Eyad Massarwi, Department of Mathematics, Kennedy-King College, 6301 S. Halsted St., Chicago, Illinois 60621, U.S.A. email: eyadmassarwi@gmail.com

Paul Musial, Department of Mathematics, Chicago State University, 9501 S. King Dr., Chicago, Illinois 60628, U.S.A. email: pmusial@csu.edu

A STIELTJES TYPE EXTENSION OF THE L^r-PERRON INTEGRAL

Abstract

We explore properties of L^r -derivates with respect to a monotone increasing Lipschitz function. We then define L^r -ex-major and L^r -exminor functions with respect to a monotone increasing Lipschitz function and use these to define a Perron-Stieltjes type integral which extends the integral of L. Gordon.

1 Introduction

In 1914, O. Perron [3] developed an extension of the Lebesgue integral based on major and minor functions and upper and lower Dini derivates. The classical derivative of a function F is Perron integrable, and F is the indefinite integral of its derivative. Calderon and Zygmund then introduced the L^r -derivative, which has applications in harmonic analysis [1]. Later, L. Gordon developed a Perron-type integral that recovers a function from its L^r -derivative [2].

In [7], Tikare and Chaudhary defined L^r -derivates with respect to a Lipschitz function of order 1. They then defined a Perron-type integral which recovers a function from its L^r -derivative with respect to a Lipschitz function. In the present paper, we modify the integration process given in [7] so that it extends the integral of L. Gordon [2].

Throughout this paper, a Lipschitz function will mean a Lipschitz function of order 1, and $r \in [1, \infty)$.

Mathematical Reviews subject classification: Primary: 26A42, 26A39; Secondary: 26A24 Key words: L^r -derivative, Lipschitz, Perron Integral, Perron-Stieltjes Integral Received by the editors July 18, 2014

Communicated by: Emma D'Aniello

2 Definitions and elementary properties of the $L^{r,\phi}$ -derivates

For completeness, here we restate the definitions of the L^r -derivates with respect to a Lipschitz function found in [7].

Definition 1. [7] Let $f \in L^r[a,b]$, let ϕ be a monotone increasing Lipschitz function defined on [a,b], and let $h \to 0^+$.

We define the upper right $L^{r,\phi}$ -derivate, denoted $D_r^+ f(x;\phi)$, to be the greatest lower bound of all α such that

$$\left(\frac{1}{h}\int_{0}^{h}\left[f\left(x+t\right)-f\left(x\right)-\alpha\left(\phi\left(x+t\right)-\phi\left(x\right)\right)\right]_{+}^{r}dt\right)^{\frac{1}{r}}=o\left(h\right).$$
 (1)

If no real number α satisfies (1), then we set $D_r^+ f(x; \phi) = +\infty$. If (1) holds for every real number α , then we set $D_r^+ f(x; \phi) = -\infty$.

We define the lower right $L^{r,\phi}$ -derivate, denoted $D_{+,r}f(x;\phi)$, to be the least upper bound of all α such that

$$\left(\frac{1}{h}\int_{0}^{h}\left[f\left(x+t\right)-f\left(x\right)-\alpha\left(\phi\left(x+t\right)-\phi\left(x\right)\right)\right]_{-}^{r}dt\right)^{\frac{1}{r}}=o\left(h\right).$$
 (2)

If no real number α satisfies (2), then we set $D_{+,r}f(x;\phi) = -\infty$. If (2) holds for every real number α , then we set $D_{+,r}f(x;\phi) = +\infty$.

We define the upper left $L^{r,\phi}$ -derivate, denoted $D_r^- f(x;\phi)$, to be the greatest lower bound of all α such that

$$\left(\frac{1}{h}\int_{0}^{h}\left[-f\left(x-t\right)+f\left(x\right)-\alpha\left(-\phi\left(x-t\right)+\phi\left(x\right)\right)\right]_{+}^{r}dt\right)^{\frac{1}{r}}=o\left(h\right).$$
 (3)

If no real number α satisfies (3), then we set $D_r^- f(x; \phi) = +\infty$. If (3) holds for every real number α , then we set $D_r^- f(x; \phi) = -\infty$.

Finally, we define the lower left $L^{r,\phi}$ -derivate, denoted $D_{-,r}f(x;\phi)$, to be the least upper bound of all α such that

$$\left(\frac{1}{h}\int_{0}^{h}\left[-f\left(x-t\right)+f\left(x\right)-\alpha\left(-\phi\left(x-t\right)+\phi\left(x\right)\right)\right]_{-}^{r}dt\right)^{\frac{1}{r}}=o\left(h\right).$$
 (4)

If no real number α satisfies (4), then we set $D_{-,r}f(x;\phi) = -\infty$. If (4) holds for every real number α , then we set $D_{-,r}f(x;\phi) = +\infty$.

Definition 2. [7] We define the upper (two-sided) $L^{r,\phi}$ -derivate as follows:

$$\overline{D}_r f(x;\phi) = \max\left\{ D_r^+ f(x;\phi), D_r^- f(x;\phi) \right\}$$

Similarly we define the lower (two-sided) $L^{r,\phi}$ -derivate as follows:

$$\underline{D}_{r}f(x;\phi) = \min\left\{D_{+,r}f(x;\phi), D_{-,r}f(x;\phi)\right\}$$

Definition 3. Let f and ϕ satisfy the hypotheses of Definition 1 and let $h \to 0^+$. If $\overline{D}_r f(x; \phi)$ and $\underline{D}_r f(x; \phi)$ are the same real number, then we say that f is $L^{r,\phi}$ -differentiable at x and denote the common value by $D_r f(x, \phi)$.

If the ϕ is omitted from the notation for an $L^{r,\phi}$ -derivate or $L^{r,\phi}$ -derivative, then it is assumed that ϕ is the identity function, and we have the L^{r} -derivates and L^{r} -derivatives from [2].

