RESEARCH

Fabián E. Levis,* Departamento de Matemática, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina. email: flevis@exa.unrc.edu.ar

Claudia N. Rodriguez, Departamento de Matemática, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina. email: crodriguez@exa.unrc.edu.ar

BEST L^{p}-APPROXIMANT PAIR ON SMALL INTERVALS

Abstract

In this paper, we study the behavior of best L^{p}-approximations by algebraic polynomial pairs on unions of intervals when the measure of those intervals tends to zero.

1 Introduction

Let $X=\left\{x_{j}\right\}_{j=1}^{k} \subset \mathbb{R}, k \in \mathbb{N}$, and let $\left\{B_{j}\right\}_{j=1}^{k}$ be pairwise disjoint closed intervals centered at x_{j} of radius 1 . Let $n, m \in \mathbb{N} \cup\{0\}$ and suppose that $n+m+1=k q+r$ with $q \in \mathbb{N} \cup\{0\}, 0<r<k$. For $s \in \mathbb{N} \cup\{0\}$, we let $\mathcal{C}^{s}(I)$ denote the space of real functions defined on $I:=\bigcup_{j=1}^{k} B_{j}$ which are continuously differentiable up to order s on I. For simplicity, we write $\mathcal{C}(I)$ instead of $\mathcal{C}^{0}(I)$.

If $\|\cdot\|$ is a norm defined on $\mathcal{C}(I)$ and $h \in \mathcal{C}(I)$, then for each $0<\epsilon \leq 1$, we write $\|h\|_{\epsilon}=\left\|h^{\epsilon}\right\|$, where $h^{\epsilon}(x)=h\left(\epsilon\left(x-x_{j}\right)+x_{j}\right), x \in B_{j}$. We put

$$
\|h\|=\left(\int_{I}|h(x)|^{p} \frac{d x}{|I|}\right)^{\frac{1}{p}}, \quad 1<p<\infty
$$

[^0]where $|I|$ is the Lebesgue measure of I. For $I_{\epsilon}:=\bigcup_{j=1}^{k}\left[x_{j}-\epsilon, x_{j}+\epsilon\right]$, we observe that $\left(\mathcal{C}\left(I_{\epsilon}\right),\|\cdot\|_{\epsilon}\right)$ is a normed space and
$$
\|h\|_{\epsilon}=\left(\int_{I_{\epsilon}}|h(x)|^{p} \frac{d x}{\left|I_{\epsilon}\right|}\right)^{\frac{1}{p}}
$$

We define $\|h\|_{\infty}:=\max _{x \in I}|h(x)|$ and $\|h\|_{B_{j}}:=\left(\int_{B_{j}}|h(x)|^{p} d x\right)^{\frac{1}{p}}, 1 \leq j \leq k$.
Let Π^{n} be the class of algebraic polynomials with real coefficients of degree at most n. We consider the set

$$
\mathcal{H}_{m}^{n}:=\left\{(P, Q) \in \Pi^{n} \times \Pi^{m}:\|Q\|_{\infty}=1\right\}
$$

Given $(P, Q),(U, V) \in \mathcal{H}_{m}^{n}$, we identify (P, Q) with (U, V) if and only if $P=$ $\lambda U, Q=\lambda V,|\lambda|=1$. We denote it briefly by $(P, Q) \equiv(U, V)$.

Let $f \in \mathcal{C}(I)$ and $0<\epsilon \leq 1$. We say that $\left(P_{\epsilon}, Q_{\epsilon}\right) \in \mathcal{H}_{m}^{n}$ is a best approximant pair of f from \mathcal{H}_{m}^{n} with respect to $\|\cdot\|_{\epsilon}$ if

$$
\begin{equation*}
\left\|f Q_{\epsilon}-P_{\epsilon}\right\|_{\epsilon}=\inf _{(P, Q) \in \mathcal{H}_{m}^{n}}\|f Q-P\|_{\epsilon} \tag{1}
\end{equation*}
$$

It is easy to see that the pair $\left(P_{\epsilon}, Q_{\epsilon}\right)$ always exists.
Given $q>0, f \in \mathcal{C}^{q-1}(I)$ and $(P, Q) \in \Pi^{n} \times \Pi^{m}$, if

$$
\begin{equation*}
(f Q-P)^{(s)}\left(x_{j}\right)=0, \quad 0 \leq s \leq q-1, \quad 1 \leq j \leq k \tag{2}
\end{equation*}
$$

then (P, Q) is said to be a Padé approximant pair of f at X. If $Q \neq 0$ and

$$
\left(f-\frac{P}{Q}\right)^{(s)}\left(x_{j}\right)=0, \quad 0 \leq s \leq q-1, \quad 1 \leq j \leq k
$$

then the rational function $\frac{P}{Q}$ is called a Padé approximant of f at X.
We define
$\mathcal{W}_{m}^{n}(f, X):=\left\{(P, Q) \in \mathcal{H}_{m}^{n}:(P, Q)\right.$ is a Padé approximant pair of f at $\left.X\right\}$.
If $q=0$, then no constraint over the pair is assumed and $\mathcal{W}_{m}^{n}(f, X)=\mathcal{H}_{m}^{n}$.
Clearly, $\mathcal{W}_{m}^{n}(f, X) \neq \emptyset$. In fact, let $x_{k+1} \in I-X$, and we consider the system (2) with constrains $(f Q-P)^{(s)}\left(x_{k+1}\right)=0,0 \leq s \leq r-1$. This system always has a nontrivial solution for (P, Q), since it is a homogeneous system of $n+m+1$ equations in $n+m+2$ unknowns. Now, if $Q=0$, then $P=0$ because $P \in \Pi^{n}$, a contradiction. So, $Q \neq 0$ and $\left(\frac{P}{\|Q\|_{\infty}}, \frac{Q}{\|Q\|_{\infty}}\right) \in \mathcal{W}_{m}^{n}(f, X)$.

We say that $\left(P_{0}, Q_{0}\right) \in \mathcal{W}_{m}^{n}(f, X)$ is a best Padé approximant pair of f at X if

$$
\begin{equation*}
\sum_{j=1}^{k}\left|\left(f Q_{0}-P_{0}\right)^{(q)}\left(x_{j}\right)\right|^{p} \leq \sum_{j=1}^{k}\left|(f Q-P)^{(q)}\left(x_{j}\right)\right|^{p} \tag{3}
\end{equation*}
$$

for all $(P, Q) \in \mathcal{W}_{m}^{n}(f, X)$. If $(P, Q) \in \Pi^{n} \times \Pi^{m}, Q \neq 0$, then $\frac{P}{Q}$ is said to be normal if it is irreducible and either $\operatorname{deg} P=n$ or $\operatorname{deg} Q=m$. (The null rational function $\frac{0}{Q}$ is normal if and only if $\operatorname{deg} Q=0$.)

