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Abstract

In this paper, we study the behavior of best LP-approximations by
algebraic polynomial pairs on unions of intervals when the measure of
those intervals tends to zero.

1 Introduction

Let X = {z;}f_, C R, k € N, and let {B;}¥_, be pairwise disjoint closed
intervals centered at x; of radius 1. Let n,m € NU {0} and suppose that
n+m+1=kqg+r withqge NU{0}, 0 <r < k. Forse NU{0}, we let
C*(I) denote the space of real functions defined on I := U?zl Bj which are
continuously differentiable up to order s on I. For simplicity, we write C(I)
instead of C°(1).

If || - || is a norm defined on C(I) and h € C(I), then for each 0 < ¢ < 1, we
write ||h|le = ||h¢]|, where h¢(z) = h(e(x — z;) + x;), € B;. We put

1
dx\»
Ihl = (/m(x)p)  l<p<oo,
@
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k

where || is the Lebesgue measure of I. For I := J;_,

observe that (C(I.),|| - |l¢) is a normed space and

Ikl = ([ )

1
We define [|h]|oo := maxges |h(z)| and ||A]|B; := (fBj \h(z)|Pdz)?, 1< j < k.
Let IT™ be the class of algebraic polynomials with real coefficients of degree
at most n. We consider the set

[zj — €,z + €], we

=

WY = {(P,Q) € II" x II™ : || Q|0 = 1} .

Given (P,Q),(U,V) € H},, we identify (P, Q) with (U, V) if and only if P =
AU, Q = AV, |A| = 1. We denote it briefly by (P, Q) = (U, V).
Let f € C(I) and 0 < € < 1. We say that (P, Q) € H} is a best

approzimant pair of f from HI, with respect to || - || if
e —Ple= inf - P|.. 1
I1£Q.~ Pl = inf Q- P )

It is easy to see that the pair (P, Q.) always exists.
Given ¢ > 0, f € C97Y(I) and (P, Q) € II" x 1™, if

(fQ-P) (w)) =0, 0<s<g-1, 1<j<k (2)

then (P, Q) is said to be a Padé approximant pair of f at X. If Q # 0 and

P (s)

then the rational function % is called a Padé approzimant of f at X.
We define

Wi (f, X) ={(P,Q) € H,, : (P,Q) is a Padé approximant pair of f at X}.

If ¢ = 0, then no constraint over the pair is assumed and W (f, X) = HI..
Clearly, Wi (f, X) # 0. In fact, let zx4+1 € I — X, and we consider the
system (2) with constrains (fQ—P)(s) (xg+1) = 0,0 < s < r —1. This
system always has a nontrivial solution for (P, Q), since it is a homogeneous
system of n+m+1 equations in n+m+2 unknowns. Now, if Q = 0, then P =0

because P € II", a contradiction. So, @ # 0 and <ﬁ, ﬁ) e Wi (f, X).
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We say that (Py, Qo) € W= (f, X) is a best Padé approxzimant pair of f at
X if

k
S [0 - B ()] Z\f@ P ()| 3)
j=1
for all (P,Q) € W (f,X). If (P,Q) € TI" x I, Q # 0, then £ o 1s said to
be normal if it is irreducible and either deg P = n or deg @ = m. (The null
rational function & is normal if and only if deg @ = 0.)

In 1934, Walsh proved in [9] that the Taylor polynomial of degree n for
an analytic function f can be obtained by taking the limit as ¢ — 0 of the
best (Tchebychev) approximant from II"” to f on the disk |z| < e. In [10], the
author generalized this result to rational approximation. In [2], Chui, Shisha
and Smith proved that the net of best (Tchebychev) aproximants pairs on [0, €],
from {(P, Q) € II" x II"™ : Q(0) = 1}, converges to the Padé approximant pair
in the origin as € — 0. Similar results for the L?>-norm can be seen in [3]. The
case of a unique point in several variables was treated in [1] with the LP-norms.
Finally, the case of L?-approximation on k disjoint intervals, where n +m + 1
is divisible by k, was investigated in [6].