It is clear that if ϕ is strictly decreasing in a neighborhood of x, then none of the $L^{r,\phi}$ -derivates at x can be finite; therefore, unless otherwise indicated, in this paper we will assume that ϕ is monotone increasing.

We will make use of the following.

Theorem 4. [7] Let f and ϕ satisfy the hypotheses of Definition 1. Then either $D_r^+ f(x; \phi) = \pm \infty$ or $D_r^+ f(x; \phi)$ is the minimum of all real numbers α such that

$$\left(\frac{1}{h}\int_{0}^{h} [f(x+t) - f(x) - \alpha(\phi(x+t) - \phi(x))]_{+}^{r} dt\right)^{\frac{1}{r}} = o(h),$$

where ϕ is a monotone increasing Lipschitz function.

Similar conditions hold for each of the other $L^{r,\phi}$ -derivates.

Indeed, we now show that in order for ϕ to have finite $L^{r,\phi}$ -derivates at x, ϕ must be strictly increasing in a neighborhood of x and must not increase too slowly.

Theorem 5. Let f and ϕ satisfy the hypotheses of Definition 1, and let $x \in [a, b]$. If $D_r^+ \phi(x) = 0$, that is, if

$$\left(\frac{1}{h}\int_{0}^{h} \left(\phi\left(x+t\right)-\phi\left(x\right)\right)^{r} dt\right)^{\frac{1}{r}} = o\left(h\right) \ as \ h \to 0^{+},\tag{5}$$

then both $D_r^+f(x;\phi)$ and $D_{+,r}f(x;\phi)$ are infinite.

E. MASSARWI AND P. MUSIAL

Similarly if $D_r^-\phi(x) = 0$, that is, if

$$\left(\frac{1}{h}\int_{0}^{h} (\phi(x) - \phi(x-t))^{r} dt\right)^{\frac{1}{r}} = o(h) \ as \ h \to 0^{+},$$

then both $D_{r}^{-}f(x;\phi)$ and $D_{-,r}f(x;\phi)$ are infinite.

PROOF. We will prove that $D_r^+\phi(x) = 0$ implies that $D_r^+f(x;\phi)$ is infinite; the other cases have similar proofs.

Suppose

$$\left(\frac{1}{h}\int_{0}^{h} \left[f\left(x+t\right) - f(x)\right]_{+}^{r} dt\right)^{\frac{1}{r}} = o\left(h\right) \ as \ h \to 0^{+} \tag{6}$$

and let $\alpha \in R$. We then have by Minkowski's inequality

$$\left(\frac{1}{h}\int_{0}^{h} \left[f\left(x+t\right) - f\left(x\right) - \alpha\left(\phi\left(x+t\right) - \phi\left(x\right)\right)\right]_{+}^{r}dt\right)^{\frac{1}{r}} \\ \leq \left(\frac{1}{h}\int_{0}^{h} \left[f\left(x+t\right) - f\left(x\right)\right]_{+}^{r}dt\right)^{\frac{1}{r}} + |\alpha| \left(\frac{1}{h}\int_{0}^{h} \left(\phi\left(x+t\right) - \phi\left(x\right)\right)^{r}dt\right)^{\frac{1}{r}}.$$

Both of the terms on the right hand side are o(h), so that $D_r^+ f(x; \phi) = -\infty$. Also by Minkowski's inequality, we have

$$\left(\frac{1}{h}\int_{0}^{h} \left[f\left(x+t\right) - f\left(x\right)\right]_{+}^{r} dt\right)^{\frac{1}{r}}$$

$$\leq \left(\frac{1}{h}\int_{0}^{h} \left[f\left(x+t\right) - f\left(x\right) - \alpha\left(\phi\left(x+t\right) - \phi\left(x\right)\right)\right]_{+}^{r} dt\right)^{\frac{1}{r}}$$

$$+ \left|\alpha\right| \left(\frac{1}{h}\int_{0}^{h} \left(\phi\left(x+t\right) - \phi\left(x\right)\right)^{r} dt\right)^{\frac{1}{r}},$$

so that if (6) does not hold, then $D_r^+ f(x; \phi) = +\infty$, and the result is proved.

Corollary 6. If $D_r^+ f(x;\phi)$ or $D_{+,r}f(x;\phi)$ is finite, then $D_r^+\phi(x) > 0$, and if $D_r^- f(x;\phi)$ or $D_{-,r}f(x;\phi)$ is finite, then $D_r^-\phi(x) > 0$.

Theorem 7. Let f and ϕ satisfy the hypotheses of Definition 1, and let $x \in [a, b]$. Then,

- 1. $D_r^+\phi(x) > 0$ implies $D_r^+f(x;\phi) \ge D_{+,r}f(x;\phi)$,
- 2. $D_r^-\phi(x) > 0$ implies $D_r^-f(x;\phi) \ge D_{-,r}f(x;\phi)$,
- 3. $D_r^+\phi(x) > 0$ and $D_r^-\phi(x) > 0$ imply $\overline{D}_r f(x;\phi) \ge \underline{D}_r f(x;\phi)$.

PROOF. It is clear that (3) follows from (1) and (2). We will prove that $D_r^+ f(x;\phi) \ge D_{+,r} f(x;\phi)$; the proof for the left $L^{r,\phi}$ -derivates is similar. If $D_r^+ f(x;\phi) = +\infty$, then there is nothing to prove. We first assume that $D_r^+ f(x;\phi)$ is finite. Suppose that β could take the place of α in (1) and γ could take the place of α in (2), and suppose by way of contradiction that $\gamma > \beta$. We then have

$$0 \le (\gamma - \beta) \left(\frac{1}{h} \int_0^h (\phi (x+t) - \phi (x))^r dt\right)^{\frac{1}{r}} \\ \le \left(\frac{1}{h} \int_0^h [f (x+t) - f (x) - \beta (\phi (x+t) - \phi (x))]_+^r dt\right)^{\frac{1}{r}} \\ + \left(\frac{1}{h} \int_0^h [f (x+t) - f (x) - \gamma (\phi (x+t) - \phi (x))]_-^r dt\right)^{\frac{1}{r}}.$$

The last two terms are o(h). This contradicts the fact that $D_r^+\phi(x) > 0$, so either $D_{+,r}f(x;\phi)$ is a finite number less than or equal to $D_r^+f(x;\phi)$ or $D_{+,r}f(x;\phi) = -\infty$.