In 1934, Walsh proved in [9] that the Taylor polynomial of degree n for an analytic function f can be obtained by taking the limit as $\epsilon \rightarrow 0$ of the best (Tchebychev) approximant from Π^{n} to f on the disk $|z| \leq \epsilon$. In [10], the author generalized this result to rational approximation. In [2], Chui, Shisha and Smith proved that the net of best (Tchebychev) aproximants pairs on $[0, \epsilon]$, from $\left\{(P, Q) \in \Pi^{n} \times \Pi^{m}: Q(0)=1\right\}$, converges to the Padé approximant pair in the origin as $\epsilon \rightarrow 0$. Similar results for the L^{2}-norm can be seen in [3]. The case of a unique point in several variables was treated in [1] with the L^{p}-norms. Finally, the case of L^{ϕ}-approximation on k disjoint intervals, where $n+m+1$ is divisible by k, was investigated in [6].

In Section 2, we show that there exists at least a best Padé approximant pair of f at X. In Section 3, we prove that, any cluster point of best approximant pairs $\left\{\left(P_{\epsilon}, Q_{\epsilon}\right)\right\}$ as $\epsilon \rightarrow 0$ is a best Padé approximant pair of f at X.

2 Existence of best Padé approximant pairs

Now, we establish an existence theorem of best Padé approximant pairs.
Theorem 1. Let $f \in \mathcal{C}^{q}(I)$. Then there exists at least one best Padé approximant pair of f at X.

Proof. Let $\left\{\left(P_{l}, Q_{l}\right)\right\} \subset \mathcal{W}_{m}^{n}(f, X)$ be a sequence satisfying

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \sum_{j=1}^{k}\left|\left(f Q_{l}-P_{l}\right)^{(q)}\left(x_{j}\right)\right|^{p}=\inf _{(P, Q) \in \mathcal{W}_{m}^{n}(f, X)} \sum_{j=1}^{k}\left|(f Q-P)^{(q)}\left(x_{j}\right)\right|^{p}=: E \tag{4}
\end{equation*}
$$

If $q>0$, then $\left(f Q_{l}-P_{l}\right)^{(i)}\left(x_{j}\right)=0,0 \leq i \leq q-1,1 \leq j \leq k$. According to (4), there is constant $M>0$ such that

$$
\begin{equation*}
\left|\left(f Q_{l}-P_{l}\right)^{(i)}\left(x_{j}\right)\right| \leq M, \quad 0 \leq i \leq q, \quad 1 \leq j \leq k, \quad l \in \mathbb{N} \tag{5}
\end{equation*}
$$

We observe that if $q=0,(5)$ is true also, by (4).

Let $(S, T) \in \mathcal{W}_{m}^{n}(f, X)$. Since $S Q_{l}-T P_{l}=T\left(f Q_{l}-P_{l}\right)-Q_{l}(f T-S)$, by the Leibniz rule for the i th derivative of a product of two factors,

$$
\left|\left(S Q_{l}-T P_{l}\right)^{(i)}\left(x_{j}\right)\right| \leq N, 0 \leq i \leq q, 1 \leq j \leq k, l \in \mathbb{N}
$$

for some constant $N>0$. As $\|P\|:=\max _{0 \leq i \leq q} \max _{1 \leq j \leq k}\left|P^{(i)}\left(x_{j}\right)\right|$ is a norm on $\Pi^{k(q+1)-1}$, the equivalence of the norms in $\Pi^{k(q+1)-1}$ implies that $\left\{S Q_{l}-T P_{l}\right\}$ is uniformly bounded on I, and consequently $\left\{T P_{l}\right\}$ is uniformly bounded on I. Since $\|P\|_{T}:=\max _{t \in I}|T P(t)|$ is a norm on Π^{n}, we get that $\left\{P_{l}\right\}$ is uniformly bounded on I. So, there is a subsequence of $\left\{\left(P_{l}, Q_{l}\right)\right\}$, which we denote the same way, and $\left(P_{0}, Q_{0}\right) \in \Pi^{n} \times \Pi^{m}$ such that $P_{l} \rightarrow P_{0}$ and $Q_{l} \rightarrow Q_{0}$ uniformly on I. By (4), it is obvious that $\sum_{j=1}^{k}\left|\left(f Q_{0}-P_{0}\right)^{(q)}\left(x_{j}\right)\right|^{p}=E$. On the other hand, $\left(P_{0}, Q_{0}\right) \in \mathcal{W}_{m}^{n}(f, X)$ because $\left(P_{l}, Q_{l}\right) \in \mathcal{W}_{m}^{n}(f, X)$ for all l. So, $\left(P_{0}, Q_{0}\right)$ is a best Padé approximant pair of f at X.

Remark 2. We observe that if (P, Q) is a best Padé approximant pair of f at X, then so is $(-P,-Q)$.

3 Convergence of best approximant pairs

Let $q>0, f \in \mathcal{C}^{q}(I)$ and $(S, T) \in \mathcal{W}_{m}^{n}(f, X)$. We denote by $M_{p, q} \in \Pi^{q-1}$ the best approximant of x^{q} from Π^{q-1} with respect to the norm

$$
\|h\|_{p}=\left(\int_{-1}^{1}|h(t)|^{p} d t\right)^{\frac{1}{p}}
$$

If $x^{q}-M_{p, q}(x)=\prod_{s=0}^{q-1}\left(x-t_{s}\right)$, it is well known that $t_{s} \in(-1,1), 0 \leq s \leq q-1$ and $t_{s} \neq t_{c}$ if $s \neq c$; see $[7, \S 5.10]$. We put $\mathcal{K}_{p q}=\left\|x^{q}-M_{p, q}\right\|_{p}$. Let

$$
z_{j s}^{\epsilon}=\epsilon t_{s}+x_{j} \in\left[x_{j}-\epsilon, x_{j}+\epsilon\right], \quad 0 \leq s \leq q-1, \quad 1 \leq j \leq k, \quad 0<\epsilon \leq 1
$$

and let $y_{1}, \ldots, y_{r} \notin I$ be such that $y_{v} \neq y_{w}$ if $v \neq w$ and $T\left(y_{v}\right) \neq 0,1 \leq v \leq r$.
Lemma 3. Under the above assumptions, for each $0<\epsilon \leq 1$, there exists $\left(P_{\epsilon}, Q_{\epsilon}\right) \in \mathcal{H}_{m}^{n}$ such that

$$
\begin{align*}
& P_{\epsilon}\left(z_{j s}^{\epsilon}\right)=f\left(z_{j s}^{\epsilon}\right) Q_{\epsilon}\left(z_{j s}^{\epsilon}\right)-\epsilon^{q}, \quad 0 \leq s \leq q-1, \quad 1 \leq j \leq k \\
& P_{\epsilon}\left(y_{v}\right)=\frac{S}{T}\left(y_{v}\right) Q_{\epsilon}\left(y_{v}\right)-\epsilon^{q}, \quad 1 \leq v \leq r \tag{6}
\end{align*} .
$$

