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RANDOM CUTOUTS OF THE UNIT CUBE
WITH I.U.D CENTERS

Abstract

Consider the random open balls Bn(ω) := B(ωn, rn) with their cen-
ters ωn being i.u.d. on the d-dimensional unit cube [0, 1]d and with their

radii rn ∼ cn−
1
d for some constant 0 < c < (β(d))−

1
d , where β(d) is the

volume of the d dimensional unit ball. We call [0, 1]d −
⋃∞

n=1Bn(ω) a
random cutout set. In this paper, we present an exposition of Zähle
cutout model in [4] by a detailed study of such a random cutout set for
the purpose of teaching and learning. We show that with probability one
Hausdorff dimension of such random cut-out set is at most d(1−β(d)cd)
and frequently equals d(1 − β(d)cd).

1 Introduction

The term fractal was first introduced by Mandelbrot in 1975 and usually refers
to sets which, in some sense, have a self-similar structure. The Cantor ternary
set is one of the best known and most easily constructed fractals. Although
Mandelbrot and others have modeled a great number of real objects using such
fractals [1, 2], simple fractals can have limitations when modeling complex
real phenomena. As pointed out in [2] in such cases random fractals can prove
considerably more satisfactory. Some form of self-similarity is common for
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random fractal models as well, in particular this is true for those arising from
stochastic processes.

Random fractals arise as sets derived from non-differentiable stochastic
processes and fields, such as the zeros of Brownian motion or the zeros of
other recurrent processes with independent stable increments. One important
theme in modern stochastic geometry is to generate the “pure geometric” con-
structs of random fractals, but without the aid of random fields. The earliest
investigation of this nature can be found in [3] where Mandelbrot constructed
a random set on the real line by removing or “cutting out” a sequence of
random intervals with decreasing length. This became known as the random
cutout set. Mandelbrot’s dimension calculations for this random cutout set
were based on what is referred to as a birth and death process. Subsequently,
Zähle in [4] studied generalizations of Mandelbrot’s cutout model in higher
dimensions. Here, the intervals removed in Mandelbrot’s cutout model are re-
placed by considerably more general random open sets, and the approach used
in the dimension calculations is purely measure-geometric. In fact, Zähle’s en-
tire approach is quite different from that found in [3]. Other constructive,
purely geometric examples can be found in [5-13] and the references therein.
In [4], the author presents various general conditions under which the essential
dimension of a random cutout fractal can be found. However, these results
and related conditions are sufficiently abstract (and general) that they can
provide a steep initial learning curve to someone just learning the material.
The purpose of the present paper is to provide a basic understanding of the
Zähle’s machinery and results by making a detailed study of a specific case
of Zähle’s cutout model. In Falconer’s book [10], there is an exposition of ex-
actly such a case in the one-dimensional case, while the two dimensional case
is left as an exercise (see Exercise 8.4). In this paper, we expand and extend
Falconer’s one dimensional result to high-dimensional space and fill in several
salient details. In all of this, it is important to highlight that although the
form of the generalization from one dimensional space to dimensions d ≥ 2 is
rather straightforward, some of the proofs verifying that generalization remain
significantly difficult. We begin by defining our basic framework.

Given a probability space (Ω,F , P ) and let {rn}n≥1 be a sequence of pos-
itive real numbers which is decreasing to zero. Let {ωn}n≥1 be a sequence of
independent and identically distributed random variables which are defined
on (Ω,F , P ) and take values in the unit cube [0, 1]d. We shall call

Bn(ω) := B(ωn, rn) := {x ∈ [0, 1]d : |ωn − x| < rn}

a random open ball throughout this paper, where | · | denote the Euclidean
distance in Rd. For ω ∈ Ω, we define K0 = K0(ω) = [0, 1]d, and recurrently,
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Kn(ω) = Kn−1(ω) − Bn(ω) for n ≥ 1. Then {Kn(ω)}n≥1 is a sequence of
random compact sets and Kn+1(ω) ⊂ Kn(ω). We call

K(ω) =

∞⋂
n=0

Kn(ω) = [0, 1]d −
∞⋃
n=1

Bn(ω)

a random cutout set. Note that this construction differs from cutout set of
[14] in that open balls removed may overlap.

