 1.

Since f is locally τ -upper McShane bounded, there is A ∈ Σ+(L \ E1) and
generalized McShane partition P∞ = {(Ai, ti)}i≥1 of A subordinate to ∆ such
that

1

µ(A)
lim sup
n→+∞

σn(f,P∞) ≤ τ.

Applying again Lemma 3.4, there is (A, tA) ∈ P∞ such that

A ⊂ ∆(tA) and f(tA) ≤ τ + 1.

Thus the collection A2 is not empty. If there is a set E ∈ A2 with µ(L \E1 ∪
E) = 0, then we are finished. Otherwise, let l2 be the smallest positive integer
for which there is a set E2 ∈ A2 such that 1

l2
≤ µ(E2) < µ(L). Thus there

exists t2 ∈ L with
E2 ⊂ ∆(t2) and f(t2) ≤ τ + 1.

Continue in this way. If the process stops in finite numbers of steps then we
are finished. If the process does not stop, then we obtain a countable family
(Ei) of pairwise disjoint measurable subsets of L and a sequence (ti) in L such
that

1

li
≤ µ(Ei) < µ(L), Ei ⊂ ∆(ti) and

f(ti) ≤ τ + 1 for all i ≥ 1

(li being the smallest positive integer for which there is E ∈ Ai with 1
li
≤

µ(E) < µ(L)).
Set E∞ := ∪i=∞i=1 Ei. We claim that µ(L \E∞) = 0. Indeed, if µ(L \E∞) > 0,
then the local τ -upper McShane boundedness ensures the existence of A ∈ Σ+

contained in L \ E∞ and t ∈ L such that

A ⊂ ∆(t) and f(t) ≤ τ + 1.

Since for each positive integer n ≥ 1

i=n∑
i=1

1

li
≤ µ(∪i=ni=1Ei) < µ(L)
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and ln > 1, we can choose an integer n ≥ 1 such that

1

ln − 1
< µ(A).

As

A ⊂ L \ E∞ ⊂ L \ ∪i=n−1
i=1 Ei,

we conclude that A is a member of An. This contradicts the definition of ln.
Thus µ(L \ E∞) = 0 as claimed.

2 ) General case. Let L ∈ Σ+ and (Ak) be sequence of pairwise disjoint mea-
surable subsets of L such that L = ∪∞k=1Ak and µ|L(Ak) < +∞, for all k ≥ 1.
As f is locally τ -upper McShane bounded, by the first case, for each k ≥ 1,
there is a generalized McShane partition {Ek,i, tk,i)}i≥1 of Ak subordinate to
∆ such that

f(tk,i) ≤ τ + 1 for all i ≥ 1.

It suffices to verify that

µ(L \ ∪k=∞
k=1 ∪i=∞i=1 Ek,i) = 0.

By remarking that

∪k=∞
k=1 Ak \ (∪k=∞

k=1 ∪k=∞
i=1 Ek,i) ⊂ ∪k=∞

k=1 (Ak \ ∪i=∞i=1 Ek,i),

we get

µ(L \ ∪k=∞
k=1 ∪i=∞i=1 Ek,i) = µ(∪k=∞

k=1 Ak \ ∪k=∞
k=1 ∪i=∞i=1 Ek,i)

≤ µ(∪k=∞
k=1 (Ak \ ∪i=∞i=1 Ek,i))

=

k=∞∑
k=1

µ(Ak \ ∪i=∞i=1 Ek,i) = 0,

since

µ(Ak \ ∪i=∞i=1 Ek,i) = µ|Ak
(Ak \ ∪i=∞i=1 Ek,i) = 0 for all k ≥ 1.

Proof of Theorem 4.1. By virtue of Corollary 3.4 it suffices to prove that
condition (ii) implies that the set {〈x∗, f〉 : x∗ ∈ BX∗} is equi-continuous.
Indeed, let x∗ ∈ BX∗ and a fixed E ∈ Σ+. As 〈x∗, 1Ef〉 is integrable, by
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Theorem 3.1 (3) and the strong Saks-Henstock lemma (Lemma 3.1), we may
select a gauge ∆ : S −→ T such that

sup
{(Fi,ui)}1≤i≤p∈PΠf|E (∆)

|〈x∗,
i=p∑
i=1

µ(Fi)1Ef(ui)〉 −
∫
∪i=p

i=1Fi

〈x∗, 1Ef〉 dµ| ≤ µ(E),

where PΠf|E (∆) denotes the collection of all finite partial McShane partitions
of E subordinate to ∆. Now, Lemma 4.1 ensures the existence of a generalized
McShane partition {(Ai, ti)}i≥1 of E subordinate to ∆ such that

〈x∗, f(ti)〉 ≤ τ + 1 for all i ≥ 1.