Proof. Let $0<\epsilon \leq 1$. Clearly, there exists a nontrivial $\left(U_{\epsilon}, V_{\epsilon}\right) \in \Pi^{n} \times \Pi^{m}$ such that

$$
\begin{align*}
U_{\epsilon}\left(z_{j s}^{\epsilon}\right)=f\left(z_{j s}^{\epsilon}\right) V_{\epsilon}\left(z_{j s}^{\epsilon}\right), & 0 \leq s \leq q-1, \quad 1 \leq j \leq k \\
\quad U_{\epsilon}\left(y_{v}\right) & =\frac{S}{T}\left(y_{v}\right) V_{\epsilon}\left(y_{v}\right), \quad 1 \leq v \leq r \tag{7}
\end{align*} .
$$

In fact, (7) is a homogeneous system of $n+m+1$ equations in $n+m+2$ unknowns and therefore always has a nontrivial solution. We observe that if $V_{\epsilon}=0$, then $U_{\epsilon}=0$, a contradiction; so $V_{\epsilon} \neq 0$. Now, taking $P_{\epsilon}=\frac{U_{\epsilon}}{\left\|V_{\epsilon}\right\|_{\infty}}-\epsilon^{q}$ and $Q_{\epsilon}=\frac{V_{\epsilon}}{\left\|V_{\epsilon}\right\|_{\infty}}$, we conclude that $\left(P_{\epsilon}, Q_{\epsilon}\right) \in \mathcal{H}_{m}^{n}$ satisfies (6).
Lemma 4. Let $\left\{\left(P_{\epsilon}, Q_{\epsilon}\right)\right\} \subset \mathcal{H}_{m}^{n}$ be the net of Lemma 3. Then $\left\{P_{\epsilon}\right\}$ and $\left\{Q_{\epsilon}\right\}$ are uniformly bounded on compact sets as $\epsilon \rightarrow 0$. Moreover, if $\left\{P_{\epsilon}\right\}$ and $\left\{Q_{\epsilon}\right\}$ are subsequences convergent to P_{*} and Q_{*} respectively, then $P_{*} T-Q_{*} S=0$.
Proof. Since $\left\|Q_{\epsilon}\right\|_{\infty}=1,0<\epsilon \leq 1$, the net $\left\{Q_{\epsilon}\right\}$ is uniformly bounded on compact sets.

Let $0 \leq i \leq q-1,1 \leq j \leq k$ and $1 \leq v \leq r$. From (6), we get $\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\left(z_{j i}^{1}\right)=\epsilon^{q}, 0<\epsilon \leq 1$, and therefore

$$
\begin{equation*}
\left|\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\left(z_{j i}^{1}\right)\right|=O\left(\epsilon^{q}\right) \quad \text { as } \quad \epsilon \rightarrow 0 . \tag{8}
\end{equation*}
$$

As $(S, T) \in \mathcal{W}_{m}^{n}(f, X)$, we have $(f T-S)^{(i)}\left(x_{j}\right)=0$. Expanding $(f T-S)^{\epsilon}$ by its Taylor polynomial at $x_{j}, 1 \leq j \leq k$, up to order $q-1$, for each $x \in B_{j}$, there exists $\xi(x) \in\left[x_{j}-\epsilon, x_{j}+\epsilon\right]$ such that

$$
(f T-S)^{\epsilon}(x)=\frac{\epsilon^{q}}{q!}(f T-S)^{(q)}(\xi(x))\left(x-x_{j}\right)^{q},
$$

and consequently

$$
\begin{equation*}
\left|(f T-S)^{\epsilon}\left(z_{j i}^{1}\right)\right|=O\left(\epsilon^{q}\right) \quad \text { as } \quad \epsilon \rightarrow 0 . \tag{9}
\end{equation*}
$$

But
$\left|\left(P_{\epsilon} T-Q_{\epsilon} S\right)^{\epsilon}\left(z_{j i}^{1}\right)\right| \leq\left|T^{\epsilon}\left(z_{j i}^{1}\right)\right|\left|\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\left(z_{j i}^{1}\right)\right|+\left|Q_{\epsilon}^{\epsilon}\left(z_{j i}^{1}\right)\right|\left|(f T-S)^{\epsilon}\left(z_{j i}^{1}\right)\right|$, so according to (8) and (9), we have $\left|\left(P_{\epsilon} T-Q_{\epsilon} S\right)\left(z_{j i}^{\epsilon}\right)\right|=\left|\left(P_{\epsilon} T-Q_{\epsilon} S\right)^{\epsilon}\left(z_{j i}^{1}\right)\right|$ $=O\left(\epsilon^{q}\right)$ as $\epsilon \rightarrow 0$.

On the other hand, (6) implies $\left|\left(P_{\epsilon} T-Q_{\epsilon} S\right)\left(y_{v}\right)\right|=O\left(\epsilon^{q}\right)$ as $\epsilon \rightarrow 0,1 \leq$ $v \leq r$. So, there exist $0<\epsilon_{0} \leq 1$ and $N>0$, independent of i, j and v, such that

$$
\begin{equation*}
\left|\left(P_{\epsilon} T-Q_{\epsilon} S\right)\left(z_{j i}^{\epsilon}\right)\right| \leq \epsilon^{q} N \quad \text { and } \quad\left|\left(P_{\epsilon} T-Q_{\epsilon} S\right)\left(y_{v}\right)\right| \leq \epsilon^{q} N, \tag{10}
\end{equation*}
$$

$0 \leq i \leq q-1,1 \leq j \leq k, 1 \leq v \leq r$ and $0<\epsilon \leq \epsilon_{0}$.
Let $w_{\epsilon}(x)=\prod_{c=1}^{k} \prod_{l=0}^{q-1}\left(x-z_{c l}^{\epsilon}\right) \prod_{u=1}^{r}\left(x-y_{u}\right)$. It is easy to check that

$$
w_{\epsilon}^{\prime}(z)= \begin{cases}\epsilon^{q-1} \prod_{\substack{c=1 \\ c \neq j}}^{\prod_{l=0}^{q-1}\left(z_{j i}^{\epsilon}-z_{c l}^{\epsilon}\right) \prod_{\substack{s=0 \\ s \neq i}}^{q-1}\left(t_{i}-t_{s}\right) \prod_{u=1}^{r}\left(z_{j i}^{\epsilon}-y_{u}\right)} & \text { if } z=z_{j i}^{\epsilon} \\ \prod_{c=1}^{k} \prod_{l=0}^{q-1}\left(y_{v}-z_{c l}^{\epsilon}\right) \prod_{\substack{u=1 \\ u \neq v}}^{r}\left(y_{v}-y_{u}\right) & \text { if } \\ z=y_{v}\end{cases}
$$

and for $x \in I$,

$$
\frac{w_{\epsilon}(x)}{x-z}=\left\{\begin{array}{ll}
\prod_{\substack{c=1 \\
c \neq j}}^{k} \prod_{l=0}^{q-1}\left(x-z_{c l}^{\epsilon}\right) \prod_{\substack{s=0 \\
s \neq i}}^{q-1}\left(x-z_{j s}^{\epsilon}\right) \prod_{\substack{u=1}}^{r}\left(x-y_{u}\right) & \text { if } \quad z=z_{j i}^{\epsilon} \\
\prod_{c=1}^{k} \prod_{l=0}^{q-1}\left(x-z_{c l}^{\epsilon}\right) \prod_{\substack{u=1 \\
u \neq v}}^{r}\left(x-y_{u}\right) & \text { if } \quad z=y_{v}
\end{array} .\right.
$$