In Section 2, we show that there exists at least a best Padé approximant
pair of f at X. In Section 3, we prove that, any cluster point of best ap-
proximant pairs {(P.,Qc)} as € — 0 is a best Padé approximant pair of f at
X.

2 Existence of best Padé approximant pairs

Now, we establish an existence theorem of best Padé approximant pairs.

Theorem 1. Let f € C4(I). Then there exists at least one best Padé approzx-
imant pair of f at X.

PrOOF. Let {(P,,Q1)} C WL (f,X) be a sequence satisfying

k

hmZ|le pl)(q)( DP = (fQ- P zj)[P = E. (4)

(P (7.%) Zl

If ¢ > 0, then (fQ; — Pl)(i) (;)=0,0<i<¢g—1,1<j <k According to
(4), there is constant M > 0 such that

(fQi = P)P(z;)| <M, 0<i<gq, 1<j<k, IleN. (5)

We observe that if ¢ = 0, (5) is true also, by (4).
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Let (S,T) e W (f,X). Since SQ; — TP, =T(fQ;,— P) — Q(fT —S), by
the Leibniz rule for the ith derivative of a product of two factors,

(SQi —TP) D (x,)| <N, 0<i<q 1<j<k €N,

for some constant N > 0. As ||P|| := max max |P®(z;)| is a norm on
0<i<q1<;<k

[T+ D =1 the equivalence of the norms in IT*(4TD =1 implies that {SQ; — TP}
is uniformly bounded on I, and consequently {T'P,} is uniformly bounded on I.
Since || P||7 := maxser |TP(t)| is a norm on IT", we get that {P;} is uniformly
bounded on I. So, there is a subsequence of {(P;, Q;)}, which we denote the
same way, and (Py, Qo) € II"™ x II"™ such that P, — Py and Q; — Qo uniformly
on I. By (4), it is obvious that Z?:l |(fQo — Po)@(x;)|P = E. On the other
hand, (P, Qo) € Wi (f, X) because (P, Q;) € Wi (f, X) for alll. So, (Py, Qo)
is a best Padé approximant pair of f at X. O

Remark 2. We observe that if (P, Q) is a best Padé approximant pair of f
at X, then so is (—P,—Q).
3 Convergence of best approximant pairs

Let ¢ >0, f € CI(I) and (S,T) € W= (f, X). We denote by M, , € II9"! the
best approximant of 29 from IT9~! with respect to the norm

ol =/ 11 |h<t>|pdt>’l’ |

If 17— M, ,(x) = Hg;é(m—ts), it is well known that ¢t; € (—=1,1),0 < s < ¢g—1
and ts # t. if s # ¢; see [7, §5.10]. We put KCpy = ||x? — M, 4||p. Let

z;-S:etS—l—xje[:rj—@xj—&—e], 0<s<qg—1, 1<j<k 0<e<l,
and let y1, ...,y ¢ I be such that y, # y, if v #w and T'(y,) #0, 1 <v <.

Lemma 3. Under the above assumptions, for each 0 < ¢ < 1, there exists
(P, Qc) € HI, such that

P55 = F () Qe ()~ 0<s<q-1, 1< <k

js
S
P (yv): yv)Qe (yv)_eq; 1<v<r

(6)
7l
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PROOF. Let 0 < € < 1. Clearly, there exists a nontrivial (U, V) € II" x II™
such that
Ue(ze):f(ze)‘/e(z;s)a OSSSQ*L 1§J§k

js js
S (7)

Ue (y0) = f(yv)vs (o), 1<v<r
In fact, (7) is a homogeneous system of n + m + 1 equations in n + m + 2

unknowns and therefore always has a nontrivial solution. We observe that if

Ve =0, then U, = 0, a contradiction; so V. # 0. Now, taking P, = ﬁ —€
and Q. = ﬁ, we conclude that (P, Q.) € HJ, satisfies (6). O

Lemma 4. Let {(P.,Qc)} C H}, be the net of Lemma 3. Then {P.} and {Q.}
are uniformly bounded on compact sets as € — 0. Moreover, if {P.} and {Q.}
are subsequences convergent to P, and Q. respectively, then P, T — Q.S = 0.