Next, because Pm := {(E ∩Ai, ti)}1≤i≤m ∈ PΠf|E (∆) for all m ≥ 1, we get

|〈x∗, σ(1Ef,Pm)〉 −
∫
∪i=m

i=1 E∩Ai

〈x∗, f〉 dµ|

≤ sup
{(Fi,ui)}1≤i≤p∈PΠf|E (∆)

|〈x∗,
i=p∑
i=1

µ(Fi)1Ef(ui)〉 −
∫
∪i=p

i=1Fi

〈x∗, 1Ef〉 dµ| ≤ µ(E)

for all m ≥ 1. Whence∫
E∩∪i=m

i=1 Ai

〈x∗, f〉 dµ ≤ 〈x∗, σ(1Ef,Pm)〉+ µ(E)

≤ sup
i≥1
〈x∗, 1Ef(ti)〉

i=m∑
i=1

µ(E ∩Ai) + µ(E)

≤ (τ + 1)µ(E ∩ ∪i=mi=1 Ai) + µ(E)

≤ (τ + 2)µ(E),

for every m ≥ 1. As∫
E

〈x∗, f〉 dµ = lim
m→∞

∫
E∩∪i=m

i=1 Ai

〈x∗, f〉 dµ,

(since (∪i=mi=1 Ai)m is an increasing sequence and µ(E \ ∪i=∞i=1 Ai) = 0), the
above estimation yields ∫

E

〈x∗, f〉 dµ ≤ (τ + 2)µ(E).

By arbitrariness of x∗ and E , we get

|
∫
E

〈x∗, f〉 dµ| ≤ (τ + 2)µ(E).
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Since this holds for all x∗ ∈ BX∗ and for every E ∈ Σ+, by virtue of the
remark 2.1 of [12], we conclude that {〈x∗, f〉 : x∗ ∈ BX∗} is equi-continuous.
The following Theorem presents a decomposition relation between the Mc-
Shane integral in the limit and the McShane integral:

Theorem 4.2. If a function f : S → X is M-integrable in the limit on S,
then there exists an increasing sequence (S`)`≥1 in Σf with union S such that
1S`

f is M-integrable on S for each ` ≥ 1.

The proof of Theorem 4.2 involves the following Lemmas.

Lemma 4.2. If f : S → X is a scalarly integrable function, then there exists
an increasing sequence (S`)`≥1 in Σf with union S such that {〈x∗, 1S`

f〉 : x∗ ∈
BX∗} is uniformly integrable for each ` ≥ 1.

Proof. Since µ is σ-finite, there is an increasing sequence (Rk)k≥1 in Σf such
that S = ∪k≥1Rk. For each k ≥ 1, set

Ck := {t ∈ Rk : ‖f(t)‖ ≤ k}.

Then (Ck)k≥1 is an increasing sequence with union S and µ∗(Ck) <∞ for all
k ≥ 1, where µ∗ stands for the outer measure induced by µ. Let Dk ∈ Σf be
such that Ck ⊂ Dk and µ(Dk) = µ∗(Ck). Since 〈x∗, f〉 is uniformly bounded
on Ck and µ∗(Ck) = µ(Dk), 〈x∗, f〉 is uniformly bounded almost everywhere
on Dk. Set

S` := ∪k=`
k=1Dk ` ≥ 1.

Clearly, (S`)`≥1 is a non-decreasing sequence in Σf with union S. Further, the
function 〈x∗, 1S`

f〉 is uniformly bounded almost everywhere for each ` ≥ 1, in
turn {〈x∗, 1S`

f〉 : x∗ ∈ BX∗} is uniformly integrable.

Lemma 4.3. Let f : S → X be a function and let E ∈ Σ. Then 1Ef is M-
integrable in the limit on S if and only if the restriction f|E is M-integrable
in the limit on E, and the two integrals are equal.

