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ON THE DISCRETIZATION TECHNIQUE
FOR THE HARDY-LITTLEWOOD

MAXIMAL OPERATORS

Abstract

We extend the discretization method of de Guzmán to the setting
of general metric measure spaces with mild assumptions on their struc-
tures. This method allows one to relate the best constants in the weak
type (1, 1) inequalities for the relevant centered and uncentered Hardy-
Littlewood maximal operators with the analogous constants received by
applying the maximal operators to sums of Dirac deltas rather than to
L1-functions.

1 Introduction

A discretization method as a tool for the study of maximal operators was
introduced by de Guzmán in [4]. His result, in the case of Rd with Lebesgue
measure and the Euclidean metric, allowed one to replace integrable functions
by finite sums of Dirac deltas as tested objects to determine the best constant
in the weak type (1, 1) inequality for maximal convolution operators. The
discretization was used for example by Aldaz (see [1]) and Melas (see [5]).
The conversion from functions to Dirac deltas enabled problems investigated
in [1] and [5] to receive a clear form of a probabilistic nature. The discretization
was also crucial in the reasoning of Carlsson, who presented a new proof of the
weak type (1, 1) of the classical Hardy-Littlewood maximal operator on Rd (see
[2]). It was a very nice argument that does not use the covering lemmas which
are standard tools in such proofs. Finally, the technique of de Guzmán was
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generalized in several ways (see [3] and [6]). However, all the proofs justifying
the use of the discretization technique are based strongly on the properties of
the convolution. Notice that this method may not be sufficient for the Hardy-
Littlewood maximal operators since they can be also defined for spaces which
have no group structure. In this note we show that the discretization, in the
case of Hardy-Littlewood maximal operators, can be successfully applied in
the context of a wide class of metric measure spaces.

Let (X, ρ, µ) be a metric measure space with a metric ρ and a positive
Borel measure µ. Denote an open ball centered at x ∈ X with radius r > 0 by
B(x, r). We will assume that the measure of each ball is finite. We allow that
certain balls may have measure zero. However, we use the convention that
such balls are omitted in the definitions of maximal operators. We assume
that the support of µ, namely

supp(µ) = {x ∈ X : ∀r > 0 µ(B(x, r)) > 0},

is nonempty (in particular, in the case of separable metric measure spaces any
nontrivial measure satisfies this condition).

For a Borel-measurable function f we define the centered Hardy-Littlewood
maximal operator

M cf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f |dµ, x ∈ X,

and the level sets Eλ(f) = {x ∈ X : M cf(x) > λ}, λ > 0. Denote

C = sup
f,λ

λµ(Eλ(f))

‖f‖1
,

where the supremum is taken over all λ > 0 and f ∈ L1(µ) such that ‖f‖1 > 0.
Clearly if C <∞, then C is the best constant in the weak type (1, 1) inequality
for the associated operator M c. On the other hand, if C =∞, then M c is not
of weak type (1, 1).

The action of M c can be extended to finite sums of Dirac deltas, namely
measures on X of the form

ν =

n∑
i=1

αiδxi , (1)

where xi ∈ supp(µ) are pairwise different and αi ∈ N, i = 1, 2, . . . , n, for some
n ∈ N. Denote ‖ν‖1 =

∑n
i=1 αi. We define

M cν(x) = sup
r

ν(B(x, r))

µ(B(x, r))
, x ∈ X,
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and the sets Eλ(ν) = {x ∈ X : M cν(x) > λ}, λ > 0. Denote

C ′ = sup
ν,λ

λµ(Eλ(ν))

‖ν‖1
,

where the supremum is taken over all λ > 0 and ν of the form (1). Similarly,
considering the noncentered Hardy-Littlewood maximal operator

Mf(x) = sup
B3x

1

µ(B)

∫
B

|f |dµ, x ∈ X,

in the same way we define the sets Ẽλ(f), extend the action of M to measures

ν of the form (1), define Ẽλ(ν) and denote the constants C̃ and C̃ ′.
The aim of this note is to show that the discretization technique can be

applied in the general context of metric measure spaces with very mild restric-
tions on their structure.

Theorem. Let (X, ρ, µ) be a metric measure space, such that the measure of
each open ball is finite and supp(µ) is nonempty. Then the inequalities C ≥ C ′

and C̃ ≥ C̃ ′ hold. In addition, if (X, ρ) is separable, then C = C ′ and C̃ = C̃ ′.

2 Proof of the theorem

Proof. We will consider only the case of the centered operator. The proof
in the noncentered case is similar, with appropriate modifications in the defi-
nitions of auxiliary objects that appear in the reasoning below.

First we prove the inequality C ≥ C ′. Consider the case C < ∞. Let ν
be a measure of the form (1) and take λ > 0 such that µ(Eλ) > 0. Denote

Arν(x) = ν(B(x,r))
µ(B(x,r)) (for the pairs (x, r) ∈ X× (0,∞) satisfying µ(B(x, r)) > 0)

and Tλ(x) = {r : Arν(x) > λ}. Fix 0 < ε < 1 and consider ∆: Eλ → (0,∞]
defined by

∆(x) = sup{h > 0: ∃r ∈ Tλ(x) such that µ(B(x, r + h)) < (1 + ε)µ(B(x, r))}.

