
INROADS Real Analysis Exchange
Vol. 41(2), 2016, pp. 389–402

Joseph L. Gerver, Department of Mathematics, Rutgers University, Camden,
New Jersey 08102, U.S.A. email: gerver@camden.rutgers.edu

A NICE EXAMPLE OF LEBESGUE
INTEGRATION

Abstract

We explore the properties of an interesting new example of a function
which is Lebesgue integrable but not Riemann integrable.

1 Introduction

Some years ago, while I was teaching Lebesgue’s theory of integration to my
real analysis class, one of the students, Michael Machuzak, asked for an hon-
est example of a function that was Lebesgue integrable but not Riemann in-
tegrable. He pointed out that all of my examples were the characteristic
functions of Cantor sets, which he said was like developing Riemann’s theory
of integration, and then using it only to find the areas of rectangles.

No such example came immediately to mind, and I told Machuzak that I
would get back to him. Nor could I find any examples on the shelf of analysis
textbooks in my office. To be sure, the historical archetype of a function
which is Lebesgue integrable but not Riemann integrable is the derivative of
Volterra’s function [1] (pp. 89-94). But I would have had to spend some time
constructing that function in class, and I felt that a one-line question ought
to have a one-line answer. So the following week, I gave the class the function

f(x) =

∞∏
n=0

[sin(2nx)]2/(2n+1)2 . (1)

Note that f(x) is not the characteristic function of a Borel set, nor can
its integral be transformed by a change of variables into the integral of the
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characteristic function of a Borel set. (In particular, it is not a Riemann
integrable function times the characteristic function of a Borel set.) Thus
f(x) respects, in spirit, the principle that the full machinery of the integral
calculus should not be employed to find the area of a rectangle.

Over the next few years, I came to realize that this function has a number
of interesting properties, and I thought it ought to be more well known, which
is my reason for writing this paper.

Figure 1 shows the graph of f(x), as plotted by Maple. However, as we
shall see, there is no truly satisfactory way to picture this graph, although fig.
1 may be as good as any.

Figure 1: The function

Some properties of f(x) are immediately apparent. For each factor of
the infinite product, the exponent is a positive rational number with even
numerator and odd denominator, so each factor is ≥ 0 for all x. Because the
factors are positive powers of sine functions, they are also ≤ 1. For each x, the
partial products are a monotonically decreasing sequence on the interval [0, 1],
which must approach a limiting value. In other words, the partial products
either converge to a number between 0 and 1, or they diverge to 0. Either
way, f(x) is a well-defined function with values in the range 0 ≤ f(x) ≤ 1 (in
fact, f(x) is strictly less than 1).

2 Set of zeroes

Because sin(2nx) = 0 when 2nx = mπ, i.e. x = mπ/2n, for any integer m, we
have

f(mπ/2n) = 0 (2)
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for every integer m and non-negative integer n. Thus the zeroes of f are dense
on the real line.

But f(x) is not uniformly zero. For example,

f(π/3) = (3/4)π
2/8. (3)

This follows from the fact that 2n is congruent to 1, 2, or 4 mod 6, so that
sin(2nπ/3) = ± 1

2

√
3 and

[sin(2nπ/3)]2/(2n+1)2 = (3/4)1/(2n+1)2 . (4)

Thus

f

(
π

3

)
=

(
3

4

)∑∞
n=0 1/(2n+1)2

(5)

(π2/8 = π2/6−π2/24, the sum of the reciprocals of all squares minus the sum
for even squares.)