Therefore, there is $M>0$, independent of i, j and v, satisfying

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \frac{\left|w_{\epsilon}^{\prime}\left(z_{j i}^{\epsilon}\right)\right|}{\epsilon^{q-1}} & =\prod_{\substack{c=1 \\
c \neq j}}^{k}\left|x_{j}-x_{c}\right|^{q} \prod_{\substack{s=0 \\
s \neq i}}^{q-1}\left|t_{i}-t_{s}\right| \prod_{u=1}^{r}\left|x_{j}-y_{u}\right| \geq \frac{1}{M} \\
\lim _{\epsilon \rightarrow 0}\left|w_{\epsilon}^{\prime}\left(y_{v}\right)\right| & =\prod_{c=1}^{k}\left|y_{v}-x_{c}\right|^{q} \prod_{\substack{u=1 \\
u \neq v}}^{r}\left|y_{v}-y_{u}\right| \geq \frac{1}{M}
\end{aligned}
$$

and $\left|\frac{w_{\epsilon}(x)}{x-z}\right| \leq M, x \in I$ and $z=z_{j i}^{\epsilon}, y_{v}$. Hence, (10) implies that there exists $0<\epsilon_{1} \leq \epsilon_{0}$ such that

$$
\left|\frac{\left(P_{\epsilon} T-Q_{\epsilon} S\right)\left(z_{j i}^{\epsilon}\right) w_{\epsilon}(x)}{w_{\epsilon}^{\prime}\left(z_{j i}^{\epsilon}\right)\left(x-z_{j i}^{\epsilon}\right)}\right| \leq \epsilon N M^{2} \text { and }\left|\frac{\left(P_{\epsilon} T-Q_{\epsilon} S\right)\left(y_{v}\right) w_{\epsilon}(x)}{w_{\epsilon}^{\prime}\left(y_{v}\right)\left(x-y_{v}\right)}\right| \leq \epsilon^{q} N M^{2}
$$

$x \in I, 0 \leq i \leq q-1,1 \leq j \leq k, 1 \leq v \leq r$ and $0<\epsilon \leq \epsilon_{1}$. Now, using the Lagrange interpolation formula,

$$
\begin{align*}
& \left|\left(P_{\epsilon} T-Q_{\epsilon} S\right)(x)\right| \\
& =\left|\sum_{j=1}^{k} \sum_{i=0}^{q-1} \frac{\left(P_{\epsilon} T-Q_{\epsilon} S\right)\left(z_{j i}^{\epsilon}\right) w_{\epsilon}(x)}{w_{\epsilon}^{\prime}\left(z_{j i}^{\epsilon}\right)\left(x-z_{j i}^{\epsilon}\right)}+\sum_{v=1}^{r} \frac{\left(P_{\epsilon} T-Q_{\epsilon} S\right)\left(y_{v}\right) w_{\epsilon}(x)}{w_{\epsilon}^{\prime}\left(y_{v}\right)\left(x-y_{v}\right)}\right| \tag{11}\\
& \leq \epsilon N M^{2}
\end{align*}
$$

for $x \in I, 0<\epsilon \leq \epsilon_{1}$. Since

$$
\left\|P_{\epsilon}\right\|_{T} \leq N M^{2}+\|S\|_{\infty}, \quad 0<\epsilon \leq \epsilon_{1}
$$

from the equivalence of the norms in Π^{n}, we conclude that $\left\{P_{\epsilon}\right\}$ is uniformly bounded on compact sets as $\epsilon \rightarrow 0$.

Finally, if $\left\{P_{\epsilon}\right\}$ and $\left\{Q_{\epsilon}\right\}$ are subsequences convergent to P_{*} and Q_{*} respectively, by (11) we get $P_{*} T-Q_{*} S=0$.

Lemma 5. Let $\left\{\left(P_{\epsilon}, Q_{\epsilon}\right)\right\} \subset \mathcal{H}_{m}^{n}$ be the net of Lemma 3. If $\frac{S}{T}$ is normal, then there exist $\alpha \in\{1,-1\}$ and a subsequence of $\left\{\left(P_{\epsilon}, Q_{\epsilon}\right)\right\}$, which we denote the same way, such that $\lim _{\epsilon \rightarrow 0} P_{\epsilon}=\alpha S$ and $\lim _{\epsilon \rightarrow 0} Q_{\epsilon}=\alpha T$ uniformly on I. Moreover,

$$
\begin{equation*}
\left[\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\right]\left[z_{j 0}^{1}, z_{j 1}^{1}, \cdots, z_{j s}^{1}\right]=0 \tag{12}
\end{equation*}
$$

for $0 \leq s \leq q-1,1 \leq j \leq k, 0<\epsilon<1$.
Proof. By Lemma 4, there is a subsequence of $\left\{\left(P_{\epsilon}, Q_{\epsilon}\right)\right\}$, which we denote the same way, and $P_{0} \in \Pi^{n}, Q_{0} \in \Pi^{m}$ such that $P_{\epsilon} \rightarrow P_{0}$ and $Q_{\epsilon} \rightarrow Q_{0}$ uniformly on I as $\epsilon \rightarrow 0$. Moreover,

$$
\begin{equation*}
P_{0} T=Q_{0} S \tag{13}
\end{equation*}
$$

For $1 \leq j \leq k$, let $K_{j}=\left\{i: 0 \leq i \leq m\right.$ and $\left.Q_{0}^{(i)}\left(x_{j}\right) \neq 0\right\}$. Since $\left\|Q_{\epsilon}\right\|_{\infty}=1$, $0<\epsilon \leq 1$, we have $\left\|Q_{0}\right\|_{\infty}=1$, and thus $K_{j} \neq \emptyset$. Set $k_{j}=\min \left(K_{j}\right)$. By hypothesis, $T\left(x_{j}\right) \neq 0$, so (13) implies that there are $P_{1} \in \Pi^{n}$ and $Q_{1} \in \Pi^{m}$ satisfying
$P_{0}(x)=\prod_{c=1}^{k}\left(x-x_{c}\right)^{k_{c}} P_{1}(x), \quad Q_{0}(x)=\prod_{c=1}^{k}\left(x-x_{c}\right)^{k_{c}} Q_{1}(x) \quad$ and $\quad Q_{1}\left(x_{c}\right) \neq 0$,
$x \in I, 1 \leq c \leq k$. Using (13) again, we obtain