Let {an} and {bn} be two sequences of positive real numbers which are
decreasing to zero. We say that they are equivalent, and denote it by an ∼ bn,
if an

bn
→ 1 as n→∞. In this paper we are interested in the case that each ωn

is uniformly distributed on [0, 1]d and

rn ∼
c

d
√
n

(1)

for some constant c with 0 < c < 1
d
√
β(d)

, where β(d) = Γ( 1
2 )d/Γ(d2 + 1) is the

volume of the d dimensional unit ball. As we shall show in Property 3.1 of
Section 3, the Lebesgue measure of set K(ω) is almost surely (a.s. for short)
zero in this case. Obviously, this is a specific case of Zähle cutout model in
[4]. As mentioned just now, we shall present a detailed study for such case for
the purpose of teaching and learning. Our result is the following Theorem 1.1
which extends the result of [10], which takes place in R.

Theorem 1. Suppose K(ω) is a random cut-out set defined as above. Then

P{dimH K(ω) ≤ dimBK(ω) ≤ d(1− β(d)cd)} = 1,

and P{dimH K(ω) = d(1 − β(d)cd)} > 0, where dimH denotes the Hausdorff
dimension.

Another interesting motivation of studying random cut-out sets is that it
is helpful to the study of Dvoretzky’s problem and related topics, see [3, 15].
Dvoretzky’s problem [16] was posed in 1956. Subsequently, it attracted the
attention of Levy, Kahane, Erdős, Billard, Mandelbrot, et al. In 1972, L. Shepp
[17, 18] gave a complete solution to this problem. For further information
on Dvoretzky’s problem, please refer to [19]. We refer the reader to [20-23]
and the references therein for more recent developments. Furthermore, the
model studied in this paper is quite similar to fractal percolation and related
continuous Poissonian cutout fractal models. Since there is a vast literature
on the geometric and dimension theoretic properties of such random fractals
(see [26, 27] and the references therein), our study is also valuable to the study
of such topics.
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The rest of this paper is organized as follows. Section 2 is the preliminaries.
In Section 2.1, we recall the potential theoretic method. In Section 2.2, we
recall the definition of Martingale and the related convergence theorems. In
Section 2.3, we introduce a sequence of random measures and show that it
is weakly converges to a random measure with probability 1 by using the
martingale convergence theorem. The proof of Theorem 1.1 is given in Section
3.

2 Preliminary

2.1 Potential theoretic method

We recall a technique for calculating Hausdorff dimensions that is widely used
both in theory and in practice. Let s ≥ 0, we call

Is(µ) =

∫
Rd

∫
Rd

1

|x− y|s
dµ(x) dµ(y)

s-energy of a measure µ on Rd. Denoting the s-dimension Hausdorff measure
by Hs. The following Lemma is often seen in literature, here we refer reader
to see [10, 11] for more details.

Lemma 2. Suppose E ⊆ Rd. If there exists a finite measure µ on E with
Is(µ) <∞ and µ(E) > 0, then Hs(E) =∞ and dimH E ≥ s.

2.2 Martingales and the convergence theorems

We denote by E the expectation throughout this paper. The word ‘martingale’
comes from the name of a classical betting system (involving doubling one’s
stake after every lost game), and it is natural to think intuitively of martingales
in the context of gambling. For example, a gambler plays a sequence of games
against a casino. If X1, X2, . . . is a sequence of random variables, we may
think of Xk as the gambler’s capital after k trials in a succession of games.
Having survived the first k trials, the expected value of the gambler’s capital
Xk+1 after trial k + 1 is E(Xk+1|X1, . . . , Xk). If this equals Xk, the game is
“fair” since the expected gain on trial n + 1 is E(Xk+1 − Xk|X1, . . . , Xk) =
Xk − Xk = 0. If E(Xk+1|X1, . . . , Xk) ≥ Xk, the game is “favorable,” and if
E(Xk+1|X1, . . . , Xk) ≤ Xk, the game is “unfavorable.”