On the other hand, f has zeroes other than x = πm/2n. For example,
f(x) = 0 if

x = π

∞∑
k=0

(−1)k2−22k

. (6)

Indeed, if n = 22j

, then

2nx = π

∞∑
k=0

(−1)k222j−22k

= π

j∑
k=0

(−1)k222j−22k

+π

∞∑
k=j+1

(−1)k222j−22k

. (7)

But the sum from k = 0 to j is an integer, so

0 ≤ [sin(2nx)]2 =
[
sin
(
π

∞∑
k=j+1

(−1)k222j−22k
)]2

<
(
π

∞∑
k=j+1

(−1)k222j−22k
)2

= π2
∣∣∣ ∞∑
k=j+1

(−1)k222j−22k
∣∣∣ 2 < π2 · 2(22j−22j+1

)2 (since the series is alternating)

= π2 · 22(n−n2). (8)

It follows that

0 ≤ [sin(2nx)]2/(2n+1)2 < π2/(2n+1)2 · 2−2(n2−n)/(2n+1)2 , (9)

where

lim
n→∞

π2/(2n+1)2 · 2−2(n2−n)/(2n+1)2 = π0 · 2−1/2 =
1

2

√
2. (10)
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Thus, for sufficiently large n, the upper bound in (9) gets arbitrarily close to
1
2

√
2, and in particular, beyond a certain point it becomes less than 9

10 , say,
and stays less than 9

10 for all larger n. A bit of experimentation reveals that

this point occurs when n = 3 (that is, π2/49 · 2−12/49 < 9
10 ).

Thus there are an infinite number of values of n (namely n = 22j

, where j
is any integer ≥ 1, so that n > 3) for which

[sin(2nx)]2/(2n+1)2 <
9

10
. (11)

Since there are no values of n for which

[sin(2nx)]2/(2n+1)2 > 1, (12)

it follows that

0 ≤ f(x) ≤
∞∏
j=1

9

10
= lim
j→∞

( 9

10

)j
= 0. (13)

Note that x is an irrational multiple of π, because the binary expansion of the
sum in (6) consists of 2 zeroes, followed by 2 ones, followed by 12 zeroes, 240
ones, 65280 zeroes, etc.

Nevertheless, for “most” x, f(x) > 0.

Theorem 1. The set of zeroes of f(x) in the interval 0 ≤ x ≤ π has measure
0.

Proof. For each positive integer k, let

Ak =
{
x ∈ [0, π] :

∣∣∣x−mπ
2n

∣∣∣ > 1

2n+
√
n+k

for all non-negative integers m and n
}
.

(14)
Some of the intervals excluded from Ak overlap, but we can obtain a lower
bound on the measure of Ak by subtracting from π the lengths of all the
excluded intervals. When m is even, m/2n is equal to an odd integer over a
smaller power of 2, so when we add up the lengths of the excluded intervals,
we can ignore even values of m, except for the case m = n = 0.

Fix n ≥ 1. There are 2n−1 odd values of m for which mπ/2n is in the
interval [0, π], and there is an excluded interval of length 2/2n+

√
n+k for each

such m. The total length of all these intervals is 1/2
√
n+k.

Summing over all n ≥ 1, we get

∞∑
n=1

1

2
√
n+k

=
1

2k

∞∑
n=1

2−
√
n, (15)
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where
∞∑
n=1

2−
√
n <

∫ ∞
0

2−
√
x dx. (16)

With the change of variables u = (log 2)2x and z = −
√
u, we have∫ ∞

0

2−
√
x dx =

∫ ∞
0

e−
√
x log 2 dx =

1

(log 2)2

∫ ∞
0

e−
√
u du

=
2

(log 2)2

∫ −∞
0

zez dz =
2

(log 2)2
(z − 1)ez

∣∣∣∣−∞
0

=
2

(log 2)2
<

25

6
.

(17)

Thus
∞∑
n=1

1

2
√
n+k

<
25

6 · 2k
. (18)

For n = 0, there are two excluded intervals (around 0 and π), each with length
2−k. So the total length of all excluded intervals is less than

25

6 · 2k
+

2

2k
=

37

6 · 2k
, (19)

and the measure of Ak is greater than π − 37/(6 · 2k).
Next, we find a lower bound on f(x) for x ∈ Ak. Suppose 0 < δ ≤ 1

2 . Then

sin δ > δ − 1
6 δ

3 = δ(1− 1
6 δ

2) > δ[1− 1
6 ( 1

2 )2] = 23
24δ . (20)