Proof. Set g := 1Ef . Let ε > 0. If g isM-integrable in the limit on S, then
by Proposition 3.3, there exists a gauge ∆ : S −→ T such that

sup
P∞∈Π∞|E(∆)

lim sup
n→∞

|〈x∗, σn(g,P∞)〉 −
∫
E

〈x∗, g〉 dµ| ≤ ε

for all x∗ ∈ BX∗ with∫
E

〈x∗, g〉 dµ =

∫
S

1E〈x∗, g〉 dµ =

∫
S

〈x∗, g〉 dµ = 〈x∗, (ML)-

∫
S

g dµ〉,
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where the last equality follows from Theorem 3.2(3). As g|E = f|E , we obtain

sup
P∞∈Π∞|E(∆)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, (ML)-

∫
S

g dµ〉| ≤ ε

for all x∗ ∈ BX∗ . Thus f|E is M-integrable in the limit on E, with inte-
gral (ML)-

∫
E
f|E dµ = (ML)-

∫
S
g dµ. Conversely, suppose that f|E is M-

integrable in the limit on E and set $E := (ML)-
∫
E
f|E dµ. We prove that

g is M-integrable in the limit on S. Applying the Saks-Henstock Lemma in
the limit (Lemma 3.3) to f|E , we way select a gauge (∆E) from E into T such
that

(4.3.1). sup
{(Fi,ui)}1≤i≤p∈PΠf (∆E)

|〈x∗,
i=p∑
i=1

µ(Fi)f(ui)〉 −
∫
∪i=p

i=1Fi

〈x∗, f〉 dµ| ≤ ε

2

for all x∗ ∈ BX∗ . Now for each n ≥ 1, choose a closed set Fn and an open set
On with Fn ⊂ E ⊂ On such that

(4.3.2) µ(E \ Fn) ≤ 1

n
and

(4.3.3) µ(On \ E) ≤ 2−(n+1)ε

n+ 1

and define the gauge (∆) of from S into T by

∆(t) := ∆E(t) ∩On if t ∈ E and n ≤ ‖f(t)‖ < n+ 1

:= S \ Fn if t ∈ S \ E.

Let ({(Ei, ti)}i≥1 be a generalized McShane partition of S subordinate to ∆
and for each i ≥ 1 set

Hi := Ei ∩ E if ti ∈ E
:= ∅ otherwise.

Since {(Hi, ti)}i≥1 is a partial McShane partition of E subordinate to (∆E),
(4.3.1) gives

|〈x∗,
i=n∑
i=1

µ(Hi)f(ti)〉 −
∫
∪i=n

i=1Hi

〈x∗, f〉 dµ|

≤ sup
{(Fi,ui)}1≤i≤p∈PΠf (∆E)

|〈x∗,
i=p∑
i=1

µ(Fi)f(ui)〉 −
∫
∪i=p

i=1Fi

〈x∗, f〉 dµ| ≤ ε

2
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for every n ≥ 1. Therefore, by the triangle inequality and the definition of Hi,
we find that

|〈x∗,
i=n∑
i=1

µ(Ei)g(ti)〉 −
∫
∪i=n

i=1Hi

〈x∗, f〉 dµ|

≤ |〈x∗,
i=n∑
i=1

µ(Ei)g(ti)〉 − 〈x∗,
i=n∑
i=1

µ(Hi)f(ti)〉|

+ |〈x∗,
i=n∑
i=1

µ(Hi)f(ti)〉 −
∫
∪i=n

i=1Hi

〈x∗, f〉 dµ|

≤
∑

{i=1,...,n/ti∈E}

µ(Ei \ E)‖f(ti)‖+
ε

2

=

k=∞∑
k=1

∑
{i=1,...,n/ti∈E, k≤‖f(ti)‖<k+1}

µ(Ei \ E)‖f(ti)‖+
ε

2

for every n ≥ 1. As Ei ⊂ ∆(ti) ⊂ Ok for all i ≥ 1 such that ti ∈ E and
k ≤ ‖f(ti)‖ < k + 1, we obtain