We recall the notion of martingales[10, 24]. Let (Ω,F , P ) be a probability
space and F0 ⊂ F1 ⊂ · · · an increasing sequence of sub σ−fields of F . Assume
that for each k, Xk is an integrable random variable on (Ω,Fk, P ). We say



Random Cutouts of the Unit Cube with I.U.D. Centers 209

that {Xk}k≥0, or more precisely, {(Fk, Xk)}k≥0 is a martingale if for all k =
0, 1, 2, · · · ,

E(Xk+1|Fk) = Xk, a.s.. (2)

Condition (2) implies essentially that, whatever happens in the first k steps of
the process, the expectation of Xk+1 nevertheless equals Xk. In the gambling
example described as above, X0 represents the initial capital and Fk the set
of all possible outcomes of the first k trials. Then (2) means that regardless of
what happens in the first k trials, the expected value of the gambler’s capital
Xk+1 after the trial k+ 1 equals the capital Xk before that game; this reflects
the fairness of the game.

Remark 1. In measure theory, the technical definition of conditional ex-
pectation E(X|G ) is quite complicated (for details see [24]), where X is a
random variable on (Ω,F , P ) and G a sub σ-field of F . In this paper it
is enough to think of E(Xk+1|Fk) as the mean value of Xk+1 calculated as
though X0, . . . , Xk are already known. As mentioned in [10], the properties
of conditional expectation that we shall use are very natural in terms of this
interpretation.

Much of the theory remains true if (2) is weakened to inequality. We say
that {(Fk, Xk)}k≥0 a submartingale if for k = 0, 1, 2, · · · , E(Xk+1|Fk) ≥ Xk

a.s., a supermartingale if E(Xk+1|Fk) ≤ Xk a.s.. For non-negative super-
martingals, that is with Xk ≥ 0 for all k, we will concern the following con-
vergence theorem.

Lemma 3. [10] Suppose {Xk}k≥0 is a non-negative supermartingale. Then
there exists a non-negative random variable X on (Ω,F , P ) such that Xk con-
verges to X a.s.. Moreover, 0 ≤ E(X) ≤ infk E(Xk).

A disadvantage of Lemma 3 is that it is possible to have a non-negative
martingale Xk with E(Xk) = E(X0) for each k ≥ 1, but with limit X = 0 a.s..
For many applications we need to be able to conclude that X > 0 with positive
probability. The following convergence theorem shows that we can ensure that
this is so under relatively mild conditions. We say that {(Fk, Xk)}k≥0 is an
L2-bounded martingale if it is a martingale with

sup
0≤k<∞

E(X2
k) <∞.

Lemma 4. [10] Suppose {Xk}k≥0 is an L2−bounded martingale. Then there
exists a random variable X on (Ω,F , P ) such that Xk converges to X a.s.,
with

E(|X −Xk|) ≤ E((X −Xk)2)1/2 → 0

as k →∞. In particular, E(X) = E(Xk) for all k ≥ 0.
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2.3 Random measure

Let B(Rd) denote the family of all Borel sets of Rd. We say that µ is a random
measure with respect to probability space (Ω,F , P ) if µ is F-measurable, that
is, µ is a function which associates with each ω ∈ Ω a measure µω on Rd such
that, for all A ∈ B(Rd), the function

ω → µω(A)

from Ω to [0,+∞) is (F ,B([0,+∞))-measurable. Usually, we also say that µ
is a random measure on Rd for the purpose of highlighting Rd.