$$
P_{1} T=Q_{1} S
$$

Since $\frac{S}{T}$ is normal, either $\operatorname{deg} T=m$ or $\operatorname{deg} S=n$. If $\operatorname{deg} T=m$, then $\operatorname{deg} P_{1} \leq \operatorname{deg} S$. But $\frac{S}{T}$ is irreducible, so $\operatorname{deg} P_{1}=\operatorname{deg} S$ and $\operatorname{deg} Q_{1}=\operatorname{deg} T$. Therefore, there exists $\alpha \neq 0$ such that $P_{1}=\alpha S$ and $Q_{1}=\alpha T$. Now, according to (14), we have $k_{c}=0,1 \leq c \leq k$, and consequently, $P_{0}=\alpha S$ and $Q_{0}=\alpha T$. But $\left\|Q_{0}\right\|_{\infty}=\|T\|_{\infty}=1$, so $|\alpha|=1$ and

$$
\begin{equation*}
P_{0}=\alpha S \quad \text { and } \quad Q_{0}=\alpha T \tag{15}
\end{equation*}
$$

If $\operatorname{deg} S=n$, in the same manner we can see (15).
Finally, let $0 \leq s \leq q-1,1 \leq j \leq k$ and $\epsilon>0$. From Lemma 3,

$$
\begin{equation*}
\epsilon^{q}=\left(f Q_{\epsilon}-P_{\epsilon}\right)\left(z_{j s}^{\epsilon}\right)=\left(f Q_{\epsilon}-P_{\epsilon}\right)\left(\epsilon\left(z_{j s}^{1}-x_{j}\right)+x_{j}\right)=\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\left(z_{j s}^{1}\right) \tag{16}
\end{equation*}
$$

So, (12) immediately follows.
Lemma 6. Suppose that $\frac{S}{T}$ is normal, and let $\left\{\left(P_{\epsilon}, Q_{\epsilon}\right)\right\} \subset \mathcal{H}_{m}^{n}$ be the subsequence of Lemma 4. Then for each $\epsilon>0$ and $x \in B_{j}, 1 \leq j \leq k, x \neq z_{j s}^{1}$, $0 \leq s \leq q-1$, there exists $\xi_{\epsilon}(x) \in\left(x_{j}-\epsilon, x_{j}+\epsilon\right)$ satisfying

$$
\begin{equation*}
\frac{1}{\epsilon^{q}}\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}(x)=\frac{1}{q!}\left(f Q_{\epsilon}-P_{\epsilon}\right)^{(q)}\left(\xi_{\epsilon}(x)\right) \prod_{l=0}^{q-1}\left(x-z_{j l}^{1}\right) \tag{17}
\end{equation*}
$$

Proof. Let $\epsilon>0$. It is well known that the $(q-1)$ th Lagrange interpolation polynomial for $\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}$ with respect to $z_{j 0}^{1}, z_{j 1}^{1}, \cdots, z_{j(q-1)}^{1}$ can be expressed as

$$
W_{\epsilon}(x)=\sum_{s=0}^{q-1}\left[\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\right]\left[z_{j 0}^{1}, z_{j 1}^{1}, \cdots, z_{j s}^{1}\right] \prod_{l=0}^{s-1}\left(x-z_{j l}^{1}\right) .
$$

By Lemma 5, we have $W_{\epsilon}=0$. Let $x \in B_{j}, 1 \leq j \leq k, x \neq z_{j s}^{1}, 0 \leq s \leq q-1$. From [8, Th. 3, p. 309], we get

$$
\begin{equation*}
\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}(x)=\left[\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\right]\left[z_{j 0}^{1}, z_{j 1}^{1}, \cdots, z_{j(q-1)}^{1}, x\right] \prod_{l=0}^{q-1}\left(x-z_{j l}^{1}\right) \tag{18}
\end{equation*}
$$

Since $f \in \mathcal{C}^{q}(I)$, [8, Th. 4, p. 310] implies that there exists $\zeta_{\epsilon}(x) \in\left(x_{j}-1, x_{j}+1\right)$ such that

$$
\begin{aligned}
{\left[\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\right]\left[z_{j 0}^{1}, z_{j 1}^{1}, \cdots, z_{j(q-1)}^{1}, x\right] } & =\frac{1}{q!}\left(\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\right)^{(q)}\left(\zeta_{\epsilon}(x)\right) \\
& =\frac{\epsilon^{q}}{q!}\left(f Q_{\epsilon}-P_{\epsilon}\right)^{(q)}\left(\epsilon\left(\zeta_{\epsilon}(x)-x_{j}\right)+x_{j}\right)
\end{aligned}
$$

So, according to (18), we have (17) with $\xi_{\epsilon}(x)=\epsilon\left(\zeta_{\epsilon}(x)-x_{j}\right)+x_{j}$.
Theorem 7. Let $q>0, f \in \mathcal{C}^{q}(I)$ and let $(S, T) \in \mathcal{W}_{m}^{n}(f, X)$ be such that $\frac{S}{T}$ is normal. Then there exists a sequence $\left\{\left(P_{\epsilon}, Q_{\epsilon}\right)\right\} \subset \mathcal{H}_{m}^{n}$ such that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{q}}\left\|\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\right\|_{B_{j}}=\frac{1}{q!}\left|(f T-S)^{(q)}\left(x_{j}\right)\right| \mathcal{K}_{p q}, \quad 1 \leq j \leq k \tag{19}
\end{equation*}
$$

Proof. By Lemma 5, there exist $\alpha \in\{1,-1\}$ and a sequence $\left\{\left(P_{\epsilon}, Q_{\epsilon}\right)\right\} \subset$ \mathcal{H}_{m}^{n} such that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} P_{\epsilon}=\alpha S \quad \text { and } \quad \lim _{\epsilon \rightarrow 0} Q_{\epsilon}=\alpha T \quad \text { uniformly on } I \tag{20}
\end{equation*}
$$

From Lemma 6 , for each ϵ and $x \in B_{j}, 1 \leq j \leq k, x \neq z_{j s}^{1}, 0 \leq s \leq q-1$, there is $\xi_{\epsilon}(x) \in\left(x_{j}-\epsilon, x_{j}+\epsilon\right)$ satisfying

$$
\begin{equation*}
\frac{1}{\epsilon^{q}}\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}(x)=\frac{1}{q!}\left(f Q_{\epsilon}-P_{\epsilon}\right)^{(q)}\left(\xi_{\epsilon}(x)\right) \prod_{l=0}^{q-1}\left(x-z_{j l}^{1}\right) \tag{21}
\end{equation*}
$$

Since (20) implies that $\lim _{\epsilon \rightarrow 0}\left(f Q_{\epsilon}-P_{\epsilon}\right)^{(q)}\left(\xi_{\epsilon}(x)\right)=\alpha(f T-S)^{(q)}\left(x_{j}\right)$, we have