(4.3.4) |〈x∗,
i=n∑
i=1

µ(Ei)g(ti)〉 −
∫
∪i=n

i=1Hi

〈x∗, f〉 dµ|

≤
k=∞∑
k=1

(k + 1)µ(Ok \ E) + ε ≤
k=∞∑
k=1

2−k
ε

2
+
ε

2
= ε,

for every n ≥ 1. On the other hand, we have

(4.3.5), |
∫
E

〈x∗, f〉 dµ−
∫
∪i=∞

i=1 Hi

〈x∗, f〉 dµ| ≤
∫
E\Fn

|〈x∗, f〉| dµ

because, for every n ≥ 1

E = [∪i≥1,ti∈E(E ∩ Ei)] ∪ [∪i≥1,ti∈S\E(E ∩ Ei)]
⊂ (∪i=∞i=1 Hi) ∪ [∪i≥1,ti∈S\E(E ∩∆(ti))] = (∪i=∞i=1 Hi) ∪ (E \ Fn) ⊂ E,

in view of the definition ofHi and ∆. Remarking that 〈x∗, $E〉 =
∫
E
〈x∗, f|E〉 dµ =
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∫
E
〈x∗, f〉 dµ and putting (4.3.4) and (4.3.5) together, we get

|〈x∗,
i=n∑
i=1

µ(Ei)g(ti)〉 − 〈x∗, $E〉| ≤ |〈x∗,
i=n∑
i=1

µ(Ei)g(ti)〉 −
∫
∪i=n

i=1Hi

〈x∗, f〉 dµ|

+ |
∫
E

〈x∗, f〉 dµ−
∫
∪i=∞

i=1 Hi

〈x∗, f〉 dµ|

≤ ε+

∫
E\Fn

|〈x∗, f〉| dµ

for every n ≥ 1. As (4.3.1) and the integrability of 〈x∗, f〉 on E ensure

lim
n→∞

∫
E\Fn

|〈x∗, f〉| dµ = 0,

we obtain

lim sup
n→∞

|〈x∗,
i=n∑
i=1

µ(Ei)g(ti)〉 − 〈x∗, $E〉| ≤ ε.

Thus g is M-integrable in the limit on S with integral $E .

Proof of Theorem 4.2. Let (S`)`≥1 be the sequence given in Lemma 4.2.
By proposition 3.2 and Lemma 3.3 [12] , we can select a sequence (∆m) of
gauges, and a fixed sequence of generalized McShane partitions of S adapted
to (∆m) ({(Emi , tmi )}i≥1)m≥1 such that for any fixed ` ≥ 1, there exists a
strictly increasing sequence (pm)m≥1 of positive integers (possibly depending
on `) such that

lim
m→∞

〈x∗,
i=pm∑
i=1

µ(S` ∩ Emi ∩ E)f(tmi )〉 =

∫
S`∩E

〈x∗, f〉 dµ

for all x∗ ∈ X∗ and for all E ∈ Σ. In other words, this equality becomes

lim
m→∞

∫
S`∩E

〈x∗,
i=pm∑
i=1

1Em
i
f(tmi )〉 dµ =

∫
S`∩E

〈x∗, f〉 dµ

for all x∗ ∈ X∗ and for all E ∈ Σ. As the functions
∑i=pm
i=1 1Em

i
f(tmi ) (m ≥ 1)

are obviously Pettis integrable and, by Lemma 4.2, the set {〈x∗, 1S`
f〉 : x∗ ∈

BX∗} is uniformly integrable, it follows from Theorems 2.2 and 2.1 that 1S`
f

is Pettis integrable. Therefore, by Corollary 3.1, f|S`
is M-integrable in the

limit on S`. Equivalently 1S`
f is M-integrable in the limit on S, in view of

Lemma 4.3. The desired conclusion then follows from Corollary 3.6.
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5 Beppo Levi’s Theorem for the McShane integral in the
limit

In this section we state our Beppo Levi’s version convergence theorem for the
McShane integral in the limit:

Theorem 5.1. Suppose that µ is finite. Let (fn) be a sequence ofM-integrable
in the limit functions from S to X such that f =

∑n=∞
n=1 fn pointwise on S

and the series
∑
n≥1 ‖fn‖Pe is convergent.