We can see that ∆ is lower semi-continuous (which means that the sets Eλ,t =
{x ∈ Eλ : ∆(x) > t}, t > 0, are open) and hence Borel-measurable. Observe
that limt→0 µ(Eλ,t) = µ(Eλ). Choose δ > 0 and take

f =

n∑
i=1

αiχB(xi,δ)

µ(B(xi, δ))
,
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where χA is the characteristic function of A. Of course, we have f ∈ L1(µ)
and ‖f‖1 = ‖ν‖1. For each x ∈ Eλ,δ we can choose rx ∈ Tλ(x) such that
µ(B(x, rx + δ)) < (1 + ε)µ(B(x, rx)). Therefore

M cf(x) ≥ 1

µ(B(x, rx + δ))

∫
B(x,rx+δ)

fdµ >
λ

1 + ε
,

which implies

C ≥ λ

1 + ε

µ(Eλ,δ)

‖f‖1
=
( 1

1 + ε

)λµ(Eλ,δ)

‖ν‖1
.

Letting first δ → 0+ and next ε→ 0+ for fixed ν and λ > 0, and then taking
the supremum over ν and λ, we conclude that C ≥ C ′.

Now we will show the inequality C ′ ≥ C assuming that (X, ρ) is separable,
which means that X has a countable dense subset {pi}∞i=1. Consider the case
C ′ < ∞. Let f ∈ L1(µ) with ‖f‖1 6= 0 and take λ > 0 such that µ(Eλ) >
0. Without any loss of generality we can take f ≥ 0. Denote Arf(x) =

1
µ(B(x,r))

∫
B(x,r)

fdµ (for the pairs (x, r) ∈ X×(0,∞) satisfying µ(B(x, r)) > 0)

and Tλ(x) = {r > 0: Arf(x) > λ}. Fix 0 < ε < 1 and consider ∆: Eλ →
(0,∞] and Eλ,t, t > 0, both defined analogously as it was done earlier (but now
in the context of f instead of ν). Observe that ∆ is lower semi-continuous on
Eλ and limt→0 µ(Eλ,t) = µ(Eλ). Choose δ > 0 and denote I = I(x, δ, r, n) =
{i ≤ n : B(pi, δ/2) ∩ B(x, r) 6= ∅}, Px,δ,r,n =

⋃
i∈I B(pi, δ/2) and Tλ,δ(x) =

{r ∈ Tλ(x) : µ(B(x, r + δ)) < (1 + ε)µ(B(x, r))}. Consider N : Eλ,δ → N
defined by

N(x) = min
{
n ∈ N : ∃r ∈ Tλ,δ(x) such that

∫
Px,δ,r,n

fdµ > (1− ε)
∫
B(x,r)

fdµ
}
.

Note that N is well-defined by the fact that
⋃
i∈NB(pi, δ/2) = X and the

monotone convergence theorem. We can see that N is upper semi-continuous
(in particular, the sets Eλ,δ,n = {x ∈ Eλ,δ : N(x) < n + 1}, n ∈ N, are
open) and hence Borel-measurable. Observe that limn→∞ µ(Eλ,δ,n) = µ(Eλ,δ).
Choose k ∈ N and define Gi = B(pi, δ/2)\

⋃
j<iB(pj , δ/2), i = 1, 2, . . . , k. For

each i satisfying µ(Gi) > 0 denote mi =
∫
Gi
fdµ and choose ξi ∈ supp(µ)∩Gi.

Let L > 0 be such that Lmi >
1
ε for each i satisfying µ(Gi) > 0. Take

ν =
∑

i : µ(Gi)>0

bLmic δξi .

We can see that ν is of the form (1) and ‖ν‖1 ≤ L‖f‖1 holds. In addition, L
is so large that bLmic > (1− ε)Lmi for every i satisfying µ(Gi) > 0. For each
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x ∈ Eλ,δ,k choose rx ∈ Tλ,δ(x) such that
∫
Px,δ,rx,k

fdµ > (1 − ε)
∫
B(x,rx)

fdµ.

Then

M cν(x) ≥ ν(B(x, rx + δ))

µ(B(x, rx + δ))
>

(1− ε)L
∫
Px,δ,rx,k

fdµ

(1 + ε)µ(B(x, rx))
>

(1− ε)2

1 + ε
Lλ,

which implies

C ′ ≥ (1− ε)2

1 + ε
Lλ

µ(Eλ,δ,k)

‖ν‖1
≥ (1− ε)2

1 + ε

λµ(Eλ,δ,k)

‖f‖1
.

Letting first k → ∞, next δ → 0+, and then ε → 0+ for fixed f and λ > 0,
and finally taking the supremum over f and λ, we conclude that C ′ ≥ C.

At the end note that, for example, the space Rd, d ≥ 1, with the Eu-
clidean or supremum metric and any measure defined by the weight w, which
is some non-negative Borel locally finite function, satisfies the conditions of
the theorem. In this context the discretization technique (sometimes implic-
itly) appeared in many articles devoted to the study of the weak type (1, 1) of
associated maximal operators.
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