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Abstract

We explore properties of Lr-derivates with respect to a monotone
increasing Lipschitz function. We then define Lr-ex-major and Lr-ex-
minor functions with respect to a monotone increasing Lipschitz function
and use these to define a Perron-Stieltjes type integral which extends
the integral of L. Gordon.

1 Introduction

In 1914, O. Perron [3] developed an extension of the Lebesgue integral based on
major and minor functions and upper and lower Dini derivates. The classical
derivative of a function F is Perron integrable, and F is the indefinite integral
of its derivative. Calderon and Zygmund then introduced the Lr-derivative,
which has applications in harmonic analysis [1]. Later, L. Gordon developed
a Perron-type integral that recovers a function from its Lr-derivative [2].

In [7], Tikare and Chaudhary defined Lr-derivates with respect to a Lip-
schitz function of order 1. They then defined a Perron-type integral which
recovers a function from its Lr-derivative with respect to a Lipschitz function.
In the present paper, we modify the integration process given in [7] so that it
extends the integral of L. Gordon [2].

Throughout this paper, a Lipschitz function will mean a Lipschitz function
of order 1, and r ∈ [1,∞).
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2 Definitions and elementary properties of the
Lr,φ-derivates

For completeness, here we restate the definitions of the Lr-derivates with re-
spect to a Lipschitz function found in [7].

Definition 1. [7] Let f ∈ Lr [a, b], let φ be a monotone increasing Lipschitz
function defined on [a, b], and let h→ 0+.

We define the upper right Lr,φ-derivate, denoted D+
r f (x;φ), to be the great-

est lower bound of all α such that(
1

h

∫ h

0

[f (x+ t)− f (x)− α (φ (x+ t)− φ (x))]
r
+ dt

) 1
r

= o (h) . (1)

If no real number α satisfies (1), then we set D+
r f (x;φ) = +∞. If (1)

holds for every real number α, then we set D+
r f (x;φ) = −∞.

We define the lower right Lr,φ-derivate, denoted D+,rf (x;φ), to be the
least upper bound of all α such that(

1

h

∫ h

0

[f (x+ t)− f (x)− α (φ (x+ t)− φ (x))]
r
− dt

) 1
r

= o (h) . (2)

If no real number α satisfies (2), then we set D+,rf (x;φ) = −∞. If (2)
holds for every real number α, then we set D+,rf (x;φ) = +∞.

We define the upper left Lr,φ-derivate, denoted D−r f (x;φ), to be the great-
est lower bound of all α such that(

1

h

∫ h

0

[−f (x− t) + f (x)− α (−φ (x− t) + φ (x))]
r
+ dt

) 1
r

= o (h) . (3)

If no real number α satisfies (3), then we set D−r f (x;φ) = +∞. If (3)
holds for every real number α, then we set D−r f (x;φ) = −∞.

Finally, we define the lower left Lr,φ-derivate, denoted D−,rf (x;φ), to be
the least upper bound of all α such that(

1

h

∫ h

0

[−f (x− t) + f (x)− α (−φ (x− t) + φ (x))]
r
− dt

) 1
r

= o (h) . (4)

If no real number α satisfies (4), then we set D−,rf (x;φ) = −∞. If (4)
holds for every real number α, then we set D−,rf (x;φ) = +∞.
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Definition 2. [7] We define the upper (two-sided) Lr,φ-derivate as follows:

Drf (x;φ) = max
{
D+
r f (x;φ) , D−r f (x;φ)

}
.

Similarly we define the lower (two-sided) Lr,φ-derivate as follows:

Drf (x;φ) = min {D+,rf (x;φ) , D−,rf (x;φ)} .

Definition 3. Let f and φ satisfy the hypotheses of Definition 1 and let h→
0+. If Drf (x;φ) and Drf (x;φ) are the same real number, then we say that
f is Lr,φ-differentiable at x and denote the common value by Drf (x, φ) .

If the φ is omitted from the notation for an Lr,φ-derivate or Lr,φ-derivative,
then it is assumed that φ is the identity function, and we have the Lr-derivates
and Lr-derivatives from [2].

It is clear that if φ is strictly decreasing in a neighborhood of x, then none
of the Lr,φ-derivates at x can be finite; therefore, unless otherwise indicated,
in this paper we will assume that φ is monotone increasing.

We will make use of the following.