Finally we consider the case where $D_r^+ f(x; \phi) = -\infty$. Assume by way of contradiction that $D_{+,r}f(x; \phi) \neq -\infty$; i.e., there exists γ that could take the place of α in (2). The preceding inequality shows that if $\beta < \gamma$, then

$$\left(\frac{1}{h}\int_{0}^{h}\left[f\left(x+t\right)-f\left(x\right)-\beta\left(\phi\left(x+t\right)-\phi\left(x\right)\right)\right]_{+}^{r}dt\right)^{\frac{1}{r}}\neq o\left(h\right).$$

This means that $D_r^+ f(x; \phi) > -\infty$, and the theorem is proved.

It is clear that if f is $L^{r,\phi}$ -differentiable at x, then $D_r^+\phi(x) > 0$ and $D_r^-\phi(x) > 0$. Therefore, the following is a consequence of Theorem 7.

Corollary 8. If f is $L^{r,\phi}$ -differentiable at x, then $D_r f(x,\phi)$ is the unique real number α such that

$$\left(\frac{1}{h}\int_{-h}^{h}\left|f\left(x+t\right)-f\left(x\right)-\alpha\left(\phi\left(x+t\right)-\phi\left(x\right)\right)\right|^{r}dt\right)^{\frac{1}{r}}=o\left(h\right).$$

In addition, all four $L^{r,\phi}$ -derivates are equal to $D_r f(x,\phi)$.

We now show that the upper $L^{r,\phi}$ -derivate is subadditive, the lower $L^{r,\phi}$ -derivate is superadditive and the $L^{r,\phi}$ -derivative is additive.

Theorem 9. Let f satisfy the hypotheses of Definition 1, and let $x \in [a, b]$. Let f_1 and f_2 be in $L^r[a, b], 1 \leq r < \infty$, and let ϕ be a monotone increasing Lipschitz function defined on [a, b] such that $D_r^+\phi(x) > 0$. Let $f = f_1 + f_2$. Then

1.
$$D_r^+ f(x;\phi) \leq D_r^+ f_1(x;\phi) + D_r^+ f_2(x;\phi)$$
 and

2. $D_{+,r}f(x;\phi) \ge D_{+,r}f_1(x;\phi) + D_{+,r}f_2(x;\phi)$

if the right side of each inequality is defined. Similar inequalities hold for the left and two-sided $L^{r,\phi}$ -derivates.

If f_1 is $L^{r,\phi}$ -differentiable at x and f_2 is $L^{r,\phi}$ -differentiable at x, then f is $L^{r,\phi}$ -differentiable at x and $D_r f(x;\phi) = D_r f_1(x;\phi) + D_r f_2(x;\phi)$.

PROOF. We sketch the proof of (1). If the right hand side of the inequality is $+\infty$, then there is nothing to prove. If the right hand side is finite, then the result holds by Minkowski's inequality.

If the right hand side is $-\infty$, we may assume that $D_r^+ f_1(x; \phi) = -\infty$. Let $\beta \in \mathbb{R}$, let $\alpha_2 > D_r^+ f_2(x; \phi)$ and let $\alpha_1 = \beta - \alpha_2$. An application of Minkowski's inequality proves the result.

3 Relation between $L^{r,\phi}$ -derivates and L^r -derivates.

If ϕ is L^r -differentiable at a point x, then we have the following.

Theorem 10. Let f satisfy the hypotheses of Definition 1, and let ϕ be a monotone increasing Lipschitz function defined on [a, b] which is L^r -differentiable at x with $D_r\phi(x) > 0$. Then f is $L^{r,\phi}$ -differentiable at x if and only if f is L^r -differentiable at x, and in this case we have

$$D_r f(x) = D_r \phi(x) D_r f(x, \phi).$$
(7)

PROOF. Let $\beta = D_r \phi(x)$. Suppose f is $L^{r,\phi}$ -differentiable at x and let $\alpha = D_r f(x, \phi)$. We then have

$$\left(\frac{1}{h}\int_{-h}^{h}|f(x+t) - f(x) - \alpha\beta t|^{r} dt\right)^{\frac{1}{r}} \\ \leq \left(\frac{1}{h}\int_{-h}^{h}|f(x+t) - f(x) - \alpha(\phi(x+t) - \phi(x))|^{r} dt\right)^{\frac{1}{r}} \\ + |\alpha|\left(\frac{1}{h}\int_{-h}^{h}|\phi(x+t) - \phi(x) - \beta t|^{r} dt\right)^{\frac{1}{r}}.$$

Both of the terms on the righthand side are o(h), so f is L^r -differentiable at x and (7) holds.

Conversely, suppose f is L^{r} -differentiable at x and let $\xi = D_{r}f(x)$. Then we have that

$$\begin{split} &\left(\frac{1}{h}\int_{-h}^{h}\left|f\left(x+t\right)-f\left(x\right)-\frac{\xi}{\beta}\left(\phi\left(x+t\right)-\phi\left(x\right)\right)\right|^{r}dt\right)^{\frac{1}{r}} \\ &\leq \left(\frac{1}{h}\int_{-h}^{h}\left|f\left(x+t\right)-f\left(x\right)-\xi t\right|^{r}dt\right)^{\frac{1}{r}} \\ &\quad +\left|\frac{\xi}{\beta}\right|\left(\frac{1}{h}\int_{-h}^{h}\left|\phi\left(x+t\right)-\phi\left(x\right)-\beta t\right|^{r}dt\right)^{\frac{1}{r}}. \end{split}$$

Both of the terms on the righthand side are o(h), so f is $L^{r,\phi}$ -differentiable at x and (7) holds.