For simplicity, we write

pn =

n∏
i=1

(1− β(d)rdi ), n = 1, 2, · · · ,

where β(d) and ri as described in introduction. Denoting the Lebesgue mea-
sure by L on Rd. We define a sequence of random measures µn with respect
to probability space (Ω,F , P ) by setting

µn(A) =

{
p−1n L(A ∩Kn(ω)), n = 1, 2, · · · ,
L(A ∩ [0, 1]), n = 0,

(3)

for any A ∈ B(Rd), where {Kn(ω)}n≥1 is a sequence of random compact sets
as described in introduction. Recall that a right-semiclosed interval in Rd is a
set of the form (a, b] = {(x1, . . . , xd) ∈ Rd : ai < xi ≤ bi for all i = 1, 2, . . . , d},
where −∞ ≤ ai ≤ bi < ∞; by convention we also count (a,∞) as right-
semiclosed for −∞ ≤ ai <∞.

Lemma 5. Let {µn}n≥0 be a sequence of random measures with respect to
probability space (Ω,F , P ) described as above, then there exists a random mea-
sure µ such that almost surely, µn is weakly convergent to µ.

Proof. Let Fn denote the σ-field underlying the random positions of the
centers of B1(ω), B2(ω), . . . , Bn(ω). (Formally Fn is the σ-field generated by a
k-fold product of Borel subsets of [0, 1]d.) For each right-semiclosed interval A
with rational endpoints, since all ωn are independent and uniformly distributed
(i.u.d. for short) on [0, 1]d, we have

E(µn+1(A)|Fn) = E(p−1n+1L(A ∩Kn(w) ∩ ([0, 1]d −Bn+1(w))|Fn)

= p−1n+1L([0, 1]d −Bn+1(w))L(A ∩Kn(w))

= p−1n+1(1− β(d)rdn+1)pnµn(A)

= µn(A) a.s..



Random Cutouts of the Unit Cube with I.U.D. Centers 211

Thus {µn(A)}n≥0 is a non-negative martingale, so by Lemma 3 there exists a
random variable µ(A) such that almost surely, µn(A) converges to µ(A). We
denote by C the set of all right-semiclosed intervals with rational endpoints
in B(Rd). Then B(Rd) is the smallest σ−field containing the sets of C , see
[24] for details. Since C is a countable set, so there exists a set D ⊂ Ω with
P (D) = 0 such that

lim
n→∞

µn(A) = µ(A), allω /∈ D, A ∈ C .

Now we extend µ on C to a Borel measure supported by K(ω) in the usual
way, where K(ω) is described as in introduction. Then for any ω /∈ D there
exists a measure µ such that µn weak converges to µ or, what is the same, for
every A ∈ B(Rd) such that µ(∂(A) = 0 (µ(∂(A) denotes the boundary of A),

lim
n→∞

µn(A) = µ(A).

For ω ∈ D define µω = 0. We denote by M the usual σ−field in the family of
all Randon measures on B(Rd). Since the map

ν 7→ ν(A), A ∈ B(Rd),

is (M,B(R))-measurable, the map ω 7→ µω is a random measure. This com-
pletes the proof.

3 Proof of Theorem 1

Recall that {ωn}n≥1 is a sequence of i.u.d. random variables which are defined
on probability space (Ω,F , P ) and take values in [0, 1]d, {rn}n≥1 is a sequence
of positive real numbers which is decreasing to zero and

K(ω) = [0, 1]d −
∞⋃
n=1

Bn(ω)

is a random cutout set, where Bn(ω) := B(ωn, rn) is a random open ball
with center ωn and radius rn for each n. In this paper, it is convenient
to identify [0, 1]d with the d-dimensional torus. For example, we identify
the corresponding edge of unit square [0, 1]2 on plane, that is, if ωn = x =
(x1, x2)(0 ≤ x1, x2 < rn) is a center of open disc Bn(ω) showed as Figure 1(a),
then Bn(ω) is taken to consist of four fields that are showed by grey(Bn(ω) ∩
[0, 1]2), red(

(
(Bn(ω) + (1, 1)

)
∩ [0, 1]2), blue(

(
Bn(ω) + (0, 1)