Then the series
∑
n≥1(ML)-

∫
S
fn dµ is convergent, f is M-integrable in the

limit on S and

(ML)-

∫
S

f dµ =

n=∞∑
n=1

(ML)-

∫
S

fn dµ

Proof. Let ε > 0, x∗ ∈ BX∗ and Fn =
∑i=n
i=1 fi. Since

n=∞∑
n=1

‖(ML)-

∫
S

fn dµ‖ ≤
n=∞∑
n=1

‖fn‖Pe <∞ (Theorem 3.2 (3)),

the series
∑
n≥1(ML)-

∫
S
fn dµ is (absolutely) convergent by completeness of

X. For convenience, set $ =
∑n=∞
n=1 (ML)-

∫
S
fn dµ. By Theorem 3.2 (1) and

Saks Henstock Lemma in the limit (Lemma 3.3), for each n ≥ 1 we may select
a gauge ∆n from S to T such that

(5.1) sup
{(Ei,ti)}1≤i≤p∈PΠf (∆n)

|〈x∗,
i=p∑
i=1

µ(Ei)Fn(ti)〉 −
∫
∪i=p

i=1Ei

〈x∗, Fn〉 dµ| ≤
ε

3

1

2n

where PΠf (∆n) denotes the collection of all finite partial McShane parti-
tions of S subordinate to ∆n. Pick n0 ≥ 1 such that

∑n=∞
n=n0

‖fn‖Pe < ε
3 . For

every t ∈ S there exists n(t) ≥ n0 such that n ≥ n(t) implies ‖Fn(t)− f(t)‖ <
ε
3ϕ(t), where ϕ is the function in Lemma 7 [13]. Define a gauge ∆ from S to
T by setting ∆(t) = ∆n(t)(t) ∩∆ϕ(t), t ∈ S and let P∞ = {(Ei, ti)}i≥1 be a
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generalized McShane partition of S subordinate to ∆ and m ≥ 1, then

|〈x∗, σm(f,P∞)〉 − 〈x∗, $〉|

= |〈x∗,
n=∞∑
n=1

i=m∑
i=1

µ(Ei)fn(ti)〉 − 〈x∗,
n=∞∑
n=1

(ML)-

∫
S

fn dµ〉|

= |
n=∞∑
n=1

i=m∑
i=1

µ(Ei)〈x∗, fn(ti)〉 −
n=∞∑
n=1

∫
S

〈x∗, fn〉 dµ|

≤ |
i=m∑
i=1

{
n=∞∑
n=1

µ(Ei)〈x∗, fn(ti)〉 −
n=∞∑
n=1

∫
∪i=m

i=1 Ei

〈x∗, fn〉 dµ}|

+ |
n=∞∑
n=1

∫
S\∪i=m

i=1 Ei

〈x∗, fn〉 dµ|

≤ |
i=m∑
i=1

n=∞∑
n=n(ti)+1

〈x∗, fn(ti)〉µ(Ei)|

+ |
i=m∑
i=1

{
n=n(ti)∑
n=1

〈x∗, fn(ti)〉 −
n=n(ti)∑
n=1

∫
Ei

〈x∗, fn〉 dµ}|

+ |
i=m∑
i=1

n=∞∑
n=n(ti)+1

∫
Ei

〈x∗, fn〉 dµ|+
n=∞∑
n=1

∫
S\∪i=m

i=1 Ei

|〈x∗, fn〉| dµ

= T1 + T2 + T3 +

n=∞∑
n=1

∫
S\∪i=m

i=1 Ei

|〈x∗, fn〉| dµ,

with obvious definitions for the Ti. First

T1 ≤
i=m∑
i=1

|
n=∞∑

n=n(ti)+1

〈x∗, fn(ti)〉|µ(Ei)

≤
i=m∑
i=1

‖
n=∞∑

n=n(ti)+1

fn(ti)‖µ(Ei) ≤
ε

3

i=m∑
i=1

ϕ(ti)µ(Ei) ≤
ε

3

by Lemma 7 [13]. Next for estimating T2, let pm = max{n(t1), ..., n(tm)}.
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Then, by inequality (5.1),

T2 = |
i=m∑
i=1

{〈x∗, Fn(ti)(ti)〉 −
∫
Ei

〈x∗, Fn(ti)〉 dµ}|

= |
k=pm∑
k=1

∑
i,n(ti)=k

{〈x∗, Fn(ti)(ti)〉 −
∫
Ei

〈x∗, Fn(ti)〉 dµ}|

≤
k=pm∑
k=1

|
∑

i,n(ti)=k

{〈x∗, Fn(ti)(ti)〉 −
∫
Ei

〈x∗, Fn(ti)〉 dµ}| ≤
k=pm∑
k=1

ε

3

1

2k
<
ε

3
.

