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CONTINUED LOGARITHM
REPRESENTATION OF REAL NUMBERS

Abstract

We introduce the continued logarithm representation of real numbers
and prove results on the occurrence and frequency of digits with respect
to this representation.

1 Introduction

The continued fraction representation of real numbers is intensively studied in
number theory, see [4] and references there in. In this paper we consider the
continued logarithm representation of real numbers, which we now introduce.
For m ≥ 3 and a sequence (dk) ∈ {1, . . . ,m− 1}N the continued logarithm to
base m is given by

[(dk)]m = lim
k→∞

logm(d1 + logm(d2 + logm(· · ·+ logm(dn) . . . )

The limit exists since the maps

Td(x) = logm(d+ x)

are contractions on [0, 1] for d ∈ {1, . . . ,m − 1}. For a finite sequence (dk) ∈
{1, . . . ,m− 1}n we consider the iterated functions

[(dk)]m(x) = Tdn ◦ · · · ◦ Td1(x),
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which map [0, 1] to nested subintervals. In this case [(dk)]m denotes the closed
interval

[(dk)]m = [ [(dk)]m(0) , [(dk)]m(1) ].

Obviously for an infinite sequence (dk) we have [(dk)]m ∈ [(d1, . . . , dn)]m for all
n ∈ N. As expected we have the following theorem on the continued logarithm
representation.

Theorem 1. All real numbers in the interval [0, 1] have a continued logarithm
representation to base m and except to a countable set this representation is
unique.

Proof. Consider the map f(x) = mx mod 1. For x ∈ [0, 1) let dk = i
if fk−1(x) ∈ [logm(i), logm(i + 1)) for i ∈ {1, . . . ,m − 1}. Since the maps
Td(x) are the inverse branches of f the point x is contained in the interval
[d1, . . . , dn] for all sequences (d1, . . . , dn) and hence [(dk)]m = x. Thus we
have constructed a continued logarithm representation for all x ∈ [0, 1). The
representation of 1 is obviously (m − 1). Furthermore the interior of the
intervals [(d1, . . . , dn]m are disjoint for all (dk) ∈ {1, . . . ,m − 1}n. Hence
the representation of x ∈ [0, 1] is ambiguous if and only if x = [(dk)]m(1)
for some sequence (dk) ∈ {1, . . . ,m − 1}n. But the set of these sequences is
countable.

As far as we know no results on the continued logarithm representation
were published. In the following we will find results on the occurrence of
digits, sets with restricted digits and the frequency of digits with respect to
this representation.

2 Occurrence of digits

As in the case of the usual power-series representation of real numbers to base
b ≥ 2 the following result on the occurrence of digits holds in the continued
logarithm representation.

Theorem 2. In the continued logarithm representation to base m ≥ 3 of
almost all real numbers in [0, 1] all digits i ∈ {1, . . . ,m − 1} occur infinitely
many times.

Proof. In the following |I| denotes the Lebesgue measure of I ⊂ [0, 1] and
let D = {1, . . . ,m − 1}. Fix m ≥ 3. Since the maps Td(x) : [0, 1] → [0, 1]
are conformal contractions with Ti(0, 1) ∩ Tj(0, 1) = ∅ for i 6= j, there are
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contraction constants cd ∈ (0, 1) with
∑
d∈D cd = 1 such that

|[d1, . . . , dn]m| ≤ C
n∏
i=1

cdi

where C > 0 is a constant independent of n ∈ N. Let Rl(D̃) be the set
of all real numbers in [0, 1] where the first l digits in the continued logarithm
representation come from D and the other digits come a proper subset D̃ ⊂ D.
We have

Rl(D̃) ⊆
⋃

d1,...dl∈D,dl+1,...,dn∈D̃

[(d1, . . . dl, dl+1, . . . , dn)]m

for all n > l. Hence we obtain

|Rl(D̃)| ≤
∑

d1,...,dl∈D,dl+1,...,dn∈D̃

| [(d1, . . . , dl, dl+1, . . . , dn)]m |

≤
∑

d1,...,dl∈D,dl+1,...,dn∈D̃

C · cd1 · · · · · cdl · cdl+1
· · · · · cdn

= C · (
∑
d∈D

cd)
l · (

∑
d∈D̃

cd)
n−l

for all n > l. Since
∑
d∈D̃ cd < 1 we have |Rl(D̃)| = 0. Now consider the set

of all real numbers in [0, 1] for which not all digits i ∈ {1, . . . ,m − 1} occur
infinitely many times. This is the set⋃

i∈{1,...,m−1}

⋃
n∈N0

⋃
d1,...,dn∈{1,...,m−1}

{[(dk)]m | dk 6= i ∀k > n}.