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{q}}\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}(x)=\frac{\alpha}{q!}(f T-S)^{(q)}\left(x_{j}\right) \prod_{l=0}^{q-1}\left(x-z_{j l}^{1}\right) \tag{22}
\end{equation*}
$$

$x \in B_{j}, 1 \leq j \leq k, x \neq z_{j s}^{1}, 0 \leq s \leq q-1$.
On the other hand, by (20) we see that $\left\{P_{\epsilon}\right\}$ and $\left\{Q_{\epsilon}\right\}$ are uniformly bounded on I as $\epsilon \rightarrow 0$. Hence, there exist $M>0$ and $\epsilon_{1}>0$ such that $\left|\left(f Q_{\epsilon}-P_{\epsilon}\right)^{(q)}(x)\right| \leq q!M, x \in I, 0<\epsilon<\epsilon_{1}$. So, from (21) we deduce that

$$
\left|\frac{1}{\epsilon^{q}}\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}(x)\right| \leq 2^{q} M, \quad x \in B_{j}, \quad x \neq z_{j s}^{1}, \quad 0<\epsilon<\epsilon_{1}
$$

According to (22) and the Lebesgue Convergence Theorem, we get

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{q}}\left\|\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\right\|_{B_{j}}=\frac{1}{q!}\left|(f T-S)^{(q)}\left(x_{j}\right)\right|\left\|\prod_{l=0}^{q-1}\left(x-z_{j l}^{1}\right)\right\|_{B_{j}}
$$

Now, substituting $x-x_{j}$ by t into the above equality gives

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{q}}\left\|\left(f Q_{\epsilon}-P_{\epsilon}\right)^{\epsilon}\right\|_{B_{j}} & =\frac{1}{q!}\left|(f T-S)^{(q)}\left(x_{j}\right)\right|\left\|t^{q}-M_{p q}(t)\right\|_{p} \\
& =\frac{1}{q!}\left|(f T-S)^{(q)}\left(x_{j}\right)\right| \mathcal{K}_{p q}
\end{aligned}
$$

Theorem 8. Let $f \in \mathcal{C}^{q}(I)$ and let $\left\{\left(S_{\epsilon}, T_{\epsilon}\right)\right\} \subset \mathcal{H}_{m}^{n}$ be a net of best approximant pairs of f from \mathcal{H}_{m}^{n} with respect to $\|\cdot\|_{\epsilon}$. Then $\left\{S_{\epsilon}\right\}$ and $\left\{T_{\epsilon}\right\}$ are uniformly bounded on compact sets as $\epsilon \rightarrow 0$.

Proof. Since $\left\|T_{\epsilon}\right\|_{\infty}=1,0<\epsilon \leq 1$, the net $\left\{T_{\epsilon}\right\}$ is uniformly bounded on compact sets.

Let $(S, T) \in \mathcal{W}_{m}^{n}(f, X)$. Then for each $1 \leq j \leq k$,

$$
\begin{align*}
\frac{\left\|\left(S_{\epsilon} T-T_{\epsilon} S\right)^{\epsilon}\right\|_{B_{j}}}{\epsilon^{q}} & =\frac{1}{\epsilon^{q}}\left\|\left(-T\left(f T_{\epsilon}-S_{\epsilon}\right)+T_{\epsilon}(f T-S)\right)^{\epsilon}\right\|_{B_{j}} \\
& \leq \frac{(2 k)^{1 / p}}{\epsilon^{q}}\left\|-T\left(f T_{\epsilon}-S_{\epsilon}\right)+T_{\epsilon}(f T-S)\right\|_{\epsilon} \\
& \leq \frac{(2 k)^{1 / p}}{\epsilon^{q}}\left(\left\|T\left(f T_{\epsilon}-S_{\epsilon}\right)\right\|_{\epsilon}+\left\|T_{\epsilon}(f T-S)\right\|_{\epsilon}\right) \tag{23}\\
& \leq \frac{(2 k)^{1 / p}}{\epsilon^{q}}\left(\left\|f T_{\epsilon}-S_{\epsilon}\right\|_{\epsilon}+\|f T-S\|_{\epsilon}\right) \\
& \leq \frac{2(2 k)^{1 / p}}{\epsilon^{q}}\|f T-S\|_{\epsilon}
\end{align*}
$$

If $q=0$, then

$$
\begin{equation*}
\left|\left(S_{\epsilon} T-T_{\epsilon} S\right)\left(x_{j}\right)\right|=O(1) \quad \text { as } \quad \epsilon \rightarrow 0, \quad 1 \leq j \leq k \tag{24}
\end{equation*}
$$

In otherwise, as $(f T-S)^{(l)}\left(x_{j}\right)=0,0 \leq l \leq q-1,1 \leq j \leq k$, expanding $(f T-S)^{\epsilon}$ by its Taylor polynomial at x_{j} up to order $q-1$, it follows that for each $x \in B_{j}$, there exists $\xi_{\epsilon}(x) \in\left[x_{j}-\epsilon, x_{j}+\epsilon\right]$ such that $(f T-S)^{\epsilon}(x)=$ $\frac{\epsilon^{q}}{q!}(f T-S)^{(q)}\left(\xi_{\epsilon}(x)\right)\left(x-x_{j}\right)^{q}$. So, $\left\|(f T-S)^{\epsilon}\right\|_{B_{j}}=O\left(\epsilon^{q}\right)$ as $\epsilon \rightarrow 0$, and consequently

$$
\begin{equation*}
\|f T-S\|_{\epsilon}=O\left(\epsilon^{q}\right) \quad \text { as } \quad \epsilon \rightarrow 0 \tag{25}
\end{equation*}
$$

Therefore, by (23), we get $\left\|\left(S_{\epsilon} T-T_{\epsilon} S\right)^{\epsilon}\right\|_{B_{j}}=O\left(\epsilon^{q}\right)$ as $\epsilon \rightarrow 0,1 \leq j \leq k$. Since $\left(S_{\epsilon} T-T_{\epsilon} S\right)^{\epsilon} \in \Pi^{n+m}$ on B_{j}, according to Lemma 2.2 in [5], we have

$$
\begin{equation*}
\left|\left(S_{\epsilon} T-T_{\epsilon} S\right)^{(i)}\left(x_{j}\right)\right|=O\left(\epsilon^{q-i}\right) \quad \text { as } \quad \epsilon \rightarrow 0 \tag{26}
\end{equation*}
$$

$1 \leq j \leq k, 0 \leq i \leq q$. Since $n+m+1<k(q+1)$, from (24) and (26) we show that $\left\{S_{\epsilon} T-T_{\epsilon} S\right\} \subset \Pi^{n+m}$ is uniformly bounded on I as $\epsilon \rightarrow 0$; i.e., there exist $M>0$ and $\epsilon_{1}>0$ such that

$$
\left|\left(S_{\epsilon} T-T_{\epsilon} S\right)(x)\right| \leq M, \quad x \in I, \quad 0<\epsilon<\epsilon_{1}
$$

As $\left|T_{\epsilon} S(x)\right| \leq\|S\|_{\infty}, x \in I, 0<\epsilon<\epsilon_{1}$, we have $\left\|S_{\epsilon}\right\|_{T}=\max _{x \in I}\left|\left(S_{\epsilon} T\right)(x)\right| \leq$ $\|S\|_{\infty}+M, 0<\epsilon<\epsilon_{1}$. Finally, by the equivalence of the norms in Π^{n}, we conclude that $\left\{S_{\epsilon}\right\}$ is uniformly bounded on compact sets as $\epsilon \rightarrow 0$.

