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A NOTE ON THE LUZIN-MENCHOFF
THEOREM

The Luzin-Menchoff theorem asserts that if E is a measurable set on the
real line, and K ⊂ E is a closed subset such that every x ∈ K is a density
point of E, then there is a perfect set, F , such that K ⊂ F ⊂ E and every
x ∈ K is a density point of F .

Although it is been attributed to Luzin and Menchoff, the two never pub-
lished a proof. The earliest published proofs of this result are by Luzin’s
student Bogomolova [1] and by Zahorski [10]. In [9], Zahorski used the Luzin-
Menchoff theorem to show that if E is an Fσ set such that every point of E is
its density point, then there is an approximately continuous function f with
the property that 0 < f ≤ 1 on E and f = 0 elsewhere. In this paper, Zahorski
points to a paper by Maximoff [4] for a proof of the Luzin-Menchoff theorem.
Another proof is given in [2] and one in [3]. See [5] for an interesting take on
the Luzin-Menchoff theorem and its relationship to the well-known Urysohn
lemma.

In [6], O’Malley used the Luzin-Menchoff theorem to establish the so-called
O’Malley property for Fσ sets, which is used to supply proofs to a number of
monotonicity theorems for real valued functions. A Luzin-Menchoff type re-
sult where the density one is replaced by weaker density conditions would
strengthen these monotonicity theorems from [6]. It turns out that the proof
given in [2] can be modified (and greatly simplified) to achieve this objec-
tive. Moreover, the Luzin-Menchoff Theorem presented in this note is also
generalized to Rm for m ≥ 1.

First we will review necessary definitions and basic properties of Lebesgue
measure and perfect sets.
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By λ(E) we denote Lebesgue measure in Rm, and by Br(c) we denote the
open ball centered at c and with the radius r. The volume of m dimensional
ball is equal to Brm where the constant B can be expressed in terms of Gamma

function as B = πm/2

Γ
(
m/2+1

) . Lower, d−(E, u), and upper, d+(E, u), densities

of E at u are defined as lim infr→0+
λ(E∩Br(u))

Brm and lim supr→0+
λ(E∩Br(u))

Brm

respectively. When the two are equal, we use d(E, u) to denote the common
value. When d(E, u) = 1 we say that u is a density point of E. It is a
remarkable fact that almost every u ∈ E is a density point of E. (See [8] page
141.) Hence if E is measurable, and E′ = {u ∈ E : u is a density point of E}
then E′ is measurable and λ(E′) = λ(E).

We will need the following fact about Lebesgue measure. For every mea-
surable set E and for every ε > 0, there is a closed set F ⊂ E such that
λ(E \ F ) < ε. (See [8], Theorem 2.20 (b) page 50.) Here F closed can be
replaced with F perfect (i.e. a closed set with no isolated points) and we will
do so. This replacement is justified by the property that closed sets can be
decomposed (uniquely) as P ∪C, where P is perfect and C is countable. (See
[7], Exercise 28 page 45.)

Finally if |a − b| denotes the Euclidean distance, then dist(x,C) is the
distance from a point x to a set C, that is dist(x,C) = inf{|x − c| : c ∈
C}. In the proof of Theorem 2 below we will use the simple fact that the
distance, dist(x,C), is a continuous function of x. (In fact for every x, y,
|dist(x,C)− dist(y, C)| ≤ |x− y|.)

Luzin-Menchoff Theorem. Let E be a measurable set in Rm and K a closed
subset of E. Then there is a closed set, F , such that K ⊂ F ⊂ E and for all
u ∈ K, d−(F, u) = d−(E, u) and d+(F, u) = d+(E, u). Moreover d(E, x) = 1
for every x ∈ F \K, and if d+(E, u) > 0 for every u ∈ K, then F is perfect.

Proof. Let E′ = {u ∈ E : u is a density point of E}. Let Sn = E′ ∩ {x :
1

n+1 < dist(x,K) ≤ 1
n}. As an intersection of two measurable sets, Sn is

measurable. Let Kn ⊂ Sn be a perfect set such that λ(Sn \ Kn) < 1
2n and

define F =
⋃∞
n=1Kn ∪K. Since Kn ⊂ E′, d(E, x) = 1 for every x ∈ F \K.

To show that F is a closed set, let xn be a sequence of points from F that
converges to x. If x /∈ K, since K is closed there exist a positive integer p
such that 1

p+1 < dist(x,K). The continuity of the distance implies that for

all sufficiently large k, 1
p+1 < dist(xk,K). Thus for all sufficiently large k,

xk ∈ ∪pj=1Kj and since ∪pj=1Kj is closed it must contain x. Hence F is a
closed set.

Fix u ∈ K, and let Br(u) be a ball of radius r < 1. Let N be the unique
integer such that 1

N+1 ≤ r < 1
N . If Br(u) ∩ Sn 6= ∅, then for e ∈ Br(u) ∩ Sn
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we have 1
N > r > |e − u| ≥ dist(e,K) > 1

n+1 . Thus if Br(u) ∩ Sn 6= ∅, then
n ≥ N . This observation justifies the second and the third equalities below:

λ(F ∩Br(u)) = λ(K ∩Br(u)) +

∞∑
n=1

λ(Kn ∩Br(u))

= λ(K ∩Br(u)) +

∞∑
n=N

λ(Kn ∩Br(u))

≥ λ(K ∩Br(u)) +

∞∑
n=N

λ(Sn ∩Br(u))−
∞∑
n=N

1

2n

= λ(E′ ∩Br(u))− 1

2N−1
= λ(E ∩Br(u))− 1

2N−1
.

Hence

λ(E ∩Br(u)) ≥ λ(F ∩Br(u)) ≥ λ(E ∩Br(u))− 1

2N−1
. (1)

Since r ≥ 1
N+1 , it follows that 1

Brm ≤
(N+1)m

B . From (1) we get

λ(E ∩Br(u))

Brm
≥ λ(F ∩Br(u))

Brm
≥ λ(E ∩Br(u))

Brm
− (N + 1)m

B2N−1
. (2)

The result about equalities of the densities follows from (2) and the obser-

vation that as r → 0, N →∞ so that (N+1)m

B2N−1 → 0.
Finally if E has positive upper density at every x ∈ K, then d+(F, x) =

d+(E, x) > 0. Hence x can’t be an isolated point of F . Thus F is perfect.

When we are working on the real line it is common to consider one-sided
left and right upper and lower densities. The theorem remains true if densities
under consideration are one-sided.
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endlich ist, Tôhoku Math. J., 48 (1941), 321–330.