Now suppose |z − πm| > δ for every integer m. Then

| sin z| > sin δ > 23
24δ. (21)

Let n be any non-negative integer and suppose |2nx − πm| > δ. Then
| sin(2nx)| > 23

24δ, and the same conclusion follows from the condition∣∣∣x− πm

2n

∣∣∣ > δ

2n
. (22)

If k is any positive integer and n is any non-negative integer, then

0 <
1

2
√
n+k
≤ 1

2
, (23)

so we can let δ = 1/2
√
n+k and conclude that if∣∣∣x− πm

2n

∣∣∣ > 1

2n+
√
n+k

(24)
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for every integer m, then

| sin(2nx)| > 23

24
· 1

2
√
n+k

. (25)

In other words, if x ∈ Ak, so that (24) holds for every integer m and every
non-negative integer n, then (25) holds for every non-negative integer n. It
follows that

log | sin(2nx)| > log 23
24 − (

√
n+ k) log 2 > − 1

23 − (
√
n+ k) log 2, (26)

so

2

(2n+ 1)2
log | sin(2nx)| > −2

23(2n+ 1)2
− 2(

√
n+ k)(log 2)

(2n+ 1)2

= −
2
23 + 2k log 2

(2n+ 1)2
− 2
√
n log 2

(2n+ 1)2
.

(27)

Therefore

log f(x) =

∞∑
n=0

2

(2n+ 1)2
log | sin(2nx)|

> −
∞∑
n=0

2
23 + 2k log 2

(2n+ 1)2
− (log 2)

∞∑
n=0

2
√
n

(2n+ 1)2
,

(28)

where
∞∑
n=0

2
23 + 2k log 2

(2n+ 1)2
=
π2

8

( 2

23
+ 2k log 2

)
(29)

and

∞∑
n=0

2
√
n

(2n+ 1)2
=

∞∑
n=1

2
√
n

(2n+ 1)2
<

∞∑
n=1

2
√
n

(2n)2
=

∞∑
n=1

1

2n3/2

=
1

2
+

∞∑
n=2

1

2n3/2
<

1

2
+

∫ ∞
1

1

2x3/2
dx =

1

2
+ 1 =

3

2
.

(30)

Thus

log f(x) >
−π2

8

( 2

23
+ 2k log 2

)
− 3

2
log 2 > −1.147− 1.7103k (31)

and

f(x) > e−1.147−1.7103k >
1

(3.15)(5.531)k
. (32)
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It follows that if f(x) ≤ 1/(3.15)(5.531)k, then x /∈ Ak. Therefore, for every
positive integer k, the measure of the set of all x in [0, π] for which f(x) ≤
1/(3.15)(5.531)k is less than 37/(6 · 2k), the measure of the complement of
Ak. The set of x for which f(x) = 0 is a subset of the set of x for which
f(x) ≤ 1/(3.15)(5.531)k for every positive integer k. Therefore the measure of
the set of x for which f(x) = 0 is less than 37/(6 · 2k) for every k, and is thus
0.

3 Points of continuity

A function f(x) is said to be upper semicontinuous [2] (p. 22) at x = a if for
every ε > 0, there exists δ > 0 such that f(x) < f(a)+ε whenever |x−a| < δ.
Note the asymmetry of this definition: f(x) must be less than f(a) + ε but
need not be greater than f(a) − ε. Note also that continuity implies upper
semicontinuity.

We shall prove that our function f(x) is upper semicontinuous at all x.
Two corollaries are that f(x) is continuous at x if and only if f(x) = 0, and
that f(x) is Lebesgue integrable.

In proving upper semicontinuity, and elsewhere, we will make use of the
partial products

fk(x) =

k∏
n=0

[sin(2nx)]2/(2n+1)2 . (33)

Theorem 2. f(x) is upper semicontinuous at all x.

