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WHICH INTEGRABLE FUNCTIONS FAIL
TO BE ABSOLUTELY INTEGRABLE?

In this note we deal with a general integration theory for scalar functions of one
real variable which can be the improper Riemann theory, or more generally the
Denjoy-Perron (or Henstock-Kurzweil) theory. Actually, the main property of
our integration theory we will use is the following: if f is an integrable function
defined on an interval [a, b] then its indefinite integral defined by

F (x) =

∫ x

a

f for all x ∈ [a, b]

is continuous, differentiable almost everywhere (a.e.) and

F ′(x) = f(x) for almost all x ∈ [a, b]

The typical example of a function which is integrable but fails to be absolutely

integrable is the function sin(x)
x on the interval [0,+∞). Strongly inspired by

this example, there is a very natural and well known method that one may
use to construct further examples in a given nontrivial interval [a,b]. It can
be seen, for instance, in [1], Chapter 10, Example 10.2.2, or in [4], Chapter
7, Exercise (5). The idea is to take a conditionally convergent series of real
numbers (i. e., a convergent series which is not absolutely convergent)

∑
cn,
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and a strictly monotone sequence (tn) in [a, b], and then build a function f on
[a, b] in such a way that

cn =

∫ tn

tn−1

f for all n. (1)

It is natural to ask: is it possible to construct further examples of integrable
non absolutely integrable functions? I believe that at first one thinks that the
answer should be affirmative. We will see that, in some way, the answer is
“no”.

Notice that the method mentioned above tells us that given a conditionally
convergent series

∑
cn, and a strictly monotone sequence (tn) in [a, b], we can

build an integrable but nonabsolutely integrable function f on [a, b] such that
(1) holds. We have that conversely, given an integrable but nonabsolutely
integrable function f on [a, b] we can find a conditionally convergent series∑
cn, and a strictly monotone sequence (tn) in [a, b] such that (1) holds:

Theorem. Assume that f : [a, b] → R is an integrable but nonabsolutely
integrable function, then there exists a strictly monotone sequence (tn) in [a, b]
such that the series

∞∑
n=1

∫ tn

tn−1

f

is conditionally convergent.

Of course, I am sure that for some people the result would be “well known,”
but I could not find it in the literature. Let us see the proof. We need first
the following lemma:

Lemma. Let F : [a, b]→ R be a function which does not have bounded varia-
tion (in short, (BV)) on [a, b], then at least one of the following two conditions
holds:

(L) There exists c ∈ (a, b] such that for each α ∈ [a, c) F is not (BV) on
[α, c].

(R) There exists c ∈ [a, b) such that for each β ∈ (c, b] F is not (BV) on
[c, β].

Proof of the Lemma. Let J = {t ∈ [a, b] : F is (BV) on [a, t]}. It is clear
that a ∈ J , b 6∈ J and that if β ∈ J then [a, β] ⊂ J . Therefore, J is an interval.
Either J = [a, c) or J = [a, c] for some c ∈ [a, b].
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Case 1: J = [a, c). Since a ∈ J , it follows that c > a and then c ∈ (a, b].
Let us see that (L) holds. If α ∈ [a, c) = J , then α ∈ J . Since c 6∈ J it follows
that F is not (BV) on [α, c].

Case 2: J = [a, c]. Since b 6∈ J , it follows that c < b and then c ∈ [a, b).
Let us see that (R) holds. If β ∈ (c, b], then β 6∈ J . Since c ∈ J it follows that
F is not (BV) on [c, β].

Proof of the Theorem. Assume that f : [a, b] → R is an integrable non-
absolutely integrable function and let F be its indefinite integral:

F (x) =

∫ x

a

f for all x ∈ [a, b]

F is continuous, differentiable a.e. and

F ′(x) = f(x)

a.e. in [a, b]. Let M be an upper bound of |F | in [a, b]. Since f is not Lebesgue
integrable, by a classical result of Lebesgue (see Chapter 7, Exercise 13 (e) of
[7], or Theorem 8.19 in the former editions of [7]), we deduce that F is not
(BV) on [a, b]. Therefore, we can apply the preceding lemma. Let us suppose,
for instance, that (L) holds (we could proceed in an analogous way if (R)
holds). There exists c ∈ (a, b] such that for each α ∈ [a, c) F is not (BV)
on [α, c]. Since F is not (BV) on [a, c] (with α = a), there exists a partition
a = t0 < t1 · · · < tm = c of [a, c] such that

m∑
i=1

|F (ti)− F (ti−1)| ≥ 2M + 1

Therefore,

m−1∑
i=1

|F (ti)− F (ti−1)|+ 2M ≥
m∑
i=1

|F (ti)− F (ti−1)| ≥ 2M + 1

and it follows

m−1∑
i=1

|F (ti)− F (ti−1)| ≥ 1 (2)

Notice that, if we denote a1 = tm−1, we have that a = t0 < t1 · · · < tm−1 = a1
is a partition of [a, a1] satisfying (2) and F is not (BV) on [a1, c], thanks to (L)
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(with α = a1). Of course, we can proceed in the same way in [a1, c]. Therefore,
by induction, we find a strictly increasing sequence (tn) in [a, c] such that

∞∑
n=1

(F (tn)− F (tn−1)) =

∞∑
n=1

∫ tn

tn−1

f

is not absolutely convergent. However, if we denote L = sup{tn : n ∈ N} =
limm tm, we have

∞∑
n=1

∫ tn

tn−1

f = lim
m

m∑
n=1

∫ tn

tn−1

f = lim
m

∫ tm

t0

f =

∫ L

t0

f

Remark. One can easily verify that the statement in the theorem also holds
for unbounded intervals.

There is a large literature on the relations of Riemann types integral of
functions taking values in general Banach spaces and series (see, for instance,
[2, 3, 5, 6, 8]).
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