PROOF. Since |Qc|loc = 1, 0 < € < 1, the net {Q.} is uniformly bounded on
compact sets.

Let 0 <i<¢g—-1,1<j<kand 1l < v < r. From (6), we get
(fQe — P.)* (zl ) =¢9,0 < e <1, and therefore

|(fQc — P)* (21)] = O(e?) as e 0. (8)

As (S,T) € W (f, X), we have (fT — S)" (z;) = 0. Expanding (fT — S)°
by its Taylor polynomial at z;, 1 < j <k, up to order ¢ — 1, for each x € Bj,
there exists £(x) € [x; — €,x; + €] such that

(T = $)'(a) = SUT = 9V ¢()) - ;)"
and consequently
(T = S)(=1)| = O(e?) as e 0. 9)
But
[(P.T = QcS)“(z})| < [T°(2j)] |(fQe = Po)“(zj:)|+|Qe(z1) | | (ST = )“(=5,)

so according to (8) and (9), we have |(P.T — QES)(ZJZ){ =|(P.T - QES)E(z}i)‘
=0O(e?) as € — 0.

On the other hand, (6) implies |(P.T — QcS)(yy)| = O(e?) as e —» 0, 1 <
v < 7. So, there exist 0 < ¢g < 1 and N > 0, independent of ¢, j and v, such
that

)

|(P.T —QcS)(25;)| <€'N and  |(P.T — QcS)(yo)| < €’N,  (10)
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0<i<qg—1,1<j7<k 1<v<rand0<e<e
). It is easy to check that

k € r
Let we(x) = Hc 1 ? 01( - ch) Hu:l(x ~ Yu

k qg—1 —1 r
4*11}%@%—%)Tﬂt—t)faki—yw it 2=2zj
ks i e 520 u=
wé(z) = k q_CSfJ r 7 ’
IT T (yo —28) 11 (yo — vu) it z=y,
c=11=0 u=1
uFv
and for x € I,
k q—1 q—1 T .
I —2g) I (= 25) Tl (@ —wu) i 2=25
we(r) ) =0 g u=1
T — 2 k gq—1 T .
II IT(@—25) 11 (= —wu) it z=y,
c=11=0 32

Therefore, there is M > 0, independent of i, j and v, satisfying

H|xJ*xC| H‘t —ts |H|ﬂ¢j yu|>

lim 91

e—0 eq
L#_] 5#1
k r
lg%|w2(yv)‘ = H |yv - 1'c|q H ‘yv - yu| > M?
c=1 e

= 25;,yu- Hence, (10) implies that there exists

and ( )
0<e g €0 such that

VPT QeS) (2 )we ()
wy (dez) (z — Z;;)
rel,0<i<qg—1,1<j<k 1<v<rand0<e<e.Now, using the

(P.T — QcS)(yp)we(x)

< eINM?,
wé (yv)(x - yv)

< eNM? and

Lagrange interpolation formula,

[(PT = QcS) (@)
k g—1 r
(P.T — Qe ( )U;e(x)Jrz(

S|y e A

j=11i=0
< eNM?

PET - Q€S)(yv)w€(x)

wé(yv)(x_yv) (11)
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forx € 1,0 < e <er. Since
IPlle < NM? +[|S|loe;, 0<e<e,

from the equivalence of the norms in II", we conclude that {P.} is uniformly
bounded on compact sets as € — 0.