)
∩ [0, 1]2) and

green(
(
Bn(ω) + (1, 0)

)
∩ [0, 1]2) in Figure 1(b) respectively.
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x xx x

(a) (b)

1

Figure 1: d = 2

For x = (x1, x2, · · · , xd), y = (y1, y2, · · · , yd) ∈ [0, 1]d, we write

d(x, y) =

√√√√ d∑
i=1

(min(|xi − yi|, 1− |xi − yi|))2,

that is the distance between x and y when identifying [0, 1]d with the d-
dimensional torus. In particular, for d = 1, d(x, y) = min{|x− y|, 1− |x− y|},
that is the distance between x and y with 0 and 1 identified. We first estimate
the probability that a given point is in Kn(ω).

Proposition 6. For any x ∈ [0, 1]d, we have

P (x ∈ Kn(ω)) = pn =

n∏
i=1

(1− β(d)rdi ), n = 1, 2, . . . .

Proof. Since each ωi is uniformly distributed on [0, 1]d, it follows that for all
x ∈ [0, 1]d and i = 1, 2, · · · ,

P (x ∈ Bi(ω)) = β(d)rdi .

Note that x ∈ Kn(ω) if and only if x /∈ Bi(ω) for all i = 1, 2, . . . , n. But the
events (x /∈ Bi(ω))ni=1 are independent, so

P (x ∈ Kn(ω)) =

n∏
i=1

P (x /∈ Bi(ω)) =

n∏
i=1

(1− β(d)rdi ).
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Proposition 7. (a) If
∑∞
n=1 r

d
n < ∞, then P (L(K(ω)) > 0) > 0; (b)If∑∞

n=1 r
d
n =∞, then P (L(K(ω)) = 0) = 1.

Proof. Denote by χA the characteristic function of a set A. By Lebesgue’s
Dominated Convergence Theorem, Fubini Theorem and Proposition 6, we have

E(L(K(ω))) =

∫
L(

∞⋂
n=1

([0, 1]d −Bn(ωn, rn)))dP (ω)

= lim
m→∞

∫
L(

m⋂
n=1

([0, 1]d −Bn(ωn, rn)))dP (ω)

= lim
m→∞

∫ ∫ m∏
n=1

χ[0,1]d−Bn(ωn,rn))(y)dydP (ω)

= lim
m→∞

∫ ∫
χ[0,1]d−∪m

n=1Bn(ωn,rn))(y)dydP (ω)

= lim
m→∞

∫ ∫
χKn(ω)(y)dydP (ω)

= lim
m→∞

∫ ∫
χKn(ω)(y)dP (ω)dy

= lim
m→∞

m∏
n=1

(1− β(d)rdn)

≤ lim
m→∞

e−
∑m

n=1 β(d)r
d
n .

Since if
∑∞
k=1 r

d
n < ∞ then 0 < E(L(K(ω))) < ∞, if

∑∞
k=1 r

d
n = ∞ then

E(L(K(ω))) = 0, the desired result follows. This completes this proof.

Remark 2. Proposition 6 and Proposition 7 depend on condition ‘i.u.d’, and
not on the fact that rn decreases to zero.

Next, we estimate the probability that a given pair of points is in Kn(ω).

Lemma 8. For any ε > 0, there exists a constant L > 0 such that

P (x ∈ Kn(ω), y ∈ Kn(ω))

p2n
≤ Ld(x, y)−dβ(d)c

d(1+ε). (4)

for all x, y ∈ [0, 1]d and n = 1, 2, · · · .

Proof. It follows from the O’Stolz Theorem [25],
∑∞
i=1 r

d
i =∞ and (1) that

log pn =

n∑
i=1

log(1− β(d)rdi ) ∼ −
n∑
i=1

β(d)cd

i
∼ −β(d)cd log n. (5)
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Thus by (1),

log pn ∼ −β(d)cd log n ∼ dβ(d)cd log rn.