The Lebesgue measure of this set is zero since the countable union of sets
with Lebesgue measure zero has Lebesgue measure zero as well. Taking the
complement gives the result.

Let m ≥ 4 and let D ⊂ {1, . . . ,m − 1} be a subset with more than one
Element. We consider the set [DN]m of all real numbers in [0, 1] that have a
continued logarithm representation to base m with digits in D. This set is
obviously uncountable and from the proof of the last theorem we know that
it is totally disconnected. It is natural to ask for the Hausdorff dimension
dimH [DN]m of this set. We refer to [2] or [7] for an introduction to dimension
theory. We will estimate the Hausdorff dimension of [DN]m using the following
well known theorem:
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Theorem 3. Let Ti : Rn → Rn for i = 1, . . . , r be a iterated function system
consisting of conformal contractions fulfilling the open set condition, which
means that there is an open set O ⊆ Rn such that Ti(O) ⊆ O and Ti(O) ∩
Tj(O) = ∅ for i 6= j. If we have

ci < |T ′i (x)| < Ci

on O and d,D > 0 are given by

r∑
i=1

cdi = 1,

r∑
i=1

CDi = 1

the Hausdorff dimension of the unique non-empty compact set K with K =
T1(K) ∪ . . . Tr(K) is bounded by

d < dimH K < D,

By Theorem 9.9 of [2] we immediately get the upper bound in this theorem
and the lower bound follows from Theorem 3.15 of [6], which is in fact more
general. We now obtain:

Theorem 4. For D ⊂ {1, . . . ,m− 1} we have

Ln ≤ dimH [DN]m ≤ Un

for all n ≥ 1, where Ln and Un are given by∑
d1,...,dn∈D

[(dk)]′(0)Ln = 1,
∑

d1,...,dn∈D

[(dk)]′(1)Un = 1

Proof. The set [DN]m is the attractor of the iterated function system

{[(dk)]m(x) | d1, . . . , dn ∈ D}

for all n ≥ 1, see [5] or chapter nine of [2]. Note that the iterated function
system is conformal and fulfils the open set condition since the images of the
maps may intersect only in the boundary, see [6]. Furthermore note that

max{[(dk)]′m(x) | x ∈ [0, 1]} = [(dk)]′m(0)

min{[(dk)]′m(x) | x ∈ [0, 1]} = [(dk)]′m(1),

which means the the contraction rates of the maps that generate the iterated
function system are bounded from above and below. Our result thus follows
from Theorem 2.2.
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We use Mathematica to solve the equations in the last proposition for
m = 4 and obtain

dimH [{1, 2}N]4 = 0.81± 0.01

dimH [{1, 3}N]4 = 0.66± 0.01

dimH [{2, 3}N]4 = 0.45± 0.01

Compare this with the classical result of Hausdorff [3] that the dimension of the
set of real numbers with one deleted digit in the powers series representation
to base 3 is log(2)/ log(3) = 0.630 . . . , no matter which digit is deleted.

3 Frequency of digits

Let fi([(dk)]m) be the frequency of the digit i ∈ {1, . . . ,m−1} in the continued
logarithm representation [(dk)]m of a real number in [0, 1], that is

fi([(dk)]m) = lim
n→∞

]{k ∈ {1, . . . , n}|dk = i}
n

,

provided that the limit exist. We consider sets with of real numbers with
given frequencies of the continued logarithm representation to base m. For a
probability vector (p1, . . . , pm−1) ∈ (0, 1)m−1 let