Finally, if {P.} and {Q.} are subsequences convergent to P, and Q. re-
spectively, by (11) we get P.T — Q.S = 0. O

Lemma 5. Let {(P.,Q.)} C H, be the net of Lemma 3. If % is normal, then

there exist o € {1,—1} and a subsequence of {(P.,Q.)}, which we denote the

same way, such that lin(l) P.=aS and liII(l) Qe = T uniformly on I. Moreover,
€— €e—

[(er*Pe)e] [Z}Ovzjl'l?"' aZjl's] =0 (12)
for0<s<q¢g—1,1<j<Ek 0<e<]1.

PrOOF. By Lemma 4, there is a subsequence of {(P., @)}, which we denote
the same way, and Py € II", Qg € II"™ such that P. — Py and Q. — Qo
uniformly on I as € — 0. Moreover,

PyT = QoS. (13)

For 1 <j <k let K; ={i:0<4i<mand Q((f)(xj) #0}. Since [|Qcllos = 1,
0 < e <1, we have ||Qollsc = 1, and thus K; # 0. Set k; = min(K;). By
hypothesis, T'(x;) # 0, so (13) implies that there are P; € II" and @, € II"™
satisfying

k k

Py(a) = [[(@—z)*Pi(2), Qolz) = [[(z—2)*Qu(z) and Qi(zc) #0,

c=1 c=1
(14)
xz€1l,1<c<k. Using (13) again, we obtain

P.T = Q5.

Since % is normal, either degT = m or degS = n. If degT = m, then

deg P, < deg S. But % is irreducible, so deg P = deg S and deg Q1 = degT.
Therefore, there exists o # 0 such that P, = S and @1 = oT. Now, according
to (14), we have k. =0, 1 < ¢ < k, and consequently, Py = S and Qg = oT.
But |Qollec = |T]|ec =1, so || =1 and

Py=aS and Qo= al. (15)
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If deg S = n, in the same manner we can see (15).
Finally, let 0 < s <q¢—1,1<j <k and € > 0. From Lemma 3,

€1 = (fQe — Po)(25,) = (fQe = Pe)(e(zj, —a5) + ;) = (fQe — Po)*(2),)- (16)
So, (12) immediately follows. O

Lemma 6. Suppose that 5 is normal, and let {(Pe, Qc)} C HZ, be the subse-
quence of Lemma 4. Then for each € > 0 and x € B, 1 < j <k, x # z}s,
0 <s<q—1, there exists {c(x) € (z; — €,z + €) satisfying

q—1

elq(er - Pe)e(x) = %(f@e - Pe)(q)(fs(x)) H(J) - Zjll) (17)

=0

PROOF. Let € > 0. It is well known that the (¢ — 1)th Lagrange interpolation

polynomial for (fQ.— P,)¢ with respect to zjl-o, zjll, cee zjl.(qfl) can be expressed
as
q—1 s—1
We(x): [(er_P6>E][Z]1'Oﬂzjl'17"' 72315]H(x_zgl)
s=0 =0

By Lemma 5, we have W, = 0. Let x € Bj, 1 <j <k, x # 2j,,0<s<q—1.
From [8, Th. 3, p. 309], we get

(er*PG)E(x) - [(fQE*PE)e] [Zgl'O’Zjl'la"' 72}(11—1)7‘%] (xfz]ll) . (18)
l

I
=)

Since f € CI(I), [8, Th. 4, p. 310] implies that there exists
Ce(z) € (z; — 1,z; + 1) such that

[(er - Pe)e] [Z;Ou 231‘17 e 7231'(q—1)7x] = %((er - Pe)ﬁ)(Q)(Ce(x))
= SUQ =PIV (e(Gula) ~ ) + )

So, according to (18), we have (17) with & (z) = e({c(z) — x;) + z;. O

Theorem 7. Let ¢ > 0, f € C4(I) and let (S,T) € W (f,X) be such that %
is normal. Then there exists a sequence {(P.,Qc)} C HI, such that