Theorem 11. Let ϕ be a monotone increasing Lipschitz function defined on [a, b]. Then $\underline{D}_r f(x; \phi) \ge 0$ if and only if $\underline{D}_r f(x) \ge 0$.

PROOF. Let γ be the identity function. Suppose $D_{+,r}f(x;\phi) \geq 0$. Let $P_{f,\phi}(\alpha)$ mean that

$$\left(\frac{1}{h}\int_{0}^{h}\left[f\left(x+t\right)-f\left(x\right)-\alpha\left(\phi\left(x+t\right)-\phi\left(x\right)\right)\right]_{-}^{r}dt\right)^{\frac{1}{r}}=o\left(h\right).$$

Suppose $\alpha \leq \beta$. Then because ϕ is monotone increasing, we have that $P_{f,\phi}(\beta)$ implies $P_{f,\phi}(\alpha)$.

By Theorem 4, we have that if $D_{+,r}f(x;\phi) \ge 0$, then $P_{f,\phi}(0)$. We then have that

$$\left(\frac{1}{h}\int_{0}^{h}\left[f\left(x+t\right)-f\left(x\right)-0\left(\phi\left(x+t\right)-\phi\left(x\right)\right)\right]_{-}^{r}dt\right)^{\frac{1}{r}}=o\left(h\right)$$

so that

$$\left(\frac{1}{h}\int_{0}^{h}\left[f\left(x+t\right)-f\left(x\right)-0\left(\gamma\left(x+t\right)-\gamma\left(x\right)\right)\right]_{-}^{r}dt\right)^{\frac{1}{r}}=o\left(h\right),$$

and so $D_{+,r}f(x) \ge 0$. The converse follows similarly. Also, the result for the lower left L^r -derivate follows similarly. \Box

Theorem 12. Let ϕ be a monotone increasing Lipschitz function defined on [a, b]. If $\overline{D}_r \phi(x)$ is finite and if $\overline{D}_r f(x; \phi) < \infty$, then $\overline{D}_r f(x) < \infty$.

PROOF. We first work on the right side; the proof for the left side is similar. Since $D_r^+ f(x; \phi) < \infty$, there exists a real number α such that (1) holds. We wish to prove that there exists β such that

$$\left(\frac{1}{h}\int_{0}^{h} [f(x+t) - f(x) - \beta t]_{+}^{r} dt\right)^{\frac{1}{r}} = o(h).$$

Let $D_r^+\phi(x) = \eta$, where $0 \le \eta < \infty$. By Corollary 6, we also have that $\eta > 0$. We then have

$$\begin{split} \left(\frac{1}{h}\int_{0}^{h}[f(x+t)-f(x)-\alpha\eta t]_{+}^{r}dt\right)^{\frac{1}{r}} \\ &= \left(\frac{1}{h}\int_{0}^{h}[f(x+t)-f(x)-\alpha\eta t+\alpha(\phi(x+t)-\phi(x))] \\ &-\alpha(\phi(x+t)-\phi(x))]_{+}^{r}dt\right)^{\frac{1}{r}} \\ &\leq \left(\frac{1}{h}\int_{0}^{h}[f(x+t)-f(x)-\alpha(\phi(x+t)-\phi(x))]_{+}^{r}dt\right)^{\frac{1}{r}} \\ &+ \left(\frac{1}{h}\int_{0}^{h}[\alpha(\phi(x+t)-\phi(x))-\alpha\eta t]_{+}^{r}dt\right)^{\frac{1}{r}} \\ &\leq o(h) + |\alpha| \left(\frac{1}{h}\int_{0}^{h}[(\phi(x+t)-\phi(x))-\eta t]_{+}^{r}dt\right)^{\frac{1}{r}} \\ &\leq o(h). \end{split}$$

We may therefore conclude that $D_r^+ f(x) < \infty$, and the theorem is proved.

4 Relation between $L^{r,\phi}$ -continuity and L^r -continuity

Definition 13. [7] Let $1 \leq r < \infty$. A function $f \in L^r([a,b])$ is said to be L^r -continuous with respect to ϕ (or simply $L^{r,\phi}$ -continuous) at $x_0 \in [a,b]$ if for some number k,

$$\int_{[a,b]\cap[x_0-h,x_0+h]} |f(x) - f(x_0) - k(\phi(x) - \phi(x_0))|^r dx = o(h).$$
(8)

In particular, if k = 0, we will simply say that f is L^r -continuous at x.

Theorem 14. Given a Lipschitz function ϕ , a function $f : [a,b] \to R$ is L^r -continuous with respect to ϕ if and only if f is L^r -continuous.

PROOF. Let f be L^r -continuous. We need to show that (8) holds for any Lipschitz function ϕ and any k. Let M be a positive constant such that for

E. MASSARWI AND P. MUSIAL

any $x_1, x_2 \in [a, b]$ we have

$$|\phi(x_2) - \phi(x_1)| \le M |x_2 - x_1|.$$

By Minkowski's inequality we have

$$\begin{split} &\left(\int_{[a,b]\cap[x_0-h,x_0+h]} |f(x) - f(x_0) - k(\phi(x) - \phi(x_0))|^r dx\right)^{\frac{1}{r}} \\ &\leq \left(\int_{[a,b]\cap[x_0-h,x_0+h]} |f(x) - f(x_0)|^r dx\right)^{\frac{1}{r}} + |k| \left(\int_{[a,b]\cap[x_0-h,x_0+h]} |\phi(x) - \phi(x_0)|^r dx\right)^{\frac{1}{r}} \\ &\leq o(h) + |k| M \left(\int_{[a,b]\cap[x_0-h,x_0+h]} |h|^r dx\right)^{\frac{1}{r}} \\ &\leq o(h) + |k| M \left(\int_{[a,b]\cap[x_0-h,x_0+h]} |h|^r dx\right)^{\frac{1}{r}} \\ &\leq o(h) + (|k|M) (h) (2h)^{\frac{1}{r}} \\ &\leq o(h). \end{split}$$