Fm(p1, . . . , pm−1) = {[(dk)]m ∈ [0, 1] | fi([(dk)]m) = pi, i = 1, . . . ,m− 1}

We first prove an upper bound on the Hausdorff dimension of theses sets

Proposition 5.

dimH Fm(p1, . . . , pm−1) ≤
−
∑m−1
i=1 pi log(pi)∑m−1

i=1 pi log(log(m− 1) + log(m)i)

Proof. We will prove the dimension estimate for Tm−1(Fm(p1, . . . , pm−1)).
The result follows since T−1m−1x = mx −m+ 1 is Lipschitz on [logm(m− 1), 1]
and hence does not increase Hausdorff dimension, see corollary 2.4 of [2].
Again we write [(d1, . . . , dn)]m for the interval

[[(d1, . . . , dn)]m(0), [(d1, . . . , dn)]m(1)]
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and denote the length of an interval I ⊆ R by |I|.
For [(dk)]m ∈ Tm−1(Fm(p1, . . . , pm−1)) we have

|[(d1, . . . , dn)]m| ≤ max{(Td1 ◦ · · · ◦ Tdn)′(x)|x ∈ [logm(m− 1), 1]}

≤
n∏
i=1

1

log(m)
max{ 1

x+ di
|x ∈ [logm(m− 1), 1)}

=

n∏
i=1

1

log(m)(logm(m− 1) + di)

= (

n∏
i=1

log(m− 1) + log(m)di))
−1,

hence

lim inf
n→∞

− 1

n
log(|[(d1, . . . , dn)]m|)

≥ lim inf
n→∞

1

n

n∑
i=1

log(log(m− 1) + log(m)di))

=

m−1∑
i=1

pi log(log(m− 1) + log(m)i).

In the last equation we use the frequency of digits in [(dk)]m. Now consider a
Borel probability measure on [0, 1] with

µ([(d1, . . . , dn)]m) =

n∏
i=1

pdi .

We obviously have

lim
n→∞

1

n
logµ([(d1, . . . , dn)]m) = −

m−1∑
i=1

pi log(pi)

and hence

lim sup
n→∞

logµ([(d1, . . . , dn)]m)

log(|[(d1, . . . , dn)]m|)

≤
−
∑m−1
i=1 pi log(pi)∑m−1

i=1 pi log(log(m− 1) + log(m)i)
=: Um(p1, . . . , pm−1)
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for all [(dk)]m ∈ Tm−1(Fm(p1, . . . , pm−1)). We may note that the intervals
[(d1, . . . , dn)]m| constitute a nested sequence of partitions with

cn1 < |[(d1, . . . , dn)]m| < cn2 .

Thus we obtain

lim inf
ε→0

logµ((x− ε, x+ ε))

log(ε)
≤ Um(p1, . . . , pm−1)

for all x ∈ Tm−1(Fm(p1, . . . , pm−1)). This means that the lower local dimen-
sion of the measure µ is bounded by Um and by Theorem 7.2 of [7] we obtain

dimH Tm−1(Nm) ≤ Um(p1, . . . , pm−1)

From the last proposition we obtain a theorem which is striking compared
with Borel’s [1] classical result that almost all real numbers are normal with
respect to usual powers series representations.

Theorem 6. For all m ≥ 3 the set of real numbers in [0, 1] that have contin-
ued logarithm representation to base m with given frequencies has Hausdorff
dimension less than one.

Proof. Let d > 0 be the solution of

m−1∑
i=1

(log(m− 1) + log(m)i)−d = 1

and let (pi) = ((log(m−1)+log(m)i)−d) be the corresponding probability vec-
tor. The function Um(p1, . . . , pm−1) attains its maximum for this probability
vector and the value of the maximum is d. Now observe that

m−1∑
i=1

(log(m− 1) + log(m)i)−1 < 1

for m ≥ 3 hence d < 1, which completes the proof.

In the case m = 3 we have

dimH F3(p, 1− p) ≤ −p log(p)− (1− p) log(1− p)
p log(log(2) + log(3)) + (1− p) log(log(2) + 2 log(3))

The graph of the upper bound is displayed below.
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We conjecture that dimH F3(p, 1 − p) is in fact an unimodal function, but to
find an explicit expression for this function seems to be quite difficult.
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