For any ε > 0, we have from (5) that there exists a constant L1 > 0 such
that for all n = 1, 2, · · · ,

n∏
i=1

(1− β(d)rdi ) = pn ≥ L1r
dβ(d)cd(1+ε)
n . (6)

For any x, y ∈ [0, 1]d, we consider the positions of ωi when Bi(ω) excludes
both x and y. Since ωi is uniformly distributed on [0, 1]d, we have

P (x /∈ Bi(ω), y /∈ Bi(ω)) ≤
{

1− β(d)rdi d(x, y) ≤ ri,
(1− β(d)rdi )2 d(x, y) > ri.

Thus

P (x /∈ Bi(ω), y /∈ Bi(ω))

(1− β(d)rdi )2
≤
{

(1− β(d)rdi )−1 d(x, y) ≤ ri,
1 d(x, y) > ri.

By (6) and the independence of random open balls that are moved, we have

P (x ∈ Kn(ω), y ∈ Kn(ω))

p2n
=

n∏
i=1

P (x /∈ Bi(ω), y /∈ Bi(ω))

(1− β(d)rdi )2

≤
∏

i:d(x,y)≤ c
ip

(1− β(d)rdi )−1

≤ (pi(d(x,y)))
−1

≤ L−11 (ri(d(x,y)))
−dβ(d)cd(1+ε),

where i(d(x, y)) is the largest positive integer i such that d(x, y) ≤ ri. From
rn+1/rn → 1(n → ∞), we have ri(d(x,y)) ∼ d(x, y). So there exists a suitable
constant L > 0 such that

P (x ∈ Kn(w), y ∈ Kn(w))

p2n
≤ Ld(x, y)−dβ(d)c

d(1+ε)

Lemma 9. Let µ be a random measure defined in Lemma 5. Then µ(K(w)) >
0 is of positive probability.
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Proof. Note that the inequality (4) implies that

E(χKn(w)×Kn(w)(x, y))

p2n
=

P (x ∈ Kn(w), y ∈ Kn(w))

p2n

≤ Ld(x, y)−dβ(d)c
d(1+ε). (7)

Since 0 < c < 1
d
√
β(d)

, we can choose ε such that dβ(d)cd(1 + ε) < d. It follows

from (3) and (7) that

E((µn([0, 1]d))2) = p−2n E((L(Kn(ω)))2)

= p−2n E(

∫∫
χKn(ω)(x)× χKn(ω)(y)dxdy)

= p−2n E(

∫∫
χKn(ω)×Kn(w)(x, y)dxdy)

= p−2n E(E(χKn(ω)×Kn(ω)(x, y)))

≤ L

∫
[0,1]d

∫
[0,1]d

d(x, y)−dβ(d)c
d(1+ε)dxdy <∞.

Thus {µn([0, 1]d)}n≥0 is an L2-bounded martingale, so by Lemma 4,

E(µ(K(ω))) = E(µ([0, 1]d)) = E(µ0([0, 1]d)) = 1,

giving that P (µ(K(ω)) > 0) > 0. This completes the proof.

The proof of Theorem 1. Given δ > 0 and let K(ω)δ denote the δ-
neighborhood of K(ω), that is,

K(ω)δ = {x ∈ Rd : |x− y| ≤ δ for some y ∈ K(ω)}.

Denoting the largest positive integer with rk > δ by k(δ). Let B̃j(ω) be an
open ball with the same center as Bj(ω) and radius rj−δ for j ≤ k(δ). Then if

x ∈ K(ω)δ and j ≤ k(δ), then x /∈ B̃j(ω). By the independence of the random
open balls that are removed, we have that for any x ∈ [0, 1]d,

P (x ∈ K(ω)δ) ≤ P (x /∈
k(δ)⋃
j=1

B̃j(ω)) = P (x ∈
k(δ)⋂
j=1

([0, 1]d − B̃j(ω)))