Conversely, supposing that (8) holds for some ϕ and some k, we also have, by Minkowski's inequality,

$$\left(\int_{[a,b] \cap [x_0 - h, x_0 + h]} |f(x) - f(x_0)|^r dx \right)^{\frac{1}{r}} \le \left(\int_{[a,b] \cap [x_0 - h, x_0 + h]} |f(x) - f(x_0) - k(\phi(x) - \phi(x_0))|^r dx \right)^{\frac{1}{r}} + |k| \left(\int_{[a,b] \cap [x_0 - h, x_0 + h]} |\phi(x) - \phi(x_0))|^r dx \right)^{\frac{1}{r}} \le o(h).$$

5 Further properties of the $L^{r,\phi}$ -derivates.

We will need the following as we develop the theory of $L^{r,\phi}$ -ex-major functions.

Theorem 15. Suppose that $f \in L^r([a,b])$, that ϕ is a monotone increasing Lipschitz function defined on [a,b] and that $\underline{D}_r f(x;\phi) \ge 0$, except perhaps on a countable set E' where, however, f is L^r -continuous. Then f is monotone increasing on [a,b].

The proof will require several lemmas, including the following extension of [2] Lemma 2.

Definition 16. Let $0 \le p \le 1$ and let *E* be a measurable subset of [a, b]. Let $x \in (a, b)$. We will say that *x* is a point of *p*-lower density of *E* if

$$\lim \inf_{h \to 0^+} \frac{\lambda \left(E \cap (x - h, x + h) \right)}{2h} = p.$$
(9)

Definition 17. Let $0 \le p \le 1$ and let E be a measurable subset of [a, b]. Let $x \in [a, b)$. We will say that x is a point of p-lower right-hand density of E if

$$\lim \inf_{h \to 0^+} \frac{\lambda \left(E \cap (x, x+h) \right)}{h} = p.$$
(10)

For convenience we will assume that if $b \in E$, then b is a point of 1-lower right-hand density of E.

Definition 18. Let $0 \le p \le 1$ and let *E* be a measurable subset of [a, b]. Let $x \in (a, b]$. We will say that *x* is a point of *p*-lower left-hand density of *E* if

$$\lim \inf_{h \to 0^+} \frac{\lambda \left(E \cap (x - h, x) \right)}{h} = p.$$
(11)

For convenience we will assume that if $a \in E$, then a is a point of 1-lower left-hand density of E.

Lemma 19. Let R and L be nonempty disjoint measurable sets such that $[a,b] = R \cup L$, and suppose that there exist $p_1 > 1/2$ so that every point of R is a point of p_1 -lower right-hand density of R, and $p_2 > 1/2$ so that every point of L is a point of p_2 -lower left-hand density of L. The every point of R is to the right of every point of L.

PROOF. Suppose to the contrary that there exist $x_1 \in R$ and $x_2 \in L$ such that $a \leq x_1 < x_2 \leq b$. Choose $q \in (1/2, p_1 \wedge p_2)$ as well as m > 1/(2q - 1). Let

$$g(x) = (x - d)^{-1} \int_{a}^{x} (\chi_R(t) - \chi_L(t)) dt,$$

where $x \in [a, b]$ and d < a - m(b - a). We will show that g fails to achieve a maximum value on $[x_1, x_2]$. Let us show that if $x_0 \in [x_1, x_2) \cap R$, then g(x) increases as we move slightly to the right of x_0 . Let $x_3 \in (x_0, b)$ be such that if $\xi \in (x_0, x_3)$, then

$$\frac{\lambda\left(R\cap(x_0,\xi)\right)}{\xi-x_0} > q$$

E. MASSARWI AND P. MUSIAL

Letting $N = 1/(\xi - d)(x_0 - d)$, and noting that N > 0, we have

$$g(\xi) - g(x_0)$$

$$= (\xi - d)^{-1} \int_a^{\xi} (\chi_R(t) - \chi_L(t)) dt - (x_0 - d)^{-1} \int_a^{x_0} (\chi_R(t) - \chi_L(t)) dt$$

$$= N \left[(x_0 - d) \int_a^{\xi} (2\chi_R(t) - 1) dt - (\xi - d) \int_a^{x_0} (2\chi_R(t) - 1) dt \right]$$

$$= N \left[(x_0 - d) \int_{x_0}^{\xi} (2\chi_R(t) - 1) dt - (\xi - x_0) \int_a^{x_0} (2\chi_R(t) - 1) dt \right]$$

$$> N \left[m (b - a) (2q - 1) (\xi - x_0) - (\xi - x_0) (b - a) \right]$$

$$> 0.$$

Now suppose $x_0 \in (x_1, x_2] \cap L$. Let $x_3 \in (a, x_0)$ be such that if $\xi \in (x_3, x_0)$, then

$$\frac{\lambda\left(L\cap(\xi,x_0)\right)}{x_0-\xi} > q.$$

We then have

$$g(x_{0}) - g(\xi)$$

$$= (x_{0} - d)^{-1} \int_{a}^{x_{0}} (\chi_{R}(t) - \chi_{L}(t)) dt - (\xi - d)^{-1} \int_{a}^{\xi} (\chi_{R}(t) - \chi_{L}(t)) dt$$

$$= (\xi - d)^{-1} \int_{a}^{\xi} (\chi_{L}(t) - \chi_{R}(t)) dt - (x_{0} - d)^{-1} \int_{a}^{x_{0}} (\chi_{L}(t) - \chi_{R}(t)) dt$$

$$= N \left[(x_{0} - d) \int_{a}^{\xi} (2\chi_{L}(t) - 1) dt - (\xi - d) \int_{a}^{x_{0}} (2\chi_{L}(t) - 1) dt \right]$$

$$= N \left[(x_{0} - \xi) \int_{a}^{\xi} (2\chi_{L}(t) - 1) dt - (\xi - d) \int_{\xi}^{x_{0}} (2\chi_{L}(t) - 1) dt \right]$$

$$< N \left[(x_{0} - \xi) (b - a) - m (b - a) (2q - 1) (x_{0} - \xi) \right]$$

$$< 0.$$

We then have that g(x) increases as we move slightly to the left of x_0 . We have thus demonstrated that g cannot achieve a maximum on $[x_1, x_2]$. However, since g is continuous, it must achieve a maximum on $[x_1, x_2]$, a contradiction.