Theorem 9. Let $f \in \mathcal{C}^{q}(I)$ and let $\left\{\left(S_{\epsilon}, T_{\epsilon}\right)\right\}$ be a net of best approximant pairs of f from \mathcal{H}_{m}^{n} with respect to $\|\cdot\|_{\epsilon}$. Suppose that there exists a best Padé approximant pair of f at X, say (S, T), such that $\frac{S}{T}$ is normal. Then any cluster point of $\left\{\left(S_{\epsilon}, T_{\epsilon}\right)\right\}$ as $\epsilon \rightarrow 0$ is a best Padé approximant pair of f at X.

Proof. According to Theorem 8, it follows that the set of cluster points of the net $\left\{\left(S_{\epsilon}, T_{\epsilon}\right)\right\}$ as $\epsilon \rightarrow 0$ is nonempty. Now, it is sufficient to prove that if $\left(S_{*}, T_{*}\right)$ is the limit point of $\left\{\left(S_{\epsilon_{l}}, T_{\epsilon_{l}}\right)\right\}$ as $\epsilon_{l} \rightarrow 0$, then $\left(S_{*}, T_{*}\right)$ is a best Padé approximant pair of f at X. If $q=0$, then the result is obvious, because

$$
\begin{aligned}
\sum_{j=1}^{k}\left|\left(f T_{*}-S_{*}\right)\left(x_{j}\right)\right|^{p} & =\lim _{\epsilon_{l} \rightarrow 0} k\left\|f T_{\epsilon_{l}}-S_{\epsilon_{l}}\right\|_{\epsilon_{l}}^{p} \\
& \leq \lim _{\epsilon_{l} \rightarrow 0} k\|f T-S\|_{\epsilon_{l}}^{p} \\
& =\sum_{j=1}^{k}\left|(f T-S)\left(x_{j}\right)\right|^{p}
\end{aligned}
$$

Now assume $q>0$. Let $1 \leq j \leq k, 0 \leq i \leq q-1$. As in the proof of Theorem 8, we have

$$
\begin{equation*}
\left|\left(S_{\epsilon_{l}} T-T_{\epsilon_{l}} S\right)^{(i)}\left(x_{j}\right)\right|=O\left(\epsilon_{l}^{q-i}\right) \quad \text { as } \quad \epsilon_{l} \rightarrow 0 \tag{27}
\end{equation*}
$$

Therefore, $\left(S_{*} T-T_{*} S\right)^{(i)}\left(x_{j}\right)=0$. Since

$$
S_{*} T-T_{*} S=-T\left(f T_{*}-S_{*}\right)+T_{*}(f T-S)
$$

and $(S, T) \in \mathcal{W}_{m}^{n}(f, X)$, using the Leibniz rule we get $\left(T\left(f T_{*}-S_{*}\right)\right)^{(i)}\left(x_{j}\right)=$ 0 , and thus

$$
\begin{equation*}
\left(f T_{*}-S_{*}\right)^{(i)}\left(x_{j}\right)=0 \tag{28}
\end{equation*}
$$

because $T\left(x_{j}\right) \neq 0$. As i and j are arbitrary, $\left(S_{*}, T_{*}\right)$ is a Padé approximant pair of f at X, and so $\left(S_{*}, T_{*}\right) \in \mathcal{W}_{m}^{n}(f, X)$ since $\left\|T_{*}\right\|_{\infty}=1$.

Expanding $\left(S_{\epsilon_{l}} T-T_{\epsilon_{l}} S\right)^{\epsilon_{l}}$ and $T_{\epsilon_{l}}(f T-S)^{\epsilon_{l}}$ by their Taylor polynomials at x_{j} up to order $q-1$, it follows that for each $x \in B_{j}$, there exist
$\xi_{\epsilon_{l}}(x), \eta_{\epsilon_{l}}(x) \in\left[x_{j}-\epsilon_{l}, x_{j}+\epsilon_{l}\right]$ such that

$$
\begin{align*}
& T^{\epsilon_{l}}(x) \frac{1}{\epsilon_{l}^{q}}\left(f T_{\epsilon_{l}}-S_{\epsilon_{l}}\right)^{\epsilon_{l}}(x)=\frac{1}{\epsilon_{l}^{q}}\left(T\left(f T_{\epsilon_{l}}-S_{\epsilon_{l}}\right)\right)^{\epsilon_{l}}(x) \\
&= \frac{1}{\epsilon_{l}^{q}}\left(-\left(S_{\epsilon_{l}} T-T_{\epsilon_{l}} S\right)^{\epsilon_{l}}(x)+\left(T_{\epsilon_{l}}(f T-S)\right)^{\epsilon_{l}}(x)\right) \\
&=-\sum_{i=0}^{q-1} \frac{\epsilon_{l}^{i-q}\left(S_{\epsilon_{l}} T-T_{\epsilon_{l}} S\right)^{(i)}\left(x_{j}\right)}{i!}\left(x-x_{j}\right)^{i} \tag{29}\\
&-\frac{\left(S_{\epsilon_{l}} T-T_{\epsilon_{l}} S\right)^{(q)}\left(\xi_{\epsilon_{l}}(x)\right)}{q!}\left(x-x_{j}\right)^{q} \\
&+\frac{1}{q!} \sum_{s=0}^{q}\binom{q}{s}(f T-S)^{(s)}\left(\eta_{\epsilon_{l}}(x)\right) T_{\epsilon_{l}}^{(q-s)}\left(\eta_{\epsilon_{l}}(x)\right)\left(x-x_{j}\right)^{q}
\end{align*}
$$

As $T\left(x_{j}\right) \neq 0$, from (27) there exist a subsequence of $\left\{\epsilon_{l}\right\}$, which we denote the same way, and $a_{i j} \in \mathbb{R}, 0 \leq i \leq q-1,1 \leq j \leq k$, such that

$$
\begin{equation*}
\lim _{\epsilon_{l} \rightarrow 0} \epsilon_{l}^{i-q}\left(S_{\epsilon_{l}} T-T_{\epsilon_{l}} S\right)^{(i)}\left(x_{j}\right)=T\left(x_{j}\right) a_{i j} \tag{30}
\end{equation*}
$$