Proof. Because
0 ≤ [sin(2nx)]2/(2n+1)2 ≤ 1 (34)

for all n and all x, it follows that

fk+1(x) ≤ fk(x) (35)

for all k, and because fk(x) converges to f(x) as k →∞, we also have

f(x) ≤ fk(x) (36)

for all k.
Now each fk(x), being the finite product of continuous functions, is contin-

uous, and therefore upper semicontinuous. Therefore, for every ε > 0, there
exists δ = δ(k, x, ε) > 0 such that if |t − x| < δ then fk(t) < fk(x) + ε.
Because fk(x) converges to f(x), we know that for every ε > 0, there exists
K = K(x, ε) such that if k ≥ K, then fk(x) < f(x) + ε.
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Fix x. Given ε > 0, let k = K(x, 1
2ε) and let δ = δ(k, x, 1

2ε). Suppose
|t− x| < δ. Then

f(t) ≤ fk(t) < fk(x) +
1

2
ε < f(x) + ε. (37)

In other words, f(x) is upper semicontinuous. (See [4], Ch. XV, §4, Theorem
9.)

Corollary. f(x) is continuous at x if and only if f(x) = 0.

Proof. Because the set of zeroes of f(x) is everywhere dense, f(x) cannot
be continuous if f(x) 6= 0. On the other hand, f(x) is upper semicontinuous
everywhere, so given x, for every ε > 0, there exists δ > 0 such that if
|t − x| < δ, then f(t) < f(x) + ε. But f(t) is never negative, so if f(x) = 0,
then f(t) > f(x)− ε. Therefore f(x) is continuous at x if f(x) = 0.

Another corollary of Theorem 2 is that f(x) is Lebesgue integrable, because
a function that is bounded from below and upper semicontinuous on a closed
interval is Lebesgue integrable over that interval [3] (p. 151). Indeed, suppose
that f(x) is upper semicontinuous on [a, b], and let r be a lower bound. Let s be
an upper bound of f(x), which must exist, because if {xi} is a sequence of real
numbers on which f is unbounded, then f cannot be upper semicontinuous on
an accumulation point of {xi}. Now suppose f(x) < y for some x ∈ [a, b] and
y ∈ [r, s]. Let ε = y − f(x). There exists δ > 0 such that f(t) < f(x) + ε = y
whenever |t−x| < δ. In other words, if f(x) < y, then there is a neighborhood
U of x such that f(t) < y for all t in U . It follows that for every y in [r, s],
the set

Sy = {x ∈ [a, b] : f(x) < y} (38)

is an open set of [a, b]. Let g(y) be the measure of Sy. Then g(y) is monotone
on the interval [r, s], so g(y) is Riemann integrable. But every Lebesgue sum
of f(x), whether upper or lower, is a Riemann sum of g(y). Thus the Lebesgue

integral
∫ b
a
f(x) dx is equal to the Riemann integral

∫ s
r
g(y) dy.

4 A lower bound on the Lebesgue integral

An immediate consequence of Theorem 1 is that the Lebesgue integral of
f(x) is strictly positive. Indeed, if we let g(y) be the measure of the set of
x ∈ [0, π] for which f(x) < y, then g is monotone increasing with g(1) = π
and limy→0 g(y) = 0. It follows that for some ε > 0, we have g(ε) < π−1, say.
Therefore the set of x for which f(x) > ε has measure > 1, and

∫ π
0
f(x) dx > ε.

With a bit more care, we can find an effective lower bound on
∫ π

0
f(x) dx.
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Theorem 3. The Lebesgue integral
∫ π

0
f(x) dx is greater than 1

89 .

Proof. First, we prove that for all k, the improper integral∫ π

0

log fk(x) dx (39)

converges to a value > −π3/4. We have

log fk(x) =

k∑
n=0

log[sin(2nx)]2/(2n+1)2 =

k∑
n=0

2

(2n+ 1)2
log | sin(2nx)| (40)

(where we take both sides to be −∞ when x is a multiple of 2−kπ), so∫ π

0

log fk(x) dx =

k∑
n=0

2

(2n+ 1)2

∫ π

0

log | sin(2nx)| dx, (41)

where the integrals on both sides are improper. By the change of variables
u = 2nx, we have∫ π