Lemma 20. Let F be a measurable function on [a, b], let E' be a countable subset of [a, b], and let $E = [a, b] \setminus E'$. Suppose (i) F is approximately continuous at each point of E' and (ii) each point x_0 of E is a point of p_1 -lower right-hand density of the set $\{x \in [a, b] : F(x) \ge F(x_0)\}$ for some $p_1 > 1/2$, and a point of p_2 -lower left-hand density of the set $\{x \in [a, b] : F(x) \le F(x_0)\}$ for some $p_2 > 1/2$. Then F is monotone increasing on [a, b].

PROOF. Suppose $x_1, x_2 \in [a, b]$ and $F(x_1) < F(x_2)$. We need to show that $x_1 < x_2$.

We have that E' is a countable set so that the set $\{y : F(x) = y \text{ for some } x \in E'\}$ is also countable. Therefore, we may choose $\epsilon > 0$ so that $F(x_1) < F(x_2) - \epsilon$ and $F(x) \neq F(x_2) - \epsilon$ for any $x \in E'$.

Let $R = \{x \in [a,b] : F(x) \ge F(x_2) - \epsilon\}$ and $L = \{x \in [a,b] : F(x) < F(x_2) - \epsilon\}$. $R \cup L = [a,b]$ where R and L are disjoint measurable sets. Since x_2 is in R and x_1 is in L, both R and L are non-empty.

Let $x_0 \in R$. If $x_0 \in E$, then x_0 is a point of p_1 -lower right-hand density, for some $p_1 > 1/2$, of $\{x \in [a, b] : F(x) \ge F(x_0)\} \subseteq \{x \in [a, b] : F(x) \ge F(x_2) - \epsilon\}$.

If $x_0 \in E'$, then $F(x_0) > F(x_2) - \epsilon$. Choose $\gamma \in (0, F(x_0) - (F(x_2) - \epsilon))$. Then because F is approximately continuous at x_0 , we have that x_0 is a point of density of

$$\{x: F(x) \in (F(x_0) - \gamma, F(x_0) + \gamma) \subseteq R\}.$$

We have shown that every point of R is a point of p_1 -lower right-hand density of R for some $p_1 > 1/2$. A similar argument shows that every point of L is a point of p_2 -lower left-hand density of the set $\{x \in [a, b] : F(x) \leq F(x_0)\}$ for some $p_2 > 1/2$. This then implies that R and L satisfy the hypotheses of Lemma 19 so that every point of L is to the left of every point of R. Since $x_1 \in L$ and $x_2 \in R$, it follows that $x_1 < x_2$.

Proof of Theorem 15. We have $\underline{D}_r f(x, \phi) \ge 0$ for all $x \in E$, so by Theorem 11 and Chebyshev's inequality [5], we have that $\underline{f}_{app}(x) \ge 0$ for all $x \in E$. Also by Chebyshev's inequality, f is approximately continuous on E'.

The conclusion now follows from Lemma 20.

6 $L^{r,\phi}$ -ex-major (ex-minor) functions.

In [2], L. Gordon shows that there exists a function f which is an L^r -derivative defined on [a, b], so that if ψ is an L^r -major function of f, then $\psi_r(b) = -\infty$. Thus, for a monotone increasing Lipschitz function ϕ , we define $L^{r,\phi}$ -ex-major functions and $L^{r,\phi}$ -ex-minor functions of f as follows.

Definition 21. Suppose f(x) is a function defined on [a, b] and ϕ is a monotone increasing Lipschitz function also defined on [a, b]. A finite-valued function $\psi(x) \in L^r[a, b], 1 \leq r < \infty$, is said to be an $L^{r, \phi}$ -ex-major function of f if

- 1. $\psi(a) = 0$,
- 2. $\psi(x)$ is L^r -continuous on [a, b],
- 3. except for at most a denumerable subset of [a, b], we have

$$-\infty \neq \underline{D}_r \psi(x;\phi) \ge f(x). \tag{12}$$

A function $\lambda(x)$ is an $L^{r,\phi}$ -ex-minor function of f if $-\lambda(x)$ is an $L^{r,\phi}$ -ex-major function of -f.

Theorem 22. Suppose that $\psi(x)$ and $\lambda(x)$ are, respectively, $L^{r,\phi}$ -ex-major and $L^{r,\phi}$ -ex-minor functions of f. The function $u(x) = \psi(x) - \lambda(x)$ is monotone increasing on [a, b].

PROOF. Suppose that ψ is an $L^{r,\phi}$ -ex-major function and that λ is an $L^{r,\phi}$ -ex-minor function of f on [a,b]. We shall show that for nearly every x, we have $\underline{D}_r u(x;\phi) \geq 0$.