1 1
lim —||(fQe — Pe)llB, = al(fT— ) D ()| Kpgy 1<j<k.  (19)

e—0 €4
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PRrROOF. By Lemma 5, there exist o € {1,—1} and a sequence {(P., Q¢)} C
‘Hy such that

lim P. =aS and limQ@.=«T uniformly on [. (20)
e—0 e—0

From Lemma 6, for each € and x € B;, 1 < j < k, x # 2}

jso 0 S S S q— ]-7
there is & (z) € (x; — €,z + €) satisfying

SUQ - Py @ = Q- P)OC@) [[e-2). ()

Since (20) implies that lig(l)(er — P)D (& (x)) = a(fT — 8)@(x;), we have

22%6 (fQc — P)(x) = %UT—S)(”(%)H(%ZE% (22)
: =0

:EEBj,1§j§k7:r7éz}s,0§s§q—l.

On the other hand, by (20) we see that {P.} and {Q.} are uniformly
bounded on I as ¢ — 0. Hence, there exist M > 0 and ¢; > 0 such that
1(fQc — P) D (x)] < ¢!M, z €1,0< €< e So, from (21) we deduce that

1
e—q(erfPe)E(x) <2'M, =z € By, x%z}s, 0<e<e.

According to (22) and the Lebesgue Convergence Theorem, we get

lim *Il(er —P)lls, = \(fT S)@ (x
e—0 €4 B
0 J
Now, substituting = — x; by t into the above equality gives
1
- — € - — )] q
lim = LitfQ. - ) V23 J [(fT = 8) ()| [[t* = Mg ()

- %\(fT— ) (2;) |y

O

Theorem 8. Let f € CX(I) and let {(Se,Te)} C HY, be a net of best approz-
imant pairs of f from M}, with respect to || - ||le. Then {S¢} and {T.} are
uniformly bounded on compact sets as € — 0.
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PRrROOF. Since ||T¢|jeo = 1, 0 < € < 1, the net {T.} is uniformly bounded on
compact sets.
Let (S,T) € W= (f,X). Then for each 1 < j <k,

1(S.T — T.5)1 5,

= S NCTUT = S+ T T~ 8)) |,

7z
< (Zii)ql/p =T (fT. — Se) + T.(fT — 9)|.
< I a7, sl +ImGT-S)1) 29
< B 147, il + 1T - 1)
<20y
If ¢ = 0, then
(ST —T.8) (z))| =0(1) as e—0, 1<j<k (24)

In otherwise, as (fT — S)(l) (j) =0,0<1<qg—-1,1<j <k, expanding
(fT — S)° by its Taylor polynomial at ; up to order ¢ — 1, it follows that for
each x € By, there exists {(z) € [z; — €,z + €] such that (fT —S) (z) =
< (FT = 8)D (€ (2))(@ — 2;)1. So, [|(/T — 8) I, = O(e?) as € — 0, and
consequently

| fT — S|, =0(e?) as e—0. (25)

Therefore, by (23), we get ||(S.T — TES)EHBJ_ =0(e%) ase - 0,1 <j <k
Since (S.T —T.S)¢ € II"*™ on Bj, according to Lemma 2.2 in [5], we have
(ST —T.9)" (z;)] = O("%) as €0, (26)

1<j<k 0<i<g Sincen+m+1<k(g+1),from (24) and (26) we show
that {S.T — T.S} C II"*™ is uniformly bounded on I as ¢ — 0; i.e., there
exist M > 0 and €¢; > 0 such that

(ST -T.8) ()| <M, wel, D<e<e.

As |T.S(x)] < |Sloos € I, 0 < € < €1, we have ||S¢||r = mg;d(SET)(x)\ <

[ISllcc + M, 0 < € < €;. Finally, by the equivalence of the norms in II", we
conclude that {S.} is uniformly bounded on compact sets as € — 0. O
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Theorem 9. Let f € C1(I) and let {(Se,Te)} be a net of best approzimant
pairs of f from HI, with respect to || - |le. Suppose that there exists a best Padé
approximant pair of f at X, say (S,T), such that ; is normal. Then any
cluster point of {(Se,Te)} as € — 0 is a best Padé approzimant pair of f at X.