Note that the series in T3 converges (absolutely) by the observation above.
Then

T3 =

i=m∑
i=1

n=∞∑
n=n(ti)+1

∫
Ei

〈x∗, fn〉 dµ| ≤ sup
x∗∈BX∗

i=m∑
i=1

n=∞∑
n=n(ti)+1

∫
Ei

〈x∗, fn〉 dµ|

≤ sup
x∗∈BX∗

i=m∑
i=1

n=∞∑
n=n0+1

∫
Ei

|〈x∗, fn〉| dµ

≤ sup
x∗∈BX∗

n=∞∑
n=n0+1

∫
S

|〈x∗, fn〉| dµ

≤
n=∞∑

n=n0+1

‖fn‖Pe <
ε

3
.

Consequently, we have

lim sup
m→∞

|〈x∗, σm(f,P∞)〉 − 〈x∗, $〉| ≤ ε+ lim sup
m→∞

n=∞∑
n=1

∫
S\∪i=m

i=1 Ei

|〈x∗, fn〉| dµ.

Since the series
∑
n≥1

∫
S\∪i=m

i=1 Ei
|〈x∗, fn〉| dµ is dominated term by term by

convergent series
∑
n≥1 ‖fn‖Pe and by the integrability of 〈x∗, fn〉 on S we

have

lim
m→∞

∫
S\∪i=m

i=1 Ei

|〈x∗, fn〉| dµ = 0,

the dominated convergence theorem for series gives

lim sup
m→∞

n=∞∑
n=1

∫
S\∪i=m

i=1 Ei

|〈x∗, fn〉| dµ =

n=∞∑
n=1

lim sup
m→∞

∫
S\∪i=m

i=1 Ei

|〈x∗, fn〉| dµ = 0.
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Thus

lim sup
m→∞

|〈x∗, σm(f,P∞)− 〈x∗, $〉| ≤ ε,

that is f is M-integrable in the limit on S and

(ML)-

∫
S

f dµ =

n=∞∑
n=1

(ML)-

∫
S

fn dµ.

Problem . Let (fn) be a sequence ofM-integrable in the limit functions from
S to X such that f(t) = limn→∞ fn(t) exists in X, for the weak (resp. norm)
topology of X, for almost every t ∈ S and the set {〈x∗, f〉 : x∗ ∈ BX∗} is not
equi-continuous, does it have f to be M-integrable in the limit on S? If the
answer is no, what are the conditions so that f becomes M-integrable in the
limit on S?
As consequence of Theorem 5.1, we have

Corollary 5.1. Suppose that µ is finite. Let (fn) be a sequence of M-
integrable in the limit functions from S to X and suppose that f = limn→∞ fn
pointwise on S. If (fn) is ‖.‖Pe-Cauchy, then f is M-integrable in the limit
on S and limn→∞ ‖fn − f‖Pe = 0.

Proof. Pick a subsequence (nk) satisfying ‖fnk+1 − fnk
‖Pe ≤ 1

2k and set
gk = fnk+1 − fnk

. Then

lim
k→∞

j=k∑
j=1

gj = lim
k→∞

(fnk+1 − f1) = f − fn1

pointwise and and the series
∑
k≥1 ‖gk‖Pe is convergent so Theorem 5.1 implies

that f − fn1 is M-integrable in the limit on S and

lim
k→∞

‖fnk
− f‖Pe = lim

k→∞
‖
j=k∑
j=1

gj − (f − fn1)‖Pe = 0.

Since the same argument can be applied to any subsequence of (fn), it follows
that

lim
n→∞

‖fn − f‖Pe = 0.
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Corollary 5.2. Suppose that µ is finite. Let (En)n≥1 be a sequence of disjoint
subsets of Σf , let (xn)n≥1 be a sequence in X, and let f : S → X be the
function defined by

f(t) :=

n=∞∑
n=1

xn1En
(t) (t ∈ S).

If the series
∑
n≥1 µ(En)xn is absolutely convergent, then f is M-integrable

in the limit on S, and

(ML)-

∫
S

f dµ =

n=∞∑
n=1

µ(En)xn.
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