Let x be such that $-\infty \neq \underline{D}_r \psi(x; \phi) \geq f(x) \geq \overline{D}_r \lambda(x; \phi) \neq +\infty$, and let $\epsilon > 0$. There exist α, β , with $\alpha \leq \beta + \epsilon$, such that

$$\int_0^h [S(x,t)]_-^r dt = o(h^{r+1})$$

and

$$\int_0^h [T(x,t)]_+^r dt = o(h^{r+1}),$$

where

$$S(x,t) = \psi(x+t) - \psi(x) - \beta(\phi(x+t) - \phi(x))$$

and

$$T(x,t) = \lambda(x+t) - \lambda(x) - \alpha(\phi(x+t) - \phi(x)).$$

Let

$$U(x,t) = u(x+t) - u(x) - (\beta - \alpha) (\phi (x+t) - \phi (x))$$

= $\psi (x+t) - \lambda (x+t) - (\psi (x) - \lambda (x))$
 $- (\beta - \alpha) (\phi (x+t) - \phi (x))$
= $[\psi (x+t) - \psi (x) - \beta (\phi (x+t) - \phi (x))]$
 $- [\lambda (x+t) - \lambda (x) - \alpha (\phi (x+t) - \phi (x))].$

Therefore, U(x,t) = S(x,t) - T(x,t), and so $[U(x,t)]_{-} \leq [S(x,t)]_{-} + [T(x,t)]_{+}$. By Minkowski's inequality, we have

$$\int_0^h [u(x+t) - u(x) - (\beta - \alpha)(\phi(x+t) - \phi(x))]_-^r dt = o(h^{r+1}).$$

So $D_{+,r}u(x;\phi) \ge (\beta - \alpha) \ge -\epsilon$. Since ϵ is arbitrary, we have $D_{+,r}u(x;\phi) \ge 0$. The proof that $D_{-,r}u(x;\phi) \ge 0$ is similar, so we have $\underline{D}_r u(x,\phi) \ge 0$. Since u(x) is L^r -continuous, our conclusion now follows from Theorem 15. \Box

Definition 23. Suppose f(x) is a function defined on [a, b] and ϕ is a monotone increasing Lipschitz function also defined on [a, b]. If $\inf \psi(b)$ taken over all $L^{r,\phi}$ -ex-major functions of f equals $\sup \lambda(b)$ taken over all $L^{r,\phi}$ -ex-minor functions of f, then the common value, denoted by

$$(P_{r,\phi})\int_a^b f,$$

is called the $P_{r,\phi}$ -integral of f on [a,b], and f is said to be $P_{r,\phi}$ -integrable on [a,b].

If ϕ is a Lipschitz function defined on [a, b], then it is of bounded variation. We can find monotone increasing Lipschitz functions ϕ_1 and ϕ_2 so that for every $x \in [a, b]$, we have

$$\phi\left(x\right) = \phi_1\left(x\right) - \phi_2\left(x\right).$$

Of course the functions ϕ_1 and ϕ_2 are not unique. However, we have the following theorem.

Theorem 24. Let ϕ be a Lipschitz function defined on [a, b], and let ϕ_1, ϕ_2 , γ_1 and γ_2 be monotone increasing Lipschitz functions so that $\phi(x) = \phi_1(x) - \phi_2(x) = \gamma_1(x) - \gamma_2(x)$ for all $x \in [a, b]$. Suppose that f is P_{r,ϕ_1} -, P_{r,ϕ_2} -, P_{r,γ_1} - and P_{r,γ_2} -integrable on [a, b]. Then

$$(P_{r,\phi_1})\int_a^b f - (P_{r,\phi_2})\int_a^b f = (P_{r,\gamma_1})\int_a^b f - (P_{r,\gamma_2})\int_a^b f.$$

We first prove the following lemma.

Lemma 25. Let ϕ_1 and ϕ_2 be monotone increasing Lipschitz functions defined on [a, b] with $\phi = \phi_1 + \phi_2$, and let f be any function defined on [a, b]. Suppose ψ_1 is an L^{r,ϕ_1} -ex-major $(L^{r,\phi_1}$ -ex-minor) function of f and ψ_2 is an L^{r,ϕ_2} ex-major $(L^{r,\phi_2}$ -ex-minor) function of f, and let $\psi = \psi_1 + \psi_2$. Then ψ is an $L^{r,\phi}$ -ex-major $(L^{r,\phi}$ -ex-minor) function of f.

PROOF. We prove the lemma for $L^{r,\phi}$ -ex-major functions; the proof for $L^{r,\phi}$ -ex-minor functions is similar. Conditions 1 and 2 of the definition of the $L^{r,\phi}$ -ex-major function are clearly satisfied by ψ . To prove that condition 3 holds, let us denote by E the set of those $x \in [a, b]$ satisfying

$$-\infty \neq \underline{D}_r \psi_1(x; \phi_1) \ge f(x)$$

and

$$-\infty \neq \underline{D}_r \psi_2(x; \phi_2) \ge f(x).$$

We have that $[a,b] \setminus E$ is countable. Let $x \in E$, and let α be such that $-\infty \neq \alpha < \min(\underline{D}_r \psi_1(x; \phi_1), \underline{D}_r \psi_2(x; \phi_2))$. Then

$$\begin{aligned} \left(\frac{1}{h}\int_{0}^{h}\left[\psi\left(x+t\right)-\psi\left(x\right)-\alpha\left(\phi\left(x+t\right)-\phi\left(x\right)\right)\right]_{-}^{r}dt\right)^{\frac{1}{r}} \\ &= \left(\frac{1}{h}\int_{0}^{h}\left[\psi_{1}(x+t)+\psi_{2}(x+t)-\psi_{1}(x)-\psi_{2}(x)\right]_{-}^{r}\right)^{\frac{1}{r}} \\ &-\alpha(\phi_{1}(x+t)+\phi_{2}(x+t)-\phi_{1}(x)-\phi_{2}(x))\right]_{-}^{r}\right)^{\frac{1}{r}} \\ &= \left(\frac{1}{h}\int_{0}^{h}\left[\psi_{1}(x+t)-\psi_{1}(x)-\alpha(\phi_{1}(x+t)-\phi_{1}(x))\right]_{-}^{r}\right)^{\frac{1}{r}} \\ &+\psi_{2}(x+t)-\psi_{2}(x)-\alpha(\phi_{2}(x+t)-\phi_{2}(x))\right]_{-}^{r}\right)^{\frac{1}{r}} \\ &\leq \left(\frac{1}{h}\int_{0}^{h}\left[\psi_{1}(x+t)-\psi_{1}(x)-\alpha\left(\phi_{1}(x+t)-\phi_{1}(x)\right)\right]_{-}^{r}dt\right)^{\frac{1}{r}} \\ &+\left(\frac{1}{h}\int_{0}^{h}\left[\psi_{2}(x+t)-\psi_{2}(x)-\alpha\left(\phi_{2}(x+t)-\phi_{2}(x)\right)\right]_{-}^{r}dt\right)^{\frac{1}{r}} \end{aligned}$$

Since both terms on the right side are equal to o(h), we have

$$\left(\frac{1}{h}\int_0^h \left[\psi(x+t) - \psi(x) - \alpha(\phi(x+t) - \phi(x))\right]_-^r dt\right)^{\frac{1}{r}} \le o(h)$$

This means that $-\infty \neq \underline{D}_r \psi(x; \phi)$.