0

log | sin(2nx)| dx = 2−n
∫ 2nπ

0

log | sinu| du, (42)

which, by the symmetry and periodicity of the sine function, is equal to

2

∫ π/2

0

log | sinu| du. (43)

For 0 ≤ u ≤ π/2, we have | sinu| = sinu ≥ 2u/π, so

log | sinu| ≥ log

(
2u

π

)
, (44)

and, by the change of variables z = 2u/π, we have

2

∫ π/2

0

log | sinu| du ≥ 2

∫ π/2

0

log

(
2u

π

)
du = π

∫ 1

0

log z dz = −π. (45)

Therefore∫ π

0

log fk(x) dx ≥
k∑

n=0

−2π

(2n+ 1)2
>

∞∑
n=0

−2π

(2n+ 1)2
= −2π · π

2

8
= −π

3

4
. (46)
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Now, for each positive integer k, let

Bk = {x ∈ [0, π] : fk(x) > e−π
2/2}. (47)

Because fk(x) is continuous, Bk is open, and hence measurable. We want to
show that the measure of Bk is > π/2 for all k. The complement of Bk in
[0, π] is

B̄k = {x ∈ [0, π] : fk(x) ≤ e−π
2/2} = {x ∈ [0, π] : log fk(x) ≤ −π2/2},

(48)
a closed set. Suppose the measure of B̄k is ≥ π/2 for some k. Then, because
log fk(x) ≤ 0 (incl. −∞) for all x, and B̄k is a subset of [0, π], we have∫ π

0

log fk(x) dx ≤
∫
B̄k

log fk(x) dx ≤ −π
2

2
· π

2
= −π

3

4
, (49)

but by (46), this integral is > −π3/4, and this contradiction establishes that
the measure of B̄k is < π/2, and the measure of Bk is > π/2.

Since fk(x) ≥ 0 for all x, we have∫ π

0

fk(x) dx ≥
∫
Bk

fk(x) dx >
π

2
e−π

2/2 (50)

for all k.
Now the sequence {fk(x)}∞k=0 converges pointwise to f(x) on the interval

0 ≤ x ≤ π, and 0 ≤ fk(x) ≤ 1 for all x and all k. It follows from the Lebesgue
dominated convergence theorem [1] (p. 183, Theorem 6.19) that∫ π

0

f(x) dx = lim
k→∞

∫ π

0

fk(x) dx. (51)

But
∫ π

0
fk(x) dx exists and is greater than π

2 e
−π2/2 for each k. It follows that∫ π

0
f(x) dx exists and is ≥ π

2 e
−π2/2 > 1

89 .

An immediate consequence of Theorem 3 is that f(x) is not Riemann inte-
grable. If it were, then the Riemann integral would be equal to the Lebesgue
integral, but because the zeroes of f(x) are dense on the interval [0, π], every
lower Riemann sum is zero.

However, we do have

Theorem 4. The lim inf of the upper Riemann sums of f(x) is equal to the
Lebesgue integral.
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Proof. Let R be the set of partitions of the interval [0, π] into a finite number
of intervals, and let L be the set of partitions of [0, π] into a finite number of
Borel sets. Let

UR = lim inf
P∈R

∑
S∈P

µ(S) lim sup
x∈S

f(x) (52)

and let
UL = lim inf

P∈L

∑
S∈P

µ(S) lim sup
x∈S

f(x) (53)

where µ is Borel measure. Because every interval is a Borel set, R is a subset
of L, and UR ≥ UL.

For each k, let

UR,k = lim inf
P∈R

∑
S∈P

µ(S) lim sup
x∈S

fk(x). (54)

For each k, f(x) ≤ fk(x) for all x, so UR ≤ UR,k. Also, for each k, fk(x)
is continuous, and hence Riemann integrable. By the Lebesgue dominated
convergence theorem [1] (p. 183), the Lebesgue integral of f(x), and hence
UL, is equal to the limit as k → ∞ of the Lebesgue integral of fk(x) (and
hence the Riemann integral of fk(x), and UR,k). Therefore UR ≤ UL. Since
UR is both ≥ and ≤ UL, UR = UL, and since f(x) is Lebesgue integrable, UR
is equal to the Lebesgue integral.