Theorem 4. [7] Let f and φ satisfy the hypotheses of Definition 1. Then
either D+

r f(x;φ) = ±∞ or D+
r f(x;φ) is the minimum of all real numbers α

such that(
1

h

∫ h

0

[f(x+ t)− f(x)− α(φ(x+ t)− φ(x))]r+dt

) 1
r

= o(h),

where φ is a monotone increasing Lipschitz function.
Similar conditions hold for each of the other Lr,φ-derivates.

Indeed, we now show that in order for φ to have finite Lr,φ-derivates at x,
φ must be strictly increasing in a neighborhood of x and must not increase
too slowly.

Theorem 5. Let f and φ satisfy the hypotheses of Definition 1, and let x ∈
[a, b]. If D+

r φ(x) = 0, that is, if(
1

h

∫ h

0

(φ (x+ t)− φ (x))
r
dt

) 1
r

= o (h) as h→ 0+, (5)

then both D+
r f (x;φ) and D+,rf (x;φ) are infinite.
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Similarly if D−r φ(x) = 0, that is, if(
1

h

∫ h

0

(φ (x)− φ (x− t))r dt

) 1
r

= o (h) as h→ 0+,

then both D−r f (x;φ) and D−,rf (x;φ) are infinite.

Proof. We will prove that D+
r φ(x) = 0 implies that D+

r f (x;φ) is infinite;
the other cases have similar proofs.

Suppose (
1

h

∫ h

0

[f (x+ t)− f(x)]r+dt

) 1
r

= o (h) as h→ 0+ (6)

and let α ∈ R. We then have by Minkowski’s inequality(
1

h

∫ h

0

[f (x+ t)− f (x)− α (φ (x+ t)− φ (x))]
r
+ dt

) 1
r

≤

(
1

h

∫ h

0

[f (x+ t)− f (x)]
r
+ dt

) 1
r

+ |α|

(
1

h

∫ h

0

(φ (x+ t)− φ (x))
r
dt

) 1
r

.

Both of the terms on the right hand side are o (h), so that D+
r f (x;φ) = −∞.

Also by Minkowski’s inequality, we have(
1

h

∫ h

0

[f (x+ t)− f (x)]
r
+ dt

) 1
r

≤

(
1

h

∫ h

0

[f (x+ t)− f (x)− α (φ (x+ t)− φ (x))]
r
+ dt

) 1
r

+ |α|

(
1

h

∫ h

0

(φ (x+ t)− φ (x))
r
dt

) 1
r

,

so that if (6) does not hold, then D+
r f (x;φ) = +∞, and the result is proved.

Corollary 6. If D+
r f (x;φ) or D+,rf (x;φ) is finite, then D+

r φ(x) > 0, and
if D−r f (x;φ) or D−,rf (x;φ) is finite, then D−r φ(x) > 0.
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Theorem 7. Let f and φ satisfy the hypotheses of Definition 1, and let x ∈
[a, b]. Then,

1. D+
r φ(x) > 0 implies D+

r f (x;φ) ≥ D+,rf (x;φ),

2. D−r φ(x) > 0 implies D−r f (x;φ) ≥ D−,rf (x;φ),

3. D+
r φ(x) > 0 and D−r φ(x) > 0 imply Drf (x;φ) ≥ Drf (x;φ).

Proof. It is clear that (3) follows from (1) and (2). We will prove that
D+
r f (x;φ) ≥ D+,rf (x;φ); the proof for the left Lr,φ-derivates is similar. If

D+
r f (x;φ) = +∞, then there is nothing to prove. We first assume that

D+
r f (x;φ) is finite. Suppose that β could take the place of α in (1) and γ

could take the place of α in (2), and suppose by way of contradiction that
γ > β. We then have

0 ≤ (γ − β)

(
1

h

∫ h

0

(φ (x+ t)− φ (x))
r
dt

) 1
r

≤

(
1

h

∫ h

0

[f (x+ t)− f (x)− β (φ (x+ t)− φ (x))]
r
+ dt

) 1
r

+

(
1

h

∫ h

0

[f (x+ t)− f (x)− γ (φ (x+ t)− φ (x))]
r
− dt

) 1
r

.

The last two terms are o (h). This contradicts the fact that D+
r φ(x) > 0,

so either D+,rf (x;φ) is a finite number less than or equal to D+
r f (x;φ) or

D+,rf (x;φ) = −∞.
Finally we consider the case where D+

r f (x;φ) = −∞. Assume by way of
contradiction that D+,rf (x;φ) 6= −∞; i.e., there exists γ that could take the
place of α in (2). The preceding inequality shows that if β < γ, then

(
1

h

∫ h

0

[f (x+ t)− f (x)− β (φ (x+ t)− φ (x))]
r
+ dt

) 1
r

6= o (h) .

This means that D+
r f (x;φ) > −∞, and the theorem is proved.

It is clear that if f is Lr,φ-differentiable at x, then D+
r φ(x) > 0 and

D−r φ(x) > 0. Therefore, the following is a consequence of Theorem 7.



296 E. Massarwi and P. Musial

Corollary 8. If f is Lr,φ-differentiable at x, then Drf (x, φ) is the unique
real number α such that(

1

h

∫ h

−h
|f (x+ t)− f (x)− α (φ (x+ t)− φ (x))|r dt

) 1
r

= o (h) .

In addition, all four Lr,φ-derivates are equal to Drf(x, φ).

We now show that the upper Lr,φ-derivate is subadditive, the lower Lr,φ-
derivate is superadditive and the Lr,φ-derivative is additive.

Theorem 9. Let f satisfy the hypotheses of Definition 1, and let x ∈ [a, b].
Let f1 and f2 be in Lr [a, b] , 1 ≤ r < ∞, and let φ be a monotone increasing
Lipschitz function defined on [a, b] such that D+

r φ(x) > 0. Let f = f1 + f2.
Then

1. D+
r f (x;φ) ≤ D+

r f1 (x;φ) +D+
r f2 (x;φ) and

2. D+,rf (x;φ) ≥ D+,rf1 (x;φ) +D+,rf2 (x;φ)

if the right side of each inequality is defined. Similar inequalities hold for the
left and two-sided Lr,φ-derivates.

If f1 is Lr,φ-differentiable at x and f2 is Lr,φ-differentiable at x, then f is
Lr,φ-differentiable at x and Drf (x;φ) = Drf1 (x;φ) +Drf2 (x;φ).

Proof. We sketch the proof of (1). If the right hand side of the inequality is
+∞, then there is nothing to prove. If the right hand side is finite, then the
result holds by Minkowski’s inequality.

If the right hand side is −∞, we may assume that D+
r f1 (x;φ) = −∞.

Let β ∈ R, let α2 > D+
r f2 (x;φ) and let α1 = β − α2. An application of

Minkowski’s inequality proves the result.

3 Relation between Lr,φ-derivates and Lr-derivates.

If φ is Lr-differentiable at a point x, then we have the following.

Theorem 10. Let f satisfy the hypotheses of Definition 1, and let φ be a
monotone increasing Lipschitz function defined on [a, b] which is Lr-differentiable
at x with Drφ (x) > 0. Then f is Lr,φ-differentiable at x if and only if f is
Lr-differentiable at x, and in this case we have

Drf (x) = Drφ (x)Drf (x, φ) . (7)
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Proof. Let β = Drφ (x) . Suppose f is Lr,φ-differentiable at x and let
α = Drf (x, φ) . We then have(

1

h

∫ h

−h
|f (x+ t)− f (x)− αβt|r dt

) 1
r

≤

(
1

h

∫ h

−h
|f (x+ t)− f (x)− α (φ (x+ t)− φ (x))|r dt

) 1
r

+ |α|

(
1

h

∫ h

−h
|φ (x+ t)− φ (x)− βt|r dt

) 1
r

.

Both of the terms on the righthand side are o (h), so f is Lr-differentiable
at x and (7) holds.

Conversely, suppose f is Lr-differentiable at x and let ξ = Drf (x). Then
we have that(

1

h

∫ h

−h

∣∣∣∣f (x+ t)− f (x)− ξ

β
(φ (x+ t)− φ (x))

∣∣∣∣r dt
) 1

r

≤

(
1

h

∫ h

−h
|f (x+ t)− f (x)− ξt|r dt

) 1
r

+

∣∣∣∣ ξβ
∣∣∣∣
(

1

h

∫ h

−h
|φ (x+ t)− φ (x)− βt|r dt

) 1
r

.

Both of the terms on the righthand side are o (h), so f is Lr,φ-differentiable
at x and (7) holds.

Theorem 11. Let φ be a monotone increasing Lipschitz function defined on
[a, b]. Then Drf (x;φ) ≥ 0 if and only if Drf (x) ≥ 0.

Proof. Let γ be the identity function. Suppose D+,rf (x;φ) ≥ 0. Let
Pf,φ (α) mean that(

1

h

∫ h

0

[f (x+ t)− f (x)− α (φ (x+ t)− φ (x))]
r
− dt

) 1
r

= o (h) .

Suppose α ≤ β. Then because φ is monotone increasing, we have that
Pf,φ (β) implies Pf,φ (α) .
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By Theorem 4, we have that if D+,rf (x;φ) ≥ 0, then Pf,φ (0) . We then
have that

(
1

h

∫ h

0

[f (x+ t)− f (x)− 0 (φ (x+ t)− φ (x))]
r
− dt

) 1
r

= o (h)

so that

(
1

h

∫ h

0

[f (x+ t)− f (x)− 0 (γ (x+ t)− γ (x))]
r
− dt

) 1
r

= o (h) ,

and so D+,rf (x) ≥ 0. The converse follows similarly. Also, the result for the
lower left Lr-derivate follows similarly.

Theorem 12. Let φ be a monotone increasing Lipschitz function defined on
[a, b]. If Drφ(x) is finite and if Drf(x;φ) <∞, then Drf(x) <∞.

Proof. We first work on the right side; the proof for the left side is similar.
Since D+

r f(x;φ) < ∞, there exists a real number α such that (1) holds. We
wish to prove that there exists β such that

(
1

h

∫ h

0

[f(x+ t)− f(x)− βt]r+dt

) 1
r

= o(h).

Let D+
r φ(x) = η, where 0 ≤ η < ∞. By Corollary 6, we also have that

η > 0. We then have
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(
1

h

∫ h

0

[f(x+ t)− f(x)− αηt]r+dt

) 1
r

=

(
1

h

∫ h

0

[f(x+ t)− f(x)− αηt+ α(φ(x+ t)− φ(x))

−α(φ(x+ t)− φ(x))]r+dt

) 1
r

≤

(
1

h

∫ h

0

[f(x+ t)− f(x)− α(φ(x+ t)− φ(x))]r+dt

) 1
r

+

(
1

h

∫ h

0

[α(φ(x+ t)− φ(x))− αηt]r+dt

) 1
r

≤ o(h) + |α|

(
1

h

∫ h

0

[(φ(x+ t)− φ(x))− ηt]r+dt

) 1
r

≤ o(h).

We may therefore conclude that D+
r f(x) <∞, and the theorem is proved.

4 Relation between Lr,φ-continuity and Lr-continuity

Definition 13. [7] Let 1 ≤ r < ∞. A function f ∈ Lr([a, b]) is said to be
Lr-continuous with respect to φ (or simply Lr,φ-continuous) at x0 ∈ [a, b] if
for some number k,∫

[a,b]∩[x0−h,x0+h]

|f(x)− f(x0)− k(φ(x)− φ(x0))|rdx = o(h). (8)

In particular, if k = 0, we will simply say that f is Lr-continuous at x.

Theorem 14. Given a Lipschitz function φ, a function f : [a, b] → R is
Lr-continuous with respect to φ if and only if f is Lr-continuous.

Proof. Let f be Lr-continuous. We need to show that (8) holds for any
Lipschitz function φ and any k. Let M be a positive constant such that for



300 E. Massarwi and P. Musial

any x1, x2 ∈ [a, b] we have

|φ(x2)− φ(x1)| ≤M |x2 − x1|.

By Minkowski’s inequality we have(∫
[a,b]∩[x0−h,x0+h]

|f(x)− f(x0)− k(φ(x)− φ(x0))|rdx

) 1
r

≤

(∫
[a,b]∩[x0−h,x0+h]

|f(x)− f(x0)|rdx

) 1
r

+ |k|

(∫
[a,b]∩[x0−h,x0+h]

|φ(x)− φ(x0)|rdx

) 1
r

≤ o(h) + |k|M

(∫
[a,b]∩[x0−h,x0+h]

|x− x0|rdx

) 1
r

≤ o(h) + |k|M

(∫
[a,b]∩[x0−h,x0+h]

|h|rdx

) 1
r

≤ o(h) + (|k|M) (h) (2h)
1
r

≤ o(h).

Conversely, supposing that (8) holds for some φ and some k, we also have,
by Minkowski’s inequality,

(∫
[a,b]∩[x0−h,x0+h]

|f(x)− f(x0)|rdx

) 1
r

≤

(∫
[a,b]∩[x0−h,x0+h]

|f(x)− f(x0)− k(φ(x)− φ(x0)|rdx

) 1
r

+ |k|

(∫
[a,b]∩[x0−h,x0+h]

|φ(x)− φ(x0))|rdx

) 1
r

≤ o(h).

5 Further properties of the Lr,φ-derivates.

We will need the following as we develop the theory of Lr,φ-ex-major functions.

Theorem 15. Suppose that f ∈ Lr ([a, b]), that φ is a monotone increasing
Lipschitz function defined on [a, b] and that Drf (x;φ) ≥ 0, except perhaps on
a countable set E′ where, however, f is Lr-continuous. Then f is monotone
increasing on [a, b] .
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The proof will require several lemmas, including the following extension of
[2] Lemma 2.

Definition 16. Let 0 ≤ p ≤ 1 and let E be a measurable subset of [a, b]. Let
x ∈ (a, b) . We will say that x is a point of p-lower density of E if

lim inf
h→0+

λ (E ∩ (x− h, x+ h))

2h
= p. (9)

Definition 17. Let 0 ≤ p ≤ 1 and let E be a measurable subset of [a, b]. Let
x ∈ [a, b) . We will say that x is a point of p-lower right-hand density of E if

lim inf
h→0+

λ (E ∩ (x, x+ h))

h
= p. (10)

For convenience we will assume that if b ∈ E, then b is a point of 1-lower
right-hand density of E.

Definition 18. Let 0 ≤ p ≤ 1 and let E be a measurable subset of [a, b]. Let
x ∈ (a, b] . We will say that x is a point of p-lower left-hand density of E if

lim inf
h→0+

λ (E ∩ (x− h, x))

h
= p. (11)

For convenience we will assume that if a ∈ E, then a is a point of 1-lower
left-hand density of E.

Lemma 19. Let R and L be nonempty disjoint measurable sets such that
[a, b] = R ∪ L, and suppose that there exist p1 > 1/2 so that every point of
R is a point of p1-lower right-hand density of R, and p2 > 1/2 so that every
point of L is a point of p2-lower left-hand density of L. The every point of R
is to the right of every point of L.

Proof. Suppose to the contrary that there exist x1 ∈ R and x2 ∈ L such
that a ≤ x1 < x2 ≤ b. Choose q ∈ (1/2, p1 ∧ p2) as well as m > 1/(2q − 1).
Let

g (x) = (x− d)
−1
∫ x

a

(χR (t)− χL (t)) dt,

where x ∈ [a, b] and d < a−m (b− a) . We will show that g fails to achieve a
maximum value on [x1, x2]. Let us show that if x0 ∈ [x1, x2) ∩ R, then g (x)
increases as we move slightly to the right of x0. Let x3 ∈ (x0, b) be such that
if ξ ∈ (x0, x3), then

λ (R ∩ (x0, ξ))

ξ − x0
> q.
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Letting N = 1/ (ξ − d) (x0 − d) , and noting that N > 0, we have

g (ξ)− g (x0)

= (ξ − d)
−1
∫ ξ

a

(χR (t)− χL (t)) dt− (x0 − d)
−1
∫ x0

a

(χR (t)− χL (t)) dt

= N

[
(x0 − d)

∫ ξ

a

(2χR (t)− 1) dt− (ξ − d)

∫ x0

a

(2χR (t)− 1) dt

]

= N

[
(x0 − d)

∫ ξ

x0

(2χR (t)− 1) dt− (ξ − x0)

∫ x0

a

(2χR (t)− 1) dt

]
> N [m (b− a) (2q − 1) (ξ − x0)− (ξ − x0) (b− a)]

> 0.

Now suppose x0 ∈ (x1, x2] ∩ L. Let x3 ∈ (a, x0) be such that if ξ ∈ (x3, x0),
then

λ (L ∩ (ξ, x0))

x0 − ξ
> q.

We then have

g (x0)− g (ξ)

= (x0 − d)
−1
∫ x0

a

(χR (t)− χL (t)) dt− (ξ − d)
−1
∫ ξ

a

(χR (t)− χL (t)) dt

= (ξ − d)
−1
∫ ξ

a

(χL (t)− χR (t)) dt− (x0 − d)
−1
∫ x0

a

(χL (t)− χR (t)) dt

= N

[
(x0 − d)

∫ ξ

a

(2χL (t)− 1) dt− (ξ − d)

∫ x0

a

(2χL (t)− 1) dt

]

= N

[
(x0 − ξ)

∫ ξ

a

(2χL (t)− 1) dt− (ξ − d)

∫ x0

ξ

(2χL (t)− 1) dt

]
< N [(x0 − ξ)(b− a)−m (b− a) (2q − 1) (x0 − ξ)]
< 0.

We then have that g (x) increases as we move slightly to the left of x0. We have
thus demonstrated that g cannot achieve a maximum on [x1, x2] . However,
since g is continuous, it must achieve a maximum on [x1, x2] , a contradiction.



A Stieltjes Type Extension of the Lr-Perron Integral 303

Lemma 20. Let F be a measurable function on [a, b], let E′ be a countable
subset of [a, b], and let E = [a, b] \ E′. Suppose (i) F is approximately con-
tinuous at each point of E′ and (ii) each point x0 of E is a point of p1-lower
right-hand density of the set {x ∈ [a, b] : F (x) ≥ F (x0)} for some p1 > 1/2,
and a point of p2-lower left-hand density of the set {x ∈ [a, b] : F (x) ≤ F (x0)}
for some p2 > 1/2. Then F is monotone increasing on [a, b].

Proof. Suppose x1, x2 ∈ [a, b] and F (x1) < F (x2). We need to show that
x1 < x2.

We have that E′ is a countable set so that the set {y : F (x) = y for some x ∈
E′} is also countable. Therefore, we may choose ε > 0 so that F (x1) <
F (x2)− ε and F (x) 6= F (x2)− ε for any x ∈ E′.

Let R = {x ∈ [a, b] : F (x) ≥ F (x2) − ε} and L = {x ∈ [a, b] : F (x) <
F (x2)− ε}. R ∪ L = [a, b] where R and L are disjoint measurable sets. Since
x2 is in R and x1 is in L, both R and L are non-empty.

Let x0 ∈ R. If x0 ∈ E, then x0 is a point of p1-lower right-hand density, for
some p1 > 1/2, of {x ∈ [a, b] : F (x) ≥ F (x0)} ⊆ {x ∈ [a, b] : F (x) ≥ F (x2)−ε}.

If x0 ∈ E′, then F (x0) > F (x2)− ε. Choose γ ∈ (0, F (x0)− (F (x2)− ε)).
Then because F is approximately continuous at x0, we have that x0 is a point
of density of

{x : F (x) ∈ (F (x0)− γ, F (x0) + γ) ⊆ R} .

We have shown that every point of R is a point of p1-lower right-hand
density of R for some p1 > 1/2. A similar argument shows that every point of
L is a point of p2-lower left-hand density of the set {x ∈ [a, b] : F (x) ≤ F (x0)}
for some p2 > 1/2. This then implies that R and L satisfy the hypotheses of
Lemma 19 so that every point of L is to the left of every point of R. Since
x1 ∈ L and x2 ∈ R, it follows that x1 < x2.

Proof of Theorem 15. We have Drf(x, φ) ≥ 0 for all x ∈ E, so by
Theorem 11 and Chebyshev’s inequality [5], we have that f

app
(x) ≥ 0 for all

x ∈ E. Also by Chebyshev’s inequality, f is approximately continuous on E′.
The conclusion now follows from Lemma 20.
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6 Lr,φ-ex-major (ex-minor) functions.

In [2], L. Gordon shows that there exists a function f which is an Lr-derivative
defined on [a, b], so that if ψ is an Lr-major function of f , then ψ

r
(b) = −∞.

Thus, for a monotone increasing Lipschitz function φ, we define Lr,φ-ex-major
functions and Lr,φ-ex-minor functions of f as follows.

Definition 21. Suppose f (x) is a function defined on [a, b] and φ is a mono-
tone increasing Lipschitz function also defined on [a, b] . A finite-valued func-
tion ψ (x) ∈ Lr [a, b] , 1 ≤ r <∞, is said to be an Lr,φ-ex-major function of f
if

1. ψ (a) = 0,

2. ψ (x) is Lr-continuous on [a, b],

3. except for at most a denumerable subset of [a, b], we have

−∞ 6= Drψ(x;φ) ≥ f(x). (12)

A function λ (x) is an Lr,φ-ex-minor function of f if −λ (x) is an Lr,φ-ex-
major function of −f.

Theorem 22. Suppose that ψ (x) and λ (x) are, respectively, Lr,φ-ex-major
and Lr,φ-ex-minor functions of f. The function u (x) = ψ (x)−λ (x) is mono-
tone increasing on [a, b] .

Proof. Suppose that ψ is an Lr,φ-ex-major function and that λ is an Lr,φ-
ex-minor function of f on [a, b]. We shall show that for nearly every x, we have
Dru (x;φ) ≥ 0.

Let x be such that −∞ 6= Drψ(x;φ) ≥ f(x) ≥ Drλ(x;φ) 6= +∞, and let
ε > 0. There exist α, β, with α ≤ β + ε, such that∫ h

0

[S(x, t)]r−dt = o(hr+1)

and ∫ h

0

[T (x, t)]r+dt = o(hr+1),

where
S(x, t) = ψ(x+ t)− ψ(x)− β(φ(x+ t)− φ(x))

and
T (x, t) = λ(x+ t)− λ(x)− α(φ(x+ t)− φ(x)).
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Let

U (x, t) = u (x+ t)− u (x)− (β − α) (φ (x+ t)− φ (x))

= ψ (x+ t)− λ (x+ t)− (ψ (x)− λ (x))

− (β − α) (φ (x+ t)− φ (x))

= [ψ (x+ t)− ψ (x)− β (φ (x+ t)− φ (x))]

− [λ (x+ t)− λ (x)− α (φ (x+ t)− φ (x))] .

Therefore, U(x, t) = S(x, t)−T (x, t), and so [U(x, t)]− ≤ [S(x, t)]−+[T (x, t)]+.
By Minkowski’s inequality, we have∫ h

0

[u(x+ t)− u(x)− (β − α)(φ(x+ t)− φ(x))]r−dt = o(hr+1).

So D+,ru(x;φ) ≥ (β −α) ≥ −ε. Since ε is arbitrary, we have D+,ru(x;φ) ≥ 0.
The proof that D−,ru(x;φ) ≥ 0 is similar, so we have Dru(x, φ) ≥ 0. Since
u(x) is Lr-continuous, our conclusion now follows from Theorem 15.

Definition 23. Suppose f (x) is a function defined on [a, b] and φ is a mono-
tone increasing Lipschitz function also defined on [a, b] . If inf ψ (b) taken over
all Lr,φ-ex-major functions of f equals supλ (b) taken over all Lr,φ-ex-minor
functions of f , then the common value, denoted by

(Pr,φ)

∫ b

a

f,

is called the Pr,φ-integral of f on [a, b], and f is said to be Pr,φ-integrable on
[a, b] .

If φ is a Lipschitz function defined on [a, b], then it is of bounded variation.
We can find monotone increasing Lipschitz functions φ1 and φ2 so that for
every x ∈ [a, b], we have

φ (x) = φ1 (x)− φ2 (x) .

Of course the functions φ1 and φ2 are not unique. However, we have the
following theorem.

Theorem 24. Let φ be a Lipschitz function defined on [a, b], and let φ1, φ2,
γ1 and γ2 be monotone increasing Lipschitz functions so that φ (x) = φ1 (x)−
φ2 (x) = γ1 (x) − γ2 (x) for all x ∈ [a, b] . Suppose that f is Pr,φ1-, Pr,φ2-,
Pr,γ1- and Pr,γ2-integrable on [a, b] . Then

(Pr,φ1
)

∫ b

a

f − (Pr,φ2
)

∫ b

a

f = (Pr,γ1)

∫ b

a

f − (Pr,γ2)

∫ b

a

f.
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We first prove the following lemma.

Lemma 25. Let φ1 and φ2 be monotone increasing Lipschitz functions defined
on [a, b] with φ = φ1 +φ2, and let f be any function defined on [a, b] . Suppose
ψ1 is an Lr,φ1-ex-major (Lr,φ1-ex-minor) function of f and ψ2 is an Lr,φ2-
ex-major (Lr,φ2-ex-minor) function of f , and let ψ = ψ1 + ψ2. Then ψ is an
Lr,φ-ex-major (Lr,φ-ex-minor) function of f.

Proof. We prove the lemma for Lr,φ-ex-major functions; the proof for Lr,φ-
ex-minor functions is similar. Conditions 1 and 2 of the definition of the
Lr,φ-ex-major function are clearly satisfied by ψ. To prove that condition 3
holds, let us denote by E the set of those x ∈ [a, b] satisfying

−∞ 6= Drψ1(x;φ1) ≥ f(x)

and
−∞ 6= Drψ2(x;φ2) ≥ f(x).

We have that [a, b] \ E is countable. Let x ∈ E, and let α be such that
−∞ 6= α < min (Drψ1(x;φ1), Drψ2(x;φ2)). Then

(
1

h

∫ h

0

[ψ (x+ t)− ψ (x)− α (φ (x+ t)− φ (x))]
r
− dt

) 1
r

=

(
1

h

∫ h

0

[ψ1(x+ t) + ψ2(x+ t)− ψ1(x)− ψ2(x)

− α(φ1(x+ t) + φ2(x+ t)− φ1(x)− φ2(x))]r−

) 1
r

=

(
1

h

∫ h

0

[ψ1(x+ t)− ψ1(x)− α(φ1(x+ t)− φ1(x))

+ ψ2(x+ t)− ψ2(x)− α(φ2(x+ t)− φ2(x))]r−

) 1
r

≤

(
1

h

∫ h

0

[ψ1 (x+ t)− ψ1 (x)− α (φ1 (x+ t)− φ1 (x))]
r
− dt

) 1
r

+

(
1

h

∫ h

0

[ψ2 (x+ t)− ψ2 (x)− α (φ2 (x+ t)− φ2 (x))]
r
− dt

) 1
r

.
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Since both terms on the right side are equal to o(h), we have(
1

h

∫ h

0

[ψ(x+ t)− ψ(x)− α(φ(x+ t)− φ(x)]
r
− dt

) 1
r

≤ o(h).

This means that −∞ 6= Drψ(x;φ).
Now we show that Drψ(x;φ) ≥ f(x). If f(x) = −∞, we are done.
But if f(x) = ∞, then Pψ1,φ1

(α) and Pψ2,φ2
(α) hold for all real numbers.

So we have Drψ(x;φ) =∞ for all real numbers.
Finally, we assume f(x) is finite. Then Pψ1,φ1

(α) holds and Pψ2,φ2
(α)

holds, so that Pψ,φ(α) holds.
Therefore, −∞ 6= Drψ(x;φ) ≥ f(x).

Lemma 26. Let φ1 and φ2 be monotone increasing Lipschitz functions defined
on [a, b] with φ = φ1+φ2, and let f be both Pr,φ1

-integrable and Pr,φ2
-integrable

on [a, b] . Then f is Pr,φ-integrable on [a, b] and

(Pr,φ)

∫ b

a

f = (Pr,φ1
)

∫ b

a

f + (Pr,φ2
)

∫ b

a

f. (13)

Proof. Let ε > 0. For i ∈ {1, 2}, let ψi be an Lr,φi-ex-major function of
f on [a, b] , and let λi be an Lr,φi-ex-minor function of f on [a, b] so that
ψi (b) − λi (b) < ε/4. Let ψ = ψ1 + ψ2 and let λ = λ1 + λ2. By the lemma
above, we have that ψ is an Lr,φ-ex-major function of f on [a, b] and that λ
is an Lr,φ-ex-minor function of f on [a, b] with ψ (b)− λ (b) < ε/2. Thus, f is
Pr,φ-integrable on [a, b] . We also have that∣∣∣∣∣(Pr,φ)

∫ b

a

f −

(
(Pr,φ1

)

∫ b

a

f + (Pr,φ2
)

∫ b

a

f

)∣∣∣∣∣
≤

∣∣∣∣∣ψ (b)− (Pr,φ)

∫ b

a

f

∣∣∣∣∣+

∣∣∣∣∣ψ1 (b)− (Pr,φ1)

∫ b

a

f

∣∣∣∣∣+

∣∣∣∣∣ψ2 (b)− (Pr,φ2)

∫ b

a

f

∣∣∣∣∣
< ε,

so that (13) holds.

Proof of Theorem 24. By Lemma 26, f is Pr,φ1+γ2-integrable and
Pr,γ1+φ2

-integrable on [a, b] with

(Pr,φ1+γ2)

∫ b

a

f = (Pr,γ1+φ2
)

∫ b

a

f
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and

(Pr,φ1
)

∫ b

a

f + (Pr,γ2)

∫ b

a

f = (Pr,γ1)

∫ b

a

f + (Pr,φ2
)

∫ b

a

f.

We now define the Pr-integral with respect to an arbitrary Lipschitz func-
tion.

Definition 27. Suppose f (x) is a function defined on [a, b] and φ is a Lip-
schitz function also defined on [a, b] . Let φ1 and φ2 be monotone increasing
Lipschitz functions such that φ = φ1 − φ2. If f is Pr,φ1-integrable and Pr,φ2-
integrable on [a, b], then f is Pr,φ-integrable on [a, b] and we get

(Pr,φ)

∫ b

a

f = (Pr,φ1
)

∫ b

a

f − (Pr,φ2
)

∫ b

a

f.

This value is well-defined by Theorem 24.
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