Now we show that $\underline{D}_r \psi(x; \phi) \ge f(x)$. If $f(x) = -\infty$, we are done.

But if $f(x) = \infty$, then $P_{\psi_1,\phi_1}(\alpha)$ and $P_{\psi_2,\phi_2}(\alpha)$ hold for all real numbers. So we have $\underline{D}_r \psi(x;\phi) = \infty$ for all real numbers.

Finally, we assume f(x) is finite. Then $P_{\psi_1,\phi_1}(\alpha)$ holds and $P_{\psi_2,\phi_2}(\alpha)$ holds, so that $P_{\psi,\phi}(\alpha)$ holds.

Therefore, $-\infty \neq \underline{D}_r \psi(x; \phi) \geq f(x)$.

Lemma 26. Let ϕ_1 and ϕ_2 be monotone increasing Lipschitz functions defined on [a, b] with $\phi = \phi_1 + \phi_2$, and let f be both P_{r,ϕ_1} -integrable and P_{r,ϕ_2} -integrable on [a, b]. Then f is $P_{r,\phi}$ -integrable on [a, b] and

$$(P_{r,\phi})\int_{a}^{b}f = (P_{r,\phi_1})\int_{a}^{b}f + (P_{r,\phi_2})\int_{a}^{b}f.$$
 (13)

PROOF. Let $\varepsilon > 0$. For $i \in \{1, 2\}$, let ψ_i be an L^{r,ϕ_i} -ex-major function of f on [a, b], and let λ_i be an L^{r,ϕ_i} -ex-minor function of f on [a, b] so that $\psi_i(b) - \lambda_i(b) < \varepsilon/4$. Let $\psi = \psi_1 + \psi_2$ and let $\lambda = \lambda_1 + \lambda_2$. By the lemma above, we have that ψ is an $L^{r,\phi}$ -ex-major function of f on [a, b] and that λ is an $L^{r,\phi}$ -ex-minor function of f on [a, b] with $\psi(b) - \lambda(b) < \varepsilon/2$. Thus, f is $P_{r,\phi}$ -integrable on [a, b]. We also have that

$$\left| (P_{r,\phi}) \int_{a}^{b} f - \left((P_{r,\phi_{1}}) \int_{a}^{b} f + (P_{r,\phi_{2}}) \int_{a}^{b} f \right) \right|$$

$$\leq \left| \psi (b) - (P_{r,\phi}) \int_{a}^{b} f \right| + \left| \psi_{1} (b) - (P_{r,\phi_{1}}) \int_{a}^{b} f \right| + \left| \psi_{2} (b) - (P_{r,\phi_{2}}) \int_{a}^{b} f \right|$$

$$< \varepsilon,$$

so that (13) holds.

Proof of Theorem 24. By Lemma 26, f is $P_{r,\phi_1+\gamma_2}$ -integrable and $P_{r,\gamma_1+\phi_2}$ -integrable on [a, b] with

$$(P_{r,\phi_1+\gamma_2})\int_a^b f = (P_{r,\gamma_1+\phi_2})\int_a^b f$$

and

$$(P_{r,\phi_1})\int_a^b f + (P_{r,\gamma_2})\int_a^b f = (P_{r,\gamma_1})\int_a^b f + (P_{r,\phi_2})\int_a^b f.$$

We now define the P_r -integral with respect to an arbitrary Lipschitz function.

Definition 27. Suppose f(x) is a function defined on [a, b] and ϕ is a Lipschitz function also defined on [a, b]. Let ϕ_1 and ϕ_2 be monotone increasing Lipschitz functions such that $\phi = \phi_1 - \phi_2$. If f is P_{r,ϕ_1} -integrable and P_{r,ϕ_2} -integrable on [a, b], then f is $P_{r,\phi}$ -integrable on [a, b] and we get

$$(P_{r,\phi})\int_{a}^{b} f = (P_{r,\phi_1})\int_{a}^{b} f - (P_{r,\phi_2})\int_{a}^{b} f.$$

This value is well-defined by Theorem 24.

References

- A. P. Calderon and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math., 20 (1961), 171–225.
- [2] L. Gordon, Perron's integral for derivatives in L^r, Studia Math., 28 (1966), 295–316.
- [3] R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Stud. Math., 4, Amer. Math. Soc., 1994.
- [4] P. Musial and Y. Sagher, The L^r Henstock-Kurzweil integral, Studia. Math., 160(1) (2004), 53–81.
- [5] H. L. Royden and P. M. Fitzpatrick, *Real Analysis*, 4th ed., Pearson, 2010.
- [6] S. Saks, *Theory of the Integral*, 2nd English ed., Warszawa, 1937, Reprint, Dover, New York, 1964.
- S. A. Tikare and M. S. Chaudhary, *The Henstock-Stieltjes integral in L^r*, J. Adv. Res. Pure Math., 4(1) (2012), 59–80.
- [8] R. Wheeden and A. Zygmund, *Measure and Integral*, Pure and Applied Mathematics. Vol. 43, Marcel Dekker, Inc., New York-Basel, 1977.