PrOOF. According to Theorem 8, it follows that the set of cluster points of
the net {(S¢,T¢)} as e — 0 is nonempty. Now, it is sufficient to prove that if
(S«, T) is the limit point of {(Se,, T¢,)} as ¢ — 0, then (S, Ty) is a best Padé
approximant pair of f at X. If ¢ = 0, then the result is obvious, because

k
S IUTe = S ()P = lim k|| fTe, — S, |17,
le 614)0

< lim K[| FT - S]g,

k
ZfTS DI

Now assume ¢ > 0. Let 1 < j <k, 0<i<g—1. As in the proof of Theorem
8, we have

| (ST —Ti,9) (25)] = O(l™") as e — 0. (27)
Therefore, (S,T — T..S)® (z;) = 0. Since
S, T —T.8 =—T(fT\, — S.) + T.(fT — S)

and (S,T) € W (f,X), using the Leibniz rule we get (T'(fT, — 5.))® (z;) =
0, and thus

(T = 80" () =0, (28)

because T'(x;) # 0. As ¢ and j are arbitrary, (Si,T%) is a Padé approximant
pair of f at X, and so (S, Ty) € W} (f, X) since ||Ty||oc = 1.

Expanding (S, T —T,,5)" and T,, (fT — S) by their Taylor polynomi-
als at x; up to order ¢ — 1, it follows that for each x € Bj, there exist
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e, (), me, (z) € [x; — €, 25 + ] such that

T (m)jzz (T, — 5e)" (x) = 1 (T(fT., — )" (x)
= (8.T ~ T.,8) () + (T (T - 8)) ()

€

qz 6§ " (84T~ T,5)" (J)(
_ (5

Tr — l'j)i (29)

7!

T-T,8)" (£, (x))
q!

q,Z() (T = 8)) (e (2) T (e, (@) (& — )"

(. —x;)?

As T(zj) # 0, from (27) there exist a subsequence of {¢;}, which we denote
the same way, and a;; € R, 0 <3 <q—1,1<j <k, such that

lim el (8, T — TqS)(i) (x;) =T (z;)ai;. (30)

e—0

According to Theorem 8, we have

oy (ST =T 8)™ (€0 (2) _ (S.T = T.8) W) (z;)
& —0 q! q! ’

0 (28)-(31) imply that

lim — (/T — S0)" (2)

514)06l

= q'Tl(acj) (—(S*T — T*S)(‘I)(xj) + (fT — S)(Q)T*(xj)) (z— xj)q

qg—1
=D _aije
=0

1
4 UL =80 @) (@ = ay)° Zau

uniformly on B;. Therefore, substituting  —z; by ¢ into the following inequal-
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ity gives

1 o
Jim o 17T~ )",

1
e

1
> | T =80 )| 18— My 1),

(fTe — S0 (2)) (x — a;)" Zaw

1
= luT - S0 (25)| Ky,

1 <7 <k. Since % is normal, from Theorem 7, there exists a subsequence of

{&}, which we denote the same way again, such that {(P,, Q.,)} C H]., and
6 1
lim = II(qu = Pa)llg, = 1T =) @5)] K (33)

1<j <k But {(S,T¢,)} is a net of best approximant pairs of f from HI,
so (32) and (33) imply

k k
ST = 89D @) < ST = 9D ()]
j=1 J=1
Finally, by (28), (S, T%) is a best Padé approximant pair. O

We say that the best Padé approximant pair of f at X is unique if, when-
ever (P,Q), (U, V) e Wl (f, X) satisfy (3), then (P, Q) = (U, V).

The next corollary immediately follows.

Corollary 10. Let f € Ci(I), g > 0, and suppose that there exists a unique
best Padé approximant pair of f at X, say (S,T), such that % 18 normal.

Then £ is a Padé approzimant of f at X. In addition, if {(S.,T.)} is a net of
best approximant pairs of f from HI with respect to || - ||, then % converges
to % uniformly on some neighborhood of X as e — 0.
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