=

k(δ)∏
j=1

P (x /∈ B̃j(ω)) =

k(δ)∏
j=1

(1− β(d)(rj − δ)d). (8)
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By the maximality of k(δ), rk(δ) > δ ≥ rk(δ)+1, which gives rk(δ) ∼ δ. So
c

d
√
k(δ)
∼ δ by 1. We thus get by using (5)

log

k(δ)∏
j=1

(1− β(d)(rj − δ)d) =

k(δ)∑
j=1

log(1− β(d)(rj − δ)d)

≤ −
k(δ)∑
j=1

β(d)(rj − δ)d = −β(d)

k(δ)∑
j=1

(rj − δ)d

= −β(d)

k(δ)∑
j=1

d∑
i=0

Cidr
i
j(−δ)d−i

= −β(d)

k(δ)∑
j=1

rdj − β(d)

k(δ)∑
j=1

d−1∑
i=1

Cidr
i
j(−δ)d−i +

+ (−1)d+1β(d)δdk(δ)

Since

−β(d)
∑k(δ)
j=1

∑d−1
i=1 C

i
dr
i
j(−δ)d−i

−β(d)cd log(k(δ))
≤
−β(d)

∑d−1
i=1 C

i
d(−δ)d−i

∑k(δ)
j=1 r

d
j

−β(d)cd log(k(δ))

∼
d−1∑
i=1

Cid(−δ)d−i → 0, as δ → 0,

we see that

−β(d)

k(δ)∑
j=1

d∑
i=0

Cidr
i
j(−δ)d−i ∼ −β(d)cd log k(δ) ∼ dβ(d)cd log δ. (9)

Given ε > 0, it follows from (8) and (9) that there exists a constant M such
that for any δ ≤ 1,

E(L(K(ω)δ)) = P (x ∈ K(ω)δ) ≤Mδdβ(d)c
d−ε.

Thus

E
( ∑
δ=2−k:k=1,2,···

L(K(ω)δ)δ
−dβ(d)cd+2ε

)
≤M

∑
δ=2−k:k=1,2,···

δε <∞.

This implies that

P

( ∑
δ=2−k:k=1,2,···

L(K(w)δ)δ
−dβ(d)cd+2ε <∞

)
= 1
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and with probability one there exists a constant M ′ > 0 such that for any

positive integer k, we have L(K(w)2−k)(2−k)−dβ(d)c
d+2ε ≤ M ′, and thus

L(K(ω)δ)δ
−dβ(d)cd+2ε is bounded for any 0 < δ < 1. It follows from the

(2.5) of [10] that

P (dimBK(ω) ≤ d(1− β(d)cd) + 2ε) = 1.

Since ε is arbitrary, we conclude that

P (dimBK(ω) ≤ d(1− β(d)cd)) = 1.

It remains to determine the lower bound. For ε > 0, let µn and µ be the
random measures on Kn(w) and K(w) introduced in Lemma 5, respectively.
By Lemma 5 and Fatou’s Lemma [24], and using (7), we have

E
(∫∫

|x− y|−sdµ(x)µ(y)

)
≤ E

(
lim
n→∞

∫∫
|x− y|−sdµn(x)µn(y)

)

≤ lim inf
n→∞

E
(∫∫

|x− y|−sdµn(x)µn(y)

)
= lim inf

n→∞
p−2n E

(∫∫
|x− y|−sχKn(w)×Kn(w)(x, y)dxdy

)
≤ L

∫
[0,1]d

∫
[0,1]d

d(x.y)−sd(x, y)−dβ(d)c
d(1+ε)dxdy

= L

∫
[0,1]d

∫
[0,1]d

d(x, y)−(s+dβ(d)c
d(1+ε))dxdy

< ∞

provided that s < d(1 − β(d)cd)(1 + ε). This implies that for any s < d(1 −
β(d)cd),

P

(∫ ∫
|x− y|−sdµ(x)µ(y) <∞

)
= 1.

By Lemma 9 and Lemma 2, P (dimH K(ω) ≥ d(1 − β(d)cd)) > 0. This com-
pletes the proof.
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