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Abstract

Let G and H be Polish groups and let π : G → H be a function.
The automatic continuity problem is the following: assuming π is a
group homomorphism, find conditions on G, H, or π which imply that
π is continuous. In this note, we initiate a study of a reverse problem:
supposing π is continuous, find conditions on G, H, or π which imply
that π is a homomorphism. Herein, we treat the case G = H = R.

1 Introduction

A classic question posed by Augustin Cauchy is the following:

Question 1. Suppose that π : R→ R is additive, that is, π(x+y) = π(x)+π(y)
for all x, y ∈ R. Must π be continuous?

It is well-known that the answer is no in ZFC (It is consistent with ZF that
every additive homomorphism π : R → R is continuous; see Theorem 6 of
Mehdi [5] and Shelah [8].) To see this, fix a basis β for R as a vector space
over Q. Then |β| = 2ℵ0 . Hence the permutation group Sβ := {f : f : β → β

is bijective} has cardinality 22
ℵ0

. Note that each f ∈ Sβ may be uniquely ex-
tended to an invertible Q-linear transformation on R. It follows that there are
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exactly 22
ℵ0

automorphisms of (R,+). However, there are but 2ℵ0 continuous
functions on R. Thus, “most” automorphisms of (R,+) are not continuous on
R.

The negative answer to Question 1 spawned a mass of literature which
grew far beyond the real line. Solutions to the following problem comprise
what is known, contemporarily, as automatic continuity theory :

Problem 1 (The Automatic Continuity Problem). Let G and H be Polish
groups (separable topological groups with topology given by a complete metric),
and suppose π : G→ H is a group homomorphism. Find conditions on G, H,
or π which imply that π is continuous.

A model case of this problem is provided when G = H = R. An addi-
tive function that is continuous at a single point is automatically continuous
everywhere. In fact, we have the following well-known lemma.

Lemma 1. Let f : R → R be additive. If f is continuous at a point, then f
is continuous on R. In this case, f(x) = ax for some a ∈ R.

Proof. Suppose that f is continuous at some real number a, and let b ∈ R be
arbitrary. Note that f(a) = limx→a f(x) = limx→b f(x−b+a) = limx→b f(x)−
f(b) + f(a). We deduce that limx→b f(x) = f(b), and f is continuous on R.

To prove that f is linear, a straightforward induction establishes that
f(m) = f(1) · m for all m ∈ Z. We then extend to Q as follows: for any
integer q 6= 0, f(1) = f( qq ) = q · f( 1

q ). Thus f( 1
q ) = f(1) · 1q . Hence for any in-

teger p, we obtain f(pq ) = p·f( 1
q ) = f(1)· pq , which shows that f(r) = f(1)·r for

every rational number r. The continuity of f now implies that f(x) = f(1) · x
for all x ∈ R.

It is not our purpose to exposit the important results of automatic conti-
nuity theory; we refer the reader instead to the bibliography for some excellent
surveys on the topic. We mention one classical result with which the reader
may be familiar: any Baire-measurable homomorphism between Polish groups
is continuous (see Pettis [6]). Our motivation is to initiate a study of the
following reverse problem:

Problem 2 (The Automatic Homomorphism Problem). Let G and H be Pol-
ish groups and suppose π : G → H is continuous. Find conditions on G, H,
or π which imply that π is a homomorphism.

Herein, we treat the special case G = H = R. As noted above, the class
of additive, continuous functions f : R → R is not very interesting in and of
itself as every such function is linear. Of interest to us is the implication of
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additivity, using automatic continuity as a template. For example, in Lemma
1, there is an algebraic assumption (additivity) and an analytic assumption,
weaker than continuity everywhere, that suffice to prove continuity. To exam-
ine Problem 2, we assume that π is continuous and various algebraic properties,
each of which is weaker than additivity, to conclude that π is automatically a
homomorphism.

The main results of the paper are summarized in Theorem 15. Our hope
is that they will spur an investigation of the general problem. As the topic
at hand intersects analