A STIELTJES TYPE EXTENSION OF THE L^{r}-PERRON INTEGRAL

Abstract

We explore properties of L^{r}-derivates with respect to a monotone increasing Lipschitz function. We then define L^{r}-ex-major and L^{r}-exminor functions with respect to a monotone increasing Lipschitz function and use these to define a Perron-Stieltjes type integral which extends the integral of L. Gordon.

1 Introduction

In 1914, O. Perron [3] developed an extension of the Lebesgue integral based on major and minor functions and upper and lower Dini derivates. The classical derivative of a function F is Perron integrable, and F is the indefinite integral of its derivative. Calderon and Zygmund then introduced the L^{r}-derivative, which has applications in harmonic analysis [1]. Later, L. Gordon developed a Perron-type integral that recovers a function from its L^{r}-derivative [2].

In [7], Tikare and Chaudhary defined L^{r}-derivates with respect to a Lipschitz function of order 1. They then defined a Perron-type integral which recovers a function from its L^{r}-derivative with respect to a Lipschitz function. In the present paper, we modify the integration process given in [7] so that it extends the integral of L. Gordon [2].

Throughout this paper, a Lipschitz function will mean a Lipschitz function of order 1 , and $r \in[1, \infty)$.

[^0]
2 Definitions and elementary properties of the $L^{r, \phi}$-derivates

For completeness, here we restate the definitions of the L^{r}-derivates with respect to a Lipschitz function found in [7].

Definition 1. [7] Let $f \in L^{r}[a, b]$, let ϕ be a monotone increasing Lipschitz function defined on $[a, b]$, and let $h \rightarrow 0^{+}$.

We define the upper right $L^{r, \phi}$-derivate, denoted $D_{r}^{+} f(x ; \phi)$, to be the greatest lower bound of all α such that

$$
\begin{equation*}
\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\alpha(\phi(x+t)-\phi(x))]_{+}^{r} d t\right)^{\frac{1}{r}}=o(h) . \tag{1}
\end{equation*}
$$

If no real number α satisfies (1), then we set $D_{r}^{+} f(x ; \phi)=+\infty$. If (1) holds for every real number α, then we set $D_{r}^{+} f(x ; \phi)=-\infty$.

We define the lower right $L^{r, \phi}$-derivate, denoted $D_{+, r} f(x ; \phi)$, to be the least upper bound of all α such that

$$
\begin{equation*}
\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\alpha(\phi(x+t)-\phi(x))]_{-}^{r} d t\right)^{\frac{1}{r}}=o(h) . \tag{2}
\end{equation*}
$$

If no real number α satisfies (2), then we set $D_{+, r} f(x ; \phi)=-\infty$. If (2) holds for every real number α, then we set $D_{+, r} f(x ; \phi)=+\infty$.

We define the upper left $L^{r, \phi}$-derivate, denoted $D_{r}^{-} f(x ; \phi)$, to be the greatest lower bound of all α such that

$$
\begin{equation*}
\left(\frac{1}{h} \int_{0}^{h}[-f(x-t)+f(x)-\alpha(-\phi(x-t)+\phi(x))]_{+}^{r} d t\right)^{\frac{1}{r}}=o(h) . \tag{3}
\end{equation*}
$$

If no real number α satisfies (3), then we set $D_{r}^{-} f(x ; \phi)=+\infty$. If (3) holds for every real number α, then we set $D_{r}^{-} f(x ; \phi)=-\infty$.

Finally, we define the lower left $L^{r, \phi}$-derivate, denoted $D_{-, r} f(x ; \phi)$, to be the least upper bound of all α such that

$$
\begin{equation*}
\left(\frac{1}{h} \int_{0}^{h}[-f(x-t)+f(x)-\alpha(-\phi(x-t)+\phi(x))]_{-}^{r} d t\right)^{\frac{1}{r}}=o(h) . \tag{4}
\end{equation*}
$$

If no real number α satisfies (4), then we set $D_{-, r} f(x ; \phi)=-\infty$. If (4) holds for every real number α, then we set $D_{-, r} f(x ; \phi)=+\infty$.

Definition 2. [7] We define the upper (two-sided) $L^{r, \phi}$-derivate as follows:

$$
\bar{D}_{r} f(x ; \phi)=\max \left\{D_{r}^{+} f(x ; \phi), D_{r}^{-} f(x ; \phi)\right\}
$$

Similarly we define the lower (two-sided) $L^{r, \phi}$-derivate as follows:

$$
\underline{D}_{r} f(x ; \phi)=\min \left\{D_{+, r} f(x ; \phi), D_{-, r} f(x ; \phi)\right\}
$$

Definition 3. Let f and ϕ satisfy the hypotheses of Definition 1 and let $h \rightarrow$ 0^{+}. If $\bar{D}_{r} f(x ; \phi)$ and $\underline{D}_{r} f(x ; \phi)$ are the same real number, then we say that f is $L^{r, \phi}$-differentiable at x and denote the common value by $D_{r} f(x, \phi)$.

If the ϕ is omitted from the notation for an $L^{r, \phi}$-derivate or $L^{r, \phi}$-derivative, then it is assumed that ϕ is the identity function, and we have the L^{r}-derivates and L^{r}-derivatives from [2].

It is clear that if ϕ is strictly decreasing in a neighborhood of x, then none of the $L^{r, \phi_{-}}$-derivates at x can be finite; therefore, unless otherwise indicated, in this paper we will assume that ϕ is monotone increasing.

We will make use of the following.
Theorem 4. [7] Let f and ϕ satisfy the hypotheses of Definition 1. Then either $D_{r}^{+} f(x ; \phi)= \pm \infty$ or $D_{r}^{+} f(x ; \phi)$ is the minimum of all real numbers α such that

$$
\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\alpha(\phi(x+t)-\phi(x))]_{+}^{r} d t\right)^{\frac{1}{r}}=o(h)
$$

where ϕ is a monotone increasing Lipschitz function.
Similar conditions hold for each of the other $L^{r, \phi}{ }_{-d e r i v a t e s . ~}^{\text {der }}$
Indeed, we now show that in order for ϕ to have finite $L^{r, \phi_{-}}$derivates at x, ϕ must be strictly increasing in a neighborhood of x and must not increase too slowly.

Theorem 5. Let f and ϕ satisfy the hypotheses of Definition 1, and let $x \in$ $[a, b]$. If $D_{r}^{+} \phi(x)=0$, that is, if

$$
\begin{equation*}
\left(\frac{1}{h} \int_{0}^{h}(\phi(x+t)-\phi(x))^{r} d t\right)^{\frac{1}{r}}=o(h) \text { as } h \rightarrow 0^{+} \tag{5}
\end{equation*}
$$

then both $D_{r}^{+} f(x ; \phi)$ and $D_{+, r} f(x ; \phi)$ are infinite.

Similarly if $D_{r}^{-} \phi(x)=0$, that is, if

$$
\left(\frac{1}{h} \int_{0}^{h}(\phi(x)-\phi(x-t))^{r} d t\right)^{\frac{1}{r}}=o(h) \text { as } h \rightarrow 0^{+}
$$

then both $D_{r}^{-} f(x ; \phi)$ and $D_{-, r} f(x ; \phi)$ are infinite.
Proof. We will prove that $D_{r}^{+} \phi(x)=0$ implies that $D_{r}^{+} f(x ; \phi)$ is infinite; the other cases have similar proofs.

Suppose

$$
\begin{equation*}
\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)]_{+}^{r} d t\right)^{\frac{1}{r}}=o(h) \text { as } h \rightarrow 0^{+} \tag{6}
\end{equation*}
$$

and let $\alpha \in R$. We then have by Minkowski's inequality

$$
\begin{aligned}
& \left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\alpha(\phi(x+t)-\phi(x))]_{+}^{r} d t\right)^{\frac{1}{r}} \\
& \leq\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)]_{+}^{r} d t\right)^{\frac{1}{r}}+|\alpha|\left(\frac{1}{h} \int_{0}^{h}(\phi(x+t)-\phi(x))^{r} d t\right)^{\frac{1}{r}}
\end{aligned}
$$

Both of the terms on the right hand side are $o(h)$, so that $D_{r}^{+} f(x ; \phi)=-\infty$. Also by Minkowski's inequality, we have

$$
\begin{aligned}
& \left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)]_{+}^{r} d t\right)^{\frac{1}{r}} \\
& \leq\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\alpha(\phi(x+t)-\phi(x))]_{+}^{r} d t\right)^{\frac{1}{r}} \\
& \quad+|\alpha|\left(\frac{1}{h} \int_{0}^{h}(\phi(x+t)-\phi(x))^{r} d t\right)^{\frac{1}{r}}
\end{aligned}
$$

so that if (6) does not hold, then $D_{r}^{+} f(x ; \phi)=+\infty$, and the result is proved.

Corollary 6. If $D_{r}^{+} f(x ; \phi)$ or $D_{+, r} f(x ; \phi)$ is finite, then $D_{r}^{+} \phi(x)>0$, and if $D_{r}^{-} f(x ; \phi)$ or $D_{-, r} f(x ; \phi)$ is finite, then $D_{r}^{-} \phi(x)>0$.

Theorem 7. Let f and ϕ satisfy the hypotheses of Definition 1, and let $x \in$ $[a, b]$. Then,

1. $D_{r}^{+} \phi(x)>0$ implies $D_{r}^{+} f(x ; \phi) \geq D_{+, r} f(x ; \phi)$,
2. $D_{r}^{-} \phi(x)>0$ implies $D_{r}^{-} f(x ; \phi) \geq D_{-, r} f(x ; \phi)$,
3. $D_{r}^{+} \phi(x)>0$ and $D_{r}^{-} \phi(x)>0$ imply $\bar{D}_{r} f(x ; \phi) \geq \underline{D}_{r} f(x ; \phi)$.

Proof. It is clear that (3) follows from (1) and (2). We will prove that $D_{r}^{+} f(x ; \phi) \geq D_{+, r} f(x ; \phi)$; the proof for the left $L^{r, \phi}$-derivates is similar. If $D_{r}^{+} f(x ; \phi)=+\infty$, then there is nothing to prove. We first assume that $D_{r}^{+} f(x ; \phi)$ is finite. Suppose that β could take the place of α in (1) and γ could take the place of α in (2), and suppose by way of contradiction that $\gamma>\beta$. We then have

$$
\begin{aligned}
0 \leq & (\gamma-\beta)\left(\frac{1}{h} \int_{0}^{h}(\phi(x+t)-\phi(x))^{r} d t\right)^{\frac{1}{r}} \\
\leq & \left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\beta(\phi(x+t)-\phi(x))]_{+}^{r} d t\right)^{\frac{1}{r}} \\
& +\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\gamma(\phi(x+t)-\phi(x))]_{-}^{r} d t\right)^{\frac{1}{r}}
\end{aligned}
$$

The last two terms are $o(h)$. This contradicts the fact that $D_{r}^{+} \phi(x)>0$, so either $D_{+, r} f(x ; \phi)$ is a finite number less than or equal to $D_{r}^{+} f(x ; \phi)$ or $D_{+, r} f(x ; \phi)=-\infty$.

Finally we consider the case where $D_{r}^{+} f(x ; \phi)=-\infty$. Assume by way of contradiction that $D_{+, r} f(x ; \phi) \neq-\infty$; i.e., there exists γ that could take the place of α in (2). The preceding inequality shows that if $\beta<\gamma$, then

$$
\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\beta(\phi(x+t)-\phi(x))]_{+}^{r} d t\right)^{\frac{1}{r}} \neq o(h)
$$

This means that $D_{r}^{+} f(x ; \phi)>-\infty$, and the theorem is proved.

It is clear that if f is $L^{r, \phi}$-differentiable at x, then $D_{r}^{+} \phi(x)>0$ and $D_{r}^{-} \phi(x)>0$. Therefore, the following is a consequence of Theorem 7 .

Corollary 8. If f is $L^{r, \phi}$-differentiable at x, then $D_{r} f(x, \phi)$ is the unique real number α such that

$$
\left(\frac{1}{h} \int_{-h}^{h}|f(x+t)-f(x)-\alpha(\phi(x+t)-\phi(x))|^{r} d t\right)^{\frac{1}{r}}=o(h) .
$$

In addition, all four $L^{r, \phi}$-derivates are equal to $D_{r} f(x, \phi)$.
We now show that the upper $L^{r, \phi_{-}}$derivate is subadditive, the lower $L^{r, \phi_{-}}$ derivate is superadditive and the $L^{r, \phi_{-}}$-derivative is additive.

Theorem 9. Let f satisfy the hypotheses of Definition 1, and let $x \in[a, b]$. Let f_{1} and f_{2} be in $L^{r}[a, b], 1 \leq r<\infty$, and let ϕ be a monotone increasing Lipschitz function defined on $[a, b]$ such that $D_{r}^{+} \phi(x)>0$. Let $f=f_{1}+f_{2}$. Then

1. $D_{r}^{+} f(x ; \phi) \leq D_{r}^{+} f_{1}(x ; \phi)+D_{r}^{+} f_{2}(x ; \phi)$ and
2. $D_{+, r} f(x ; \phi) \geq D_{+, r} f_{1}(x ; \phi)+D_{+, r} f_{2}(x ; \phi)$
if the right side of each inequality is defined. Similar inequalities hold for the left and two-sided $L^{r, \phi}$-derivates.

If f_{1} is $L^{r, \phi}$-differentiable at x and f_{2} is $L^{r, \phi}$-differentiable at x, then f is $L^{r, \phi}{ }_{-}$differentiable at x and $D_{r} f(x ; \phi)=D_{r} f_{1}(x ; \phi)+D_{r} f_{2}(x ; \phi)$.

Proof. We sketch the proof of (1). If the right hand side of the inequality is $+\infty$, then there is nothing to prove. If the right hand side is finite, then the result holds by Minkowski's inequality.

If the right hand side is $-\infty$, we may assume that $D_{r}^{+} f_{1}(x ; \phi)=-\infty$. Let $\beta \in \mathbb{R}$, let $\alpha_{2}>D_{r}^{+} f_{2}(x ; \phi)$ and let $\alpha_{1}=\beta-\alpha_{2}$. An application of Minkowski's inequality proves the result.

3 Relation between $L^{r, \phi}$-derivates and L^{r}-derivates.

If ϕ is L^{r}-differentiable at a point x, then we have the following.
Theorem 10. Let f satisfy the hypotheses of Definition 1, and let ϕ be a monotone increasing Lipschitz function defined on $[a, b]$ which is L^{r}-differentiable at x with $D_{r} \phi(x)>0$. Then f is $L^{r, \phi}$-differentiable at x if and only if f is L^{r}-differentiable at x, and in this case we have

$$
\begin{equation*}
D_{r} f(x)=D_{r} \phi(x) D_{r} f(x, \phi) \tag{7}
\end{equation*}
$$

Proof. Let $\beta=D_{r} \phi(x)$. Suppose f is $L^{r, \phi}{ }_{-}$differentiable at x and let $\alpha=D_{r} f(x, \phi)$. We then have

$$
\begin{aligned}
& \left(\frac{1}{h} \int_{-h}^{h}|f(x+t)-f(x)-\alpha \beta t|^{r} d t\right)^{\frac{1}{r}} \\
& \leq\left(\frac{1}{h} \int_{-h}^{h}|f(x+t)-f(x)-\alpha(\phi(x+t)-\phi(x))|^{r} d t\right)^{\frac{1}{r}} \\
& \quad+|\alpha|\left(\frac{1}{h} \int_{-h}^{h}|\phi(x+t)-\phi(x)-\beta t|^{r} d t\right)^{\frac{1}{r}}
\end{aligned}
$$

Both of the terms on the righthand side are $o(h)$, so f is L^{r}-differentiable at x and (7) holds.

Conversely, suppose f is L^{r}-differentiable at x and let $\xi=D_{r} f(x)$. Then we have that

$$
\begin{aligned}
& \left(\frac{1}{h} \int_{-h}^{h}\left|f(x+t)-f(x)-\frac{\xi}{\beta}(\phi(x+t)-\phi(x))\right|^{r} d t\right)^{\frac{1}{r}} \\
& \leq\left(\frac{1}{h} \int_{-h}^{h}|f(x+t)-f(x)-\xi t|^{r} d t\right)^{\frac{1}{r}} \\
& \quad+\left|\frac{\xi}{\beta}\right|\left(\frac{1}{h} \int_{-h}^{h}|\phi(x+t)-\phi(x)-\beta t|^{r} d t\right)^{\frac{1}{r}}
\end{aligned}
$$

Both of the terms on the righthand side are $o(h)$, so f is $L^{r, \phi}$-differentiable at x and (7) holds.

Theorem 11. Let ϕ be a monotone increasing Lipschitz function defined on $[a, b]$. Then $\underline{D}_{r} f(x ; \phi) \geq 0$ if and only if $\underline{D}_{r} f(x) \geq 0$.

Proof. Let γ be the identity function. Suppose $D_{+, r} f(x ; \phi) \geq 0$. Let $P_{f, \phi}(\alpha)$ mean that

$$
\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\alpha(\phi(x+t)-\phi(x))]_{-}^{r} d t\right)^{\frac{1}{r}}=o(h) .
$$

Suppose $\alpha \leq \beta$. Then because ϕ is monotone increasing, we have that $P_{f, \phi}(\beta)$ implies $P_{f, \phi}(\alpha)$.

By Theorem 4, we have that if $D_{+, r} f(x ; \phi) \geq 0$, then $P_{f, \phi}(0)$. We then have that

$$
\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-0(\phi(x+t)-\phi(x))]_{-}^{r} d t\right)^{\frac{1}{r}}=o(h)
$$

so that

$$
\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-0(\gamma(x+t)-\gamma(x))]_{-}^{r} d t\right)^{\frac{1}{r}}=o(h)
$$

and so $D_{+, r} f(x) \geq 0$. The converse follows similarly. Also, the result for the lower left L^{r}-derivate follows similarly.

Theorem 12. Let ϕ be a monotone increasing Lipschitz function defined on $[a, b]$. If $\bar{D}_{r} \phi(x)$ is finite and if $\bar{D}_{r} f(x ; \phi)<\infty$, then $\bar{D}_{r} f(x)<\infty$.

Proof. We first work on the right side; the proof for the left side is similar. Since $D_{r}^{+} f(x ; \phi)<\infty$, there exists a real number α such that (1) holds. We wish to prove that there exists β such that

$$
\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\beta t]_{+}^{r} d t\right)^{\frac{1}{r}}=o(h)
$$

Let $D_{r}^{+} \phi(x)=\eta$, where $0 \leq \eta<\infty$. By Corollary 6 , we also have that $\eta>0$. We then have

$$
\begin{gathered}
\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\alpha \eta t]_{+}^{r} d t\right)^{\frac{1}{r}} \\
=\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\alpha \eta t+\alpha(\phi(x+t)-\phi(x))\right. \\
\left.-\alpha(\phi(x+t)-\phi(x))]_{+}^{r} d t\right)^{\frac{1}{r}} \\
\leq\left(\frac{1}{h} \int_{0}^{h}[f(x+t)-f(x)-\alpha(\phi(x+t)-\phi(x))]_{+}^{r} d t\right)^{\frac{1}{r}} \\
+\left(\frac{1}{h} \int_{0}^{h}[\alpha(\phi(x+t)-\phi(x))-\alpha \eta t]_{+}^{r} d t\right)^{\frac{1}{r}} \\
\leq o(h)+|\alpha|\left(\frac{1}{h} \int_{0}^{h}[(\phi(x+t)-\phi(x))-\eta t]_{+}^{r} d t\right)^{\frac{1}{r}} \\
\leq
\end{gathered}
$$

We may therefore conclude that $D_{r}^{+} f(x)<\infty$, and the theorem is proved.

4 Relation between $L^{r, \phi}$-continuity and L^{r}-continuity

Definition 13. [7] Let $1 \leq r<\infty$. A function $f \in L^{r}([a, b])$ is said to be L^{r}-continuous with respect to ϕ (or simply $L^{r, \phi}$-continuous) at $x_{0} \in[a, b]$ if for some number k,

$$
\begin{equation*}
\int_{[a, b] \cap\left[x_{0}-h, x_{0}+h\right]}\left|f(x)-f\left(x_{0}\right)-k\left(\phi(x)-\phi\left(x_{0}\right)\right)\right|^{r} d x=o(h) . \tag{8}
\end{equation*}
$$

In particular, if $k=0$, we will simply say that f is L^{r}-continuous at x.
Theorem 14. Given a Lipschitz function ϕ, a function $f:[a, b] \rightarrow R$ is L^{r}-continuous with respect to ϕ if and only if f is L^{r}-continuous.

Proof. Let f be L^{r}-continuous. We need to show that (8) holds for any Lipschitz function ϕ and any k. Let M be a positive constant such that for
any $x_{1}, x_{2} \in[a, b]$ we have

$$
\left|\phi\left(x_{2}\right)-\phi\left(x_{1}\right)\right| \leq M\left|x_{2}-x_{1}\right|
$$

By Minkowski's inequality we have

$$
\begin{aligned}
& \left(\int_{[a, b] \cap\left[x_{0}-h, x_{0}+h\right]}\left|f(x)-f\left(x_{0}\right)-k\left(\phi(x)-\phi\left(x_{0}\right)\right)\right|^{r} d x\right)^{\frac{1}{r}} \\
& \leq\left(\int_{[a, b] \cap\left[x_{0}-h, x_{0}+h\right]}\left|f(x)-f\left(x_{0}\right)\right|^{r} d x\right)^{\frac{1}{r}}+|k|\left(\int_{[a, b] \cap\left[x_{0}-h, x_{0}+h\right]}\left|\phi(x)-\phi\left(x_{0}\right)\right|^{r} d x\right)^{\frac{1}{r}} \\
& \left.\leq o(h)+|k| M\left(\int_{[a, b] \cap\left[x_{0}-h, x_{0}+h\right]} \mid x-x^{r}\right)^{r} d x\right)^{\frac{1}{r}} \\
& \leq o(h)+|k| M\left(\int_{[a, b] \cap\left[x_{0}-h, x_{0}+h\right]}|h|^{r} d x\right)^{\frac{1}{r}} \\
& \leq o(h)+(|k| M)(h)(2 h)^{\frac{1}{r}} \\
& \leq o(h)
\end{aligned}
$$

Conversely, supposing that (8) holds for some ϕ and some k, we also have, by Minkowski's inequality,

$$
\begin{aligned}
\left(\int_{[a, b] \cap\left[x_{0}-h, x_{0}+h\right]}\left|f(x)-f\left(x_{0}\right)\right|^{r} d x\right)^{\frac{1}{r}} & \leq\left(\int_{[a, b] \cap\left[x_{0}-h, x_{0}+h\right]} \left\lvert\, f(x)-f\left(x_{0}\right)-k\left(\phi(x)-\left.\phi\left(x_{0}\right)\right|^{r} d x\right)^{\frac{1}{r}}\right.\right. \\
& \quad+|k|\left(\int_{[a, b] \cap\left[x_{0}-h, x_{0}+h\right]}^{\left.\left.\mid \phi(x)-\phi\left(x_{0}\right)\right)\left.\right|^{r} d x\right)^{\frac{1}{r}}}\right. \\
& \leq o(h) .
\end{aligned}
$$

5 Further properties of the $L^{r, \phi}$-derivates.

We will need the following as we develop the theory of $L^{r, \phi_{-}}$-ex-major functions.
Theorem 15. Suppose that $f \in L^{r}([a, b])$, that ϕ is a monotone increasing Lipschitz function defined on $[a, b]$ and that $\underline{D}_{r} f(x ; \phi) \geq 0$, except perhaps on a countable set E^{\prime} where, however, f is L^{r}-continuous. Then f is monotone increasing on $[a, b]$.

The proof will require several lemmas, including the following extension of [2] Lemma 2.

Definition 16. Let $0 \leq p \leq 1$ and let E be a measurable subset of $[a, b]$. Let $x \in(a, b)$. We will say that x is a point of p-lower density of E if

$$
\begin{equation*}
\lim \inf _{h \rightarrow 0^{+}} \frac{\lambda(E \cap(x-h, x+h))}{2 h}=p \tag{9}
\end{equation*}
$$

Definition 17. Let $0 \leq p \leq 1$ and let E be a measurable subset of $[a, b]$. Let $x \in[a, b)$. We will say that x is a point of p-lower right-hand density of E if

$$
\begin{equation*}
\lim \inf _{h \rightarrow 0^{+}} \frac{\lambda(E \cap(x, x+h))}{h}=p . \tag{10}
\end{equation*}
$$

For convenience we will assume that if $b \in E$, then b is a point of 1-lower right-hand density of E.

Definition 18. Let $0 \leq p \leq 1$ and let E be a measurable subset of $[a, b]$. Let $x \in(a, b]$. We will say that x is a point of p-lower left-hand density of E if

$$
\begin{equation*}
\lim \inf _{h \rightarrow 0^{+}} \frac{\lambda(E \cap(x-h, x))}{h}=p \tag{11}
\end{equation*}
$$

For convenience we will assume that if $a \in E$, then a is a point of 1-lower left-hand density of E.

Lemma 19. Let R and L be nonempty disjoint measurable sets such that $[a, b]=R \cup L$, and suppose that there exist $p_{1}>1 / 2$ so that every point of R is a point of p_{1}-lower right-hand density of R, and $p_{2}>1 / 2$ so that every point of L is a point of p_{2}-lower left-hand density of L. The every point of R is to the right of every point of L.

Proof. Suppose to the contrary that there exist $x_{1} \in R$ and $x_{2} \in L$ such that $a \leq x_{1}<x_{2} \leq b$. Choose $q \in\left(1 / 2, p_{1} \wedge p_{2}\right)$ as well as $m>1 /(2 q-1)$. Let

$$
g(x)=(x-d)^{-1} \int_{a}^{x}\left(\chi_{R}(t)-\chi_{L}(t)\right) d t
$$

where $x \in[a, b]$ and $d<a-m(b-a)$. We will show that g fails to achieve a maximum value on $\left[x_{1}, x_{2}\right]$. Let us show that if $x_{0} \in\left[x_{1}, x_{2}\right) \cap R$, then $g(x)$ increases as we move slightly to the right of x_{0}. Let $x_{3} \in\left(x_{0}, b\right)$ be such that if $\xi \in\left(x_{0}, x_{3}\right)$, then

$$
\frac{\lambda\left(R \cap\left(x_{0}, \xi\right)\right)}{\xi-x_{0}}>q
$$

Letting $N=1 /(\xi-d)\left(x_{0}-d\right)$, and noting that $N>0$, we have

$$
\begin{aligned}
g & (\xi)-g\left(x_{0}\right) \\
& =(\xi-d)^{-1} \int_{a}^{\xi}\left(\chi_{R}(t)-\chi_{L}(t)\right) d t-\left(x_{0}-d\right)^{-1} \int_{a}^{x_{0}}\left(\chi_{R}(t)-\chi_{L}(t)\right) d t \\
& =N\left[\left(x_{0}-d\right) \int_{a}^{\xi}\left(2 \chi_{R}(t)-1\right) d t-(\xi-d) \int_{a}^{x_{0}}\left(2 \chi_{R}(t)-1\right) d t\right] \\
& =N\left[\left(x_{0}-d\right) \int_{x_{0}}^{\xi}\left(2 \chi_{R}(t)-1\right) d t-\left(\xi-x_{0}\right) \int_{a}^{x_{0}}\left(2 \chi_{R}(t)-1\right) d t\right] \\
& >N\left[m(b-a)(2 q-1)\left(\xi-x_{0}\right)-\left(\xi-x_{0}\right)(b-a)\right] \\
& >0 .
\end{aligned}
$$

Now suppose $x_{0} \in\left(x_{1}, x_{2}\right] \cap L$. Let $x_{3} \in\left(a, x_{0}\right)$ be such that if $\xi \in\left(x_{3}, x_{0}\right)$, then

$$
\frac{\lambda\left(L \cap\left(\xi, x_{0}\right)\right)}{x_{0}-\xi}>q
$$

We then have

$$
\begin{aligned}
g & \left(x_{0}\right)-g(\xi) \\
& =\left(x_{0}-d\right)^{-1} \int_{a}^{x_{0}}\left(\chi_{R}(t)-\chi_{L}(t)\right) d t-(\xi-d)^{-1} \int_{a}^{\xi}\left(\chi_{R}(t)-\chi_{L}(t)\right) d t \\
& =(\xi-d)^{-1} \int_{a}^{\xi}\left(\chi_{L}(t)-\chi_{R}(t)\right) d t-\left(x_{0}-d\right)^{-1} \int_{a}^{x_{0}}\left(\chi_{L}(t)-\chi_{R}(t)\right) d t \\
& =N\left[\left(x_{0}-d\right) \int_{a}^{\xi}\left(2 \chi_{L}(t)-1\right) d t-(\xi-d) \int_{a}^{x_{0}}\left(2 \chi_{L}(t)-1\right) d t\right] \\
& =N\left[\left(x_{0}-\xi\right) \int_{a}^{\xi}\left(2 \chi_{L}(t)-1\right) d t-(\xi-d) \int_{\xi}^{x_{0}}\left(2 \chi_{L}(t)-1\right) d t\right] \\
& <N\left[\left(x_{0}-\xi\right)(b-a)-m(b-a)(2 q-1)\left(x_{0}-\xi\right)\right] \\
& <0
\end{aligned}
$$

We then have that $g(x)$ increases as we move slightly to the left of x_{0}. We have thus demonstrated that g cannot achieve a maximum on $\left[x_{1}, x_{2}\right]$. However, since g is continuous, it must achieve a maximum on $\left[x_{1}, x_{2}\right]$, a contradiction.

Lemma 20. Let F be a measurable function on $[a, b]$, let E^{\prime} be a countable subset of $[a, b]$, and let $E=[a, b] \backslash E^{\prime}$. Suppose (i) F is approximately continuous at each point of E^{\prime} and (ii) each point x_{0} of E is a point of p_{1}-lower right-hand density of the set $\left\{x \in[a, b]: F(x) \geq F\left(x_{0}\right)\right\}$ for some $p_{1}>1 / 2$, and a point of p_{2}-lower left-hand density of the set $\left\{x \in[a, b]: F(x) \leq F\left(x_{0}\right)\right\}$ for some $p_{2}>1 / 2$. Then F is monotone increasing on $[a, b]$.

Proof. Suppose $x_{1}, x_{2} \in[a, b]$ and $F\left(x_{1}\right)<F\left(x_{2}\right)$. We need to show that $x_{1}<x_{2}$.

We have that E^{\prime} is a countable set so that the set $\{y: F(x)=y$ for some $x \in$ $\left.E^{\prime}\right\}$ is also countable. Therefore, we may choose $\epsilon>0$ so that $F\left(x_{1}\right)<$ $F\left(x_{2}\right)-\epsilon$ and $F(x) \neq F\left(x_{2}\right)-\epsilon$ for any $x \in E^{\prime}$.

Let $R=\left\{x \in[a, b]: F(x) \geq F\left(x_{2}\right)-\epsilon\right\}$ and $L=\{x \in[a, b]: F(x)<$ $\left.F\left(x_{2}\right)-\epsilon\right\} . R \cup L=[a, b]$ where R and L are disjoint measurable sets. Since x_{2} is in R and x_{1} is in L, both R and L are non-empty.

Let $x_{0} \in R$. If $x_{0} \in E$, then x_{0} is a point of p_{1}-lower right-hand density, for some $p_{1}>1 / 2$, of $\left\{x \in[a, b]: F(x) \geq F\left(x_{0}\right)\right\} \subseteq\left\{x \in[a, b]: F(x) \geq F\left(x_{2}\right)-\epsilon\right\}$.

If $x_{0} \in E^{\prime}$, then $F\left(x_{0}\right)>F\left(x_{2}\right)-\epsilon$. Choose $\gamma \in\left(0, F\left(x_{0}\right)-\left(F\left(x_{2}\right)-\epsilon\right)\right)$. Then because F is approximately continuous at x_{0}, we have that x_{0} is a point of density of

$$
\left\{x: F(x) \in\left(F\left(x_{0}\right)-\gamma, F\left(x_{0}\right)+\gamma\right) \subseteq R\right\} .
$$

We have shown that every point of R is a point of p_{1}-lower right-hand density of R for some $p_{1}>1 / 2$. A similar argument shows that every point of L is a point of p_{2}-lower left-hand density of the set $\left\{x \in[a, b]: F(x) \leq F\left(x_{0}\right)\right\}$ for some $p_{2}>1 / 2$. This then implies that R and L satisfy the hypotheses of Lemma 19 so that every point of L is to the left of every point of R. Since $x_{1} \in L$ and $x_{2} \in R$, it follows that $x_{1}<x_{2}$.

Proof of Theorem 15. We have $\underline{D}_{r} f(x, \phi) \geq 0$ for all $x \in E$, so by Theorem 11 and Chebyshev's inequality [5], we have that $\underline{f}_{\text {app }}(x) \geq 0$ for all $x \in E$. Also by Chebyshev's inequality, f is approximately continuous on E^{\prime}.

The conclusion now follows from Lemma 20.

$6 \quad L^{r, \phi}$-ex-major (ex-minor) functions.

In [2], L. Gordon shows that there exists a function f which is an L^{r}-derivative defined on $[a, b]$, so that if ψ is an L^{r}-major function of f, then $\underline{\psi}_{r}(b)=-\infty$. Thus, for a monotone increasing Lipschitz function ϕ, we define $\overline{L^{r, \phi}}$-ex-major functions and $L^{r, \phi_{-}}$-ex-minor functions of f as follows.

Definition 21. Suppose $f(x)$ is a function defined on $[a, b]$ and ϕ is a monotone increasing Lipschitz function also defined on $[a, b]$. A finite-valued function $\psi(x) \in L^{r}[a, b], 1 \leq r<\infty$, is said to be an $L^{r, \phi}$-ex-major function of f if

1. $\psi(a)=0$,
2. $\psi(x)$ is L^{r}-continuous on $[a, b]$,
3. except for at most a denumerable subset of $[a, b]$, we have

$$
\begin{equation*}
-\infty \neq \underline{D}_{r} \psi(x ; \phi) \geq f(x) . \tag{12}
\end{equation*}
$$

 major function of $-f$.

Theorem 22. Suppose that $\psi(x)$ and $\lambda(x)$ are, respectively, $L^{r, \phi}$-ex-major and $L^{r, \phi}$-ex-minor functions of f. The function $u(x)=\psi(x)-\lambda(x)$ is monotone increasing on $[a, b]$.

Proof. Suppose that ψ is an $L^{r, \phi_{-}}$ex-major function and that λ is an $L^{r, \phi_{-}}$ ex-minor function of f on $[a, b]$. We shall show that for nearly every x, we have $\underline{D}_{r} u(x ; \phi) \geq 0$.

Let x be such that $-\infty \neq \underline{D}_{r} \psi(x ; \phi) \geq f(x) \geq \bar{D}_{r} \lambda(x ; \phi) \neq+\infty$, and let $\epsilon>0$. There exist α, β, with $\alpha \leq \beta+\epsilon$, such that

$$
\int_{0}^{h}[S(x, t)]_{-}^{r} d t=o\left(h^{r+1}\right)
$$

and

$$
\int_{0}^{h}[T(x, t)]_{+}^{r} d t=o\left(h^{r+1}\right),
$$

where

$$
S(x, t)=\psi(x+t)-\psi(x)-\beta(\phi(x+t)-\phi(x))
$$

and

$$
T(x, t)=\lambda(x+t)-\lambda(x)-\alpha(\phi(x+t)-\phi(x))
$$

Let

$$
\begin{aligned}
U(x, t)= & u(x+t)-u(x)-(\beta-\alpha)(\phi(x+t)-\phi(x)) \\
= & \psi(x+t)-\lambda(x+t)-(\psi(x)-\lambda(x)) \\
& -(\beta-\alpha)(\phi(x+t)-\phi(x)) \\
= & {[\psi(x+t)-\psi(x)-\beta(\phi(x+t)-\phi(x))] } \\
& -[\lambda(x+t)-\lambda(x)-\alpha(\phi(x+t)-\phi(x))] .
\end{aligned}
$$

Therefore, $U(x, t)=S(x, t)-T(x, t)$, and so $[U(x, t)]_{-} \leq[S(x, t)]_{-}+[T(x, t)]_{+}$. By Minkowski's inequality, we have

$$
\int_{0}^{h}[u(x+t)-u(x)-(\beta-\alpha)(\phi(x+t)-\phi(x))]_{-}^{r} d t=o\left(h^{r+1}\right)
$$

So $D_{+, r} u(x ; \phi) \geq(\beta-\alpha) \geq-\epsilon$. Since ϵ is arbitrary, we have $D_{+, r} u(x ; \phi) \geq 0$. The proof that $D_{-, r} u(x ; \phi) \geq 0$ is similar, so we have $\underline{D}_{r} u(x, \phi) \geq 0$. Since $u(x)$ is L^{r}-continuous, our conclusion now follows from Theorem 15.

Definition 23. Suppose $f(x)$ is a function defined on $[a, b]$ and ϕ is a monotone increasing Lipschitz function also defined on $[a, b]$. If $\inf \psi(b)$ taken over all $L^{r, \phi}$-ex-major functions of f equals $\sup \lambda(b)$ taken over all $L^{r, \phi}$-ex-minor functions of f, then the common value, denoted by

$$
\left(P_{r, \phi}\right) \int_{a}^{b} f
$$

is called the $P_{r, \phi}$-integral of f on $[a, b]$, and f is said to be $P_{r, \phi}$-integrable on $[a, b]$.

If ϕ is a Lipschitz function defined on $[a, b]$, then it is of bounded variation. We can find monotone increasing Lipschitz functions ϕ_{1} and ϕ_{2} so that for every $x \in[a, b]$, we have

$$
\phi(x)=\phi_{1}(x)-\phi_{2}(x) .
$$

Of course the functions ϕ_{1} and ϕ_{2} are not unique. However, we have the following theorem.

Theorem 24. Let ϕ be a Lipschitz function defined on $[a, b]$, and let ϕ_{1}, ϕ_{2}, γ_{1} and γ_{2} be monotone increasing Lipschitz functions so that $\phi(x)=\phi_{1}(x)-$ $\phi_{2}(x)=\gamma_{1}(x)-\gamma_{2}(x)$ for all $x \in[a, b]$. Suppose that f is $P_{r, \phi_{1}-}, P_{r, \phi_{2}}$, $P_{r, \gamma_{1}}$ - and $P_{r, \gamma_{2}}$-integrable on $[a, b]$. Then

$$
\left(P_{r, \phi_{1}}\right) \int_{a}^{b} f-\left(P_{r, \phi_{2}}\right) \int_{a}^{b} f=\left(P_{r, \gamma_{1}}\right) \int_{a}^{b} f-\left(P_{r, \gamma_{2}}\right) \int_{a}^{b} f .
$$

We first prove the following lemma.
Lemma 25. Let ϕ_{1} and ϕ_{2} be monotone increasing Lipschitz functions defined on $[a, b]$ with $\phi=\phi_{1}+\phi_{2}$, and let f be any function defined on $[a, b]$. Suppose ψ_{1} is an $L^{r, \phi_{1}}$-ex-major ($L^{r, \phi_{1}}$-ex-minor) function of f and ψ_{2} is an $L^{r, \phi_{2}}$ -ex-major ($L^{r, \phi_{2}}$-ex-minor) function of f, and let $\psi=\psi_{1}+\psi_{2}$. Then ψ is an $L^{r, \phi}$-ex-major ($L^{r, \phi}$-ex-minor) function of f.
Proof. We prove the lemma for $L^{r, \phi_{-}}$ex-major functions; the proof for $L^{r, \phi_{-}}$ ex-minor functions is similar. Conditions 1 and 2 of the definition of the $L^{r, \phi}$-ex-major function are clearly satisfied by ψ. To prove that condition 3 holds, let us denote by E the set of those $x \in[a, b]$ satisfying

$$
-\infty \neq \underline{D}_{r} \psi_{1}\left(x ; \phi_{1}\right) \geq f(x)
$$

and

$$
-\infty \neq \underline{D}_{r} \psi_{2}\left(x ; \phi_{2}\right) \geq f(x)
$$

We have that $[a, b] \backslash E$ is countable. Let $x \in E$, and let α be such that $-\infty \neq \alpha<\min \left(\underline{D}_{r} \psi_{1}\left(x ; \phi_{1}\right), \underline{D}_{r} \psi_{2}\left(x ; \phi_{2}\right)\right)$. Then

$$
\begin{aligned}
& \left(\frac{1}{h} \int_{0}^{h}[\psi(x+t)-\psi(x)-\alpha(\phi(x+t)-\phi(x))]_{-}^{r} d t\right)^{\frac{1}{r}} \\
& =\left(\frac { 1 } { h } \int _ { 0 } ^ { h } \left[\psi_{1}(x+t)+\psi_{2}(x+t)-\psi_{1}(x)-\psi_{2}(x)\right.\right. \\
& \left.\left.\quad-\alpha\left(\phi_{1}(x+t)+\phi_{2}(x+t)-\phi_{1}(x)-\phi_{2}(x)\right)\right]_{-}^{r}\right)^{\frac{1}{r}} \\
& =\left(\frac { 1 } { h } \int _ { 0 } ^ { h } \left[\psi_{1}(x+t)-\psi_{1}(x)-\alpha\left(\phi_{1}(x+t)-\phi_{1}(x)\right)\right.\right. \\
& \left.\left.\quad+\psi_{2}(x+t)-\psi_{2}(x)-\alpha\left(\phi_{2}(x+t)-\phi_{2}(x)\right)\right]_{-}^{r}\right)^{\frac{1}{r}} \\
& \leq\left(\frac{1}{h} \int_{0}^{h}\left[\psi_{1}(x+t)-\psi_{1}(x)-\alpha\left(\phi_{1}(x+t)-\phi_{1}(x)\right)\right]_{-}^{r} d t\right)^{\frac{1}{r}} \\
& \quad+\left(\frac{1}{h} \int_{0}^{h}\left[\psi_{2}(x+t)-\psi_{2}(x)-\alpha\left(\phi_{2}(x+t)-\phi_{2}(x)\right)\right]_{-}^{r} d t\right)^{\frac{1}{r}} .
\end{aligned}
$$

Since both terms on the right side are equal to $o(h)$, we have

$$
\left(\frac{1}{h} \int_{0}^{h}\left[\psi(x+t)-\psi(x)-\alpha(\phi(x+t)-\phi(x)]_{-}^{r} d t\right)^{\frac{1}{r}} \leq o(h)\right.
$$

This means that $-\infty \neq \underline{D}_{r} \psi(x ; \phi)$.
Now we show that $\underline{D}_{r} \psi(x ; \phi) \geq f(x)$. If $f(x)=-\infty$, we are done.
But if $f(x)=\infty$, then $P_{\psi_{1}, \phi_{1}}(\alpha)$ and $P_{\psi_{2}, \phi_{2}}(\alpha)$ hold for all real numbers. So we have $\underline{D}_{r} \psi(x ; \phi)=\infty$ for all real numbers.

Finally, we assume $f(x)$ is finite. Then $P_{\psi_{1}, \phi_{1}}(\alpha)$ holds and $P_{\psi_{2}, \phi_{2}}(\alpha)$ holds, so that $P_{\psi, \phi}(\alpha)$ holds.
Therefore, $-\infty \neq \underline{D}_{r} \psi(x ; \phi) \geq f(x)$.

Lemma 26. Let ϕ_{1} and ϕ_{2} be monotone increasing Lipschitz functions defined on $[a, b]$ with $\phi=\phi_{1}+\phi_{2}$, and let f be both $P_{r, \phi_{1}}$-integrable and $P_{r, \phi_{2}}$-integrable on $[a, b]$. Then f is $P_{r, \phi}$-integrable on $[a, b]$ and

$$
\begin{equation*}
\left(P_{r, \phi}\right) \int_{a}^{b} f=\left(P_{r, \phi_{1}}\right) \int_{a}^{b} f+\left(P_{r, \phi_{2}}\right) \int_{a}^{b} f \tag{13}
\end{equation*}
$$

Proof. Let $\varepsilon>0$. For $i \in\{1,2\}$, let ψ_{i} be an $L^{r, \phi_{i}}$-ex-major function of f on $[a, b]$, and let λ_{i} be an $L^{r, \phi_{i}}$-ex-minor function of f on $[a, b]$ so that $\psi_{i}(b)-\lambda_{i}(b)<\varepsilon / 4$. Let $\psi=\psi_{1}+\psi_{2}$ and let $\lambda=\lambda_{1}+\lambda_{2}$. By the lemma above, we have that ψ is an $L^{r, \phi}$-ex-major function of f on $[a, b]$ and that λ is an $L^{r, \phi}$-ex-minor function of f on $[a, b]$ with $\psi(b)-\lambda(b)<\varepsilon / 2$. Thus, f is $P_{r, \phi}$-integrable on $[a, b]$. We also have that

$$
\begin{aligned}
& \left|\left(P_{r, \phi}\right) \int_{a}^{b} f-\left(\left(P_{r, \phi_{1}}\right) \int_{a}^{b} f+\left(P_{r, \phi_{2}}\right) \int_{a}^{b} f\right)\right| \\
& \leq\left|\psi(b)-\left(P_{r, \phi}\right) \int_{a}^{b} f\right|+\left|\psi_{1}(b)-\left(P_{r, \phi_{1}}\right) \int_{a}^{b} f\right|+\left|\psi_{2}(b)-\left(P_{r, \phi_{2}}\right) \int_{a}^{b} f\right| \\
& <\varepsilon
\end{aligned}
$$

so that (13) holds.
Proof of Theorem 24. By Lemma 26, f is $P_{r, \phi_{1}+\gamma_{2}}$-integrable and $P_{r, \gamma_{1}+\phi_{2}}$-integrable on $[a, b]$ with

$$
\left(P_{r, \phi_{1}+\gamma_{2}}\right) \int_{a}^{b} f=\left(P_{r, \gamma_{1}+\phi_{2}}\right) \int_{a}^{b} f
$$

and

$$
\left(P_{r, \phi_{1}}\right) \int_{a}^{b} f+\left(P_{r, \gamma_{2}}\right) \int_{a}^{b} f=\left(P_{r, \gamma_{1}}\right) \int_{a}^{b} f+\left(P_{r, \phi_{2}}\right) \int_{a}^{b} f
$$

We now define the P_{r}-integral with respect to an arbitrary Lipschitz function.

Definition 27. Suppose $f(x)$ is a function defined on $[a, b]$ and ϕ is a Lipschitz function also defined on $[a, b]$. Let ϕ_{1} and ϕ_{2} be monotone increasing Lipschitz functions such that $\phi=\phi_{1}-\phi_{2}$. If f is $P_{r, \phi_{1}}$-integrable and $P_{r, \phi_{2}}$ integrable on $[a, b]$, then f is $P_{r, \phi}$-integrable on $[a, b]$ and we get

$$
\left(P_{r, \phi}\right) \int_{a}^{b} f=\left(P_{r, \phi_{1}}\right) \int_{a}^{b} f-\left(P_{r, \phi_{2}}\right) \int_{a}^{b} f
$$

This value is well-defined by Theorem 24 .

References

[1] A. P. Calderon and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math., 20 (1961), 171-225.
[2] L. Gordon, Perron's integral for derivatives in L^{r}, Studia Math., 28 (1966), 295-316.
[3] R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Stud. Math., 4, Amer. Math. Soc., 1994.
[4] P. Musial and Y. Sagher, The L^{r} Henstock-Kurzweil integral, Studia. Math., 160(1) (2004), 53-81.
[5] H. L. Royden and P. M. Fitzpatrick, Real Analysis, 4th ed., Pearson, 2010.
[6] S. Saks, Theory of the Integral, 2nd English ed., Warszawa, 1937, Reprint, Dover, New York, 1964.
[7] S. A. Tikare and M. S. Chaudhary, The Henstock-Stieltjes integral in L^{r}, J. Adv. Res. Pure Math., 4(1) (2012), 59-80.
[8] R. Wheeden and A. Zygmund, Measure and Integral, Pure and Applied Mathematics. Vol. 43, Marcel Dekker, Inc., New York-Basel, 1977.

[^0]: Mathematical Reviews subject classification: Primary: 26A42, 26A39; Secondary: 26A24
 Key words: L^{r}-derivative, Lipschitz, Perron Integral, Perron-Stieltjes Integral
 Received by the editors July 18, 2014
 Communicated by: Emma D'Aniello