5 A numerical estimate

How can we find a decimal value for
∫ π

0
f(x) dx? The usual numerical integra-

tion methods, such as Simpson’s rule, are unstable for this function. However,∫ π
0
fk(x) dx converges to

∫ π
0
f(x) dx as k →∞, and fk(x) is continuous, so we

can estimate
∫ π

0
f(x) dx by estimating

∫ π
0
fk(x) dx.

Let Mk be the midpoint estimate of 2
∫ π/2

0
fk+1(x) dx (which is equal to∫ π

0
fk+1(x) dx) with 2k intervals. Then

Mk =
π

2k

2k∑
j=1

k∏
n=0

[
sin
(
(2j − 1)2n−k−2π

)]2/(2n+1)2

. (55)

(In the above equation, we need only compute the product up to n = k, instead
of n = k + 1, because the sine of any odd multiple of π

2 is 1.) Let

M∞ = lim
k→∞

Mk. (56)
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k Mk (Mk−1 −Mk)−1/2 Mk − .4044/(k − .27)
6 1.2419727451 1.1713968
7 1.2311527243 9.613598 1.1710636
8 1.2230892609 11.136255 1.1707736
9 1.2168748353 12.685264 1.1705518

10 1.2119511226 14.251272 1.1703889
11 1.2079596568 15.828283 1.1702709
12 1.2046613111 17.412130 1.1701856
13 1.2018911808 18.999838 1.1701237
14 1.1995322446 20.589315 1.1700785
15 1.1974993737 22.179160 1.1700452
16 1.1957292786 23.768496 1.1700204
17 1.1941739924 25.356823 1.1700019
18 1.1927965318 26.943897 1.1699877
19 1.1915679404 28.529638 1.1699769
20 1.1904652307 30.114067 1.1699685
21 1.1894699246 31.697256 1.1699620
22 1.1885669999 33.279304 1.1699568
23 1.1877441184 34.860317 1.1699527
24 1.1869910513 36.440403 1.1699493
25 1.1862992466 38.019661 1.1699466
26 1.1856614980 39.598181 1.1699444
27 1.1850716898 41.176044 1.1699426
28 1.1845245979 42.753322 1.1699411
29 1.1840157324 44.330078 1.1699399

Table 1: Mk Estimates.

We conjecture that M∞ exists and is equal to
∫ π

0
f(x) dx. This does not,

of course, follow from the fact that for fixed k, the midpoint estimate of∫ π
0
fk+1(x) dx with 2m intervals converges to this integral as m → ∞, and∫ π

0
fk+1(x) dx converges to

∫ π
0
f(x) dx as k →∞.

Table 1 shows the values of Mk for 6 ≤ k ≤ 29, in column 2. Column 3
shows the reciprocal square roots of the differences Mk−1−Mk. The fact that
these grow linearly with k means that the differences decrease as 1/k2, which

is what we would expect, given that
∫ π

0
[sin(2nx)]2/(2n+2)2 dx = π − O(1/n2).

This in turn suggests that the errors Mk −M∞ decrease as 1/k. We might
expect that for a suitable choice of constants a and b, Mk − a(k− b)−1 should
converge to M∞ much more rapidly than Mk itself. A bit of trial and error
reveals that the values a = .4044 and b = .27 work nicely. Column 4 shows
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the values of Mk − .4044(k − .27)−1. These numbers appear to be converging
slightly more slowly than the sum of a geometric progression, with the ratio
of the differences increasing from around .725 near k = 10 to a bit more than
.8 near the bottom of the column. Extrapolating from the last few numbers
in column 4, we can guess that to 5 decimal places,

∫ π
0
f(x) dx = 1.16993 . . .

Acknowledgment. The author wishes to thank Daniel Asimov for his assis-
tance computing the numbers in Table 1.
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