According to Theorem 8, we have

$$
\begin{equation*}
\lim _{\epsilon_{l} \rightarrow 0} \frac{\left(S_{\epsilon_{l}} T-T_{\epsilon_{l}} S\right)^{(q)}\left(\xi_{\epsilon_{l}}(x)\right)}{q!}=\frac{\left(S_{*} T-T_{*} S\right)^{(q)}\left(x_{j}\right)}{q!} \tag{31}
\end{equation*}
$$

so (28)-(31) imply that

$$
\begin{aligned}
\lim _{\epsilon_{l} \rightarrow 0} \frac{1}{\epsilon_{l}^{q}} & \left(f T_{\epsilon_{l}}-S_{\epsilon_{l}}\right)^{\epsilon_{l}}(x) \\
= & \frac{1}{q!T\left(x_{j}\right)}\left(-\left(S_{*} T-T_{*} S\right)^{(q)}\left(x_{j}\right)+(f T-S)^{(q)} T_{*}\left(x_{j}\right)\right)\left(x-x_{j}\right)^{q} \\
& -\sum_{i=0}^{q-1} a_{i j}\left(x-x_{j}\right)^{i} \\
= & \frac{1}{q!}\left(f T_{*}-S_{*}\right)^{(q)}\left(x_{j}\right)\left(x-x_{j}\right)^{q}-\sum_{i=0}^{q-1} a_{i j}\left(x-x_{j}\right)^{i}
\end{aligned}
$$

uniformly on B_{j}. Therefore, substituting $x-x_{j}$ by t into the following inequal-
ity gives

$$
\begin{align*}
\lim _{\epsilon_{l} \rightarrow 0} & \frac{1}{\epsilon_{l}^{q}}\left\|\left(f T_{\epsilon_{l}}-S_{\epsilon_{l}}\right)^{\epsilon_{l}}\right\|_{B_{j}} \\
& =\left\|\frac{1}{q!}\left(f T_{*}-S_{*}\right)^{(q)}\left(x_{j}\right)\left(x-x_{j}\right)^{q}-\sum_{i=0}^{q-1} a_{i j}\left(x-x_{j}\right)^{i}\right\|_{B_{j}} \tag{32}\\
& \geq\left|\frac{1}{q!}\left(f T_{*}-S_{*}\right)^{(q)}\left(x_{j}\right)\right|\left\|t^{q}-M_{p q}(t)\right\|_{p} \\
& =\frac{1}{q!}\left|\left(f T_{*}-S_{*}\right)^{(q)}\left(x_{j}\right)\right| \mathcal{K}_{p q}
\end{align*}
$$

$1 \leq j \leq k$. Since $\frac{S}{T}$ is normal, from Theorem 7, there exists a subsequence of $\left\{\epsilon_{l}\right\}$, which we denote the same way again, such that $\left\{\left(P_{\epsilon_{l}}, Q_{\epsilon_{l}}\right)\right\} \subset \mathcal{H}_{m}^{n}$ and

$$
\begin{equation*}
\lim _{\epsilon_{l} \rightarrow 0} \frac{1}{\epsilon_{l}^{q}}\left\|\left(f Q_{\epsilon_{l}}-P_{\epsilon_{l}}\right)^{\epsilon_{l}}\right\|_{B_{j}}=\frac{1}{q!}\left|(f T-S)^{(q)}\left(x_{j}\right)\right| \mathcal{K}_{p q}, \tag{33}
\end{equation*}
$$

$1 \leq j \leq k$. But $\left\{\left(S_{\epsilon_{l}}, T_{\epsilon_{l}}\right)\right\}$ is a net of best approximant pairs of f from \mathcal{H}_{m}^{n}, so (32) and (33) imply

$$
\sum_{j=1}^{k}\left|\left(f T_{*}-S_{*}\right)^{(q)}\left(x_{j}\right)\right|^{p} \leq \sum_{j=1}^{k}\left|(f T-S)^{(q)}\left(x_{j}\right)\right|^{p}
$$

Finally, by $(28),\left(S_{*}, T_{*}\right)$ is a best Padé approximant pair.
We say that the best Padé approximant pair of f at X is unique if, whenever $(P, Q),(U, V) \in \mathcal{W}_{m}^{n}(f, X)$ satisfy (3), then $(P, Q) \equiv(U, V)$.

The next corollary immediately follows.
Corollary 10. Let $f \in \mathcal{C}^{q}(I), q>0$, and suppose that there exists a unique best Padé approximant pair of f at X, say (S, T), such that $\frac{S}{T}$ is normal. Then $\frac{S}{T}$ is a Padé approximant of f at X. In addition, if $\left\{\left(S_{\epsilon}, T_{\epsilon}\right)\right\}$ is a net of best approximant pairs of f from \mathcal{H}_{m}^{n} with respect to $\|\cdot\|_{\epsilon}$, then $\frac{S_{\epsilon}}{T_{\epsilon}}$ converges to $\frac{S}{T}$ uniformly on some neighborhood of X as $\epsilon \rightarrow 0$.

References

[1] C. K. Chui, H. Diamond and H. Raphael, Best local approximation in several variables, J. Approx. Theory, 40(4) (1984), 343-350.
[2] C. K. Chui, O. Shisha and P. W. Smith, Best local approximation, J. Approx. Theory, 15(4) (1975), 371-381.
[3] C. K. Chui, O. Shisha and J. D. Ward, Best L_{2} local approximation, J. Approx. Theory, 22 (1978), 257-261.
[4] H. H. Cuenya and F. E. Levis, Pólya-type polynomial inequalities in L^{p} spaces and best local approximation, Numer. Funct. Anal. Optim., 26(78) (2005), 813-827.
[5] H. H. Cuenya, F. E. Levis and C. V. Ridolfi, Pólya-type polynomial inequalities in Orlicz spaces and best local approximation, J. Inequal. Appl., (2012), doi:10.1186/1029-242X-2012-26.
[6] H. H. Cuenya and C. N. Rodriguez, Rational approximation in L^{ϕ} spaces on a finite union of disjoint intervals, Numer. Funct. Anal. Optim., 23(78 (2002), 747-755.
[7] R. A. Devore and G. G. Lorentz, Constructive approximation, Springer, 1993.
[8] D. Kincaid and W. Cheney, Análisis Numérico: Las Matemáticas del Cálculo Científico, Addison Wesley Iberoamericana, México, 1991.
[9] J. L. Walsh, On approximation to an analytic function by rational functions of best approximation, Math. Z., 38(1) (1934), 163-176.
[10] J. L. Walsh, Padé approximants as limits of rational functions of best approximation, J. Math. Mech., 13 (1964), 305-312.

[^0]: Mathematical Reviews subject classification: Primary: 41A20, 41A21; Secondary: 32A10 Key words: Best approximation, Algebraic polynomial, Padé approximant pair, $L^{p_{-}}$ norm

 Received by the editors November 4, 2014
 Communicated by: Viktor Kolyada
 *This work was supported by Universidad Nacional de Rio Cuarto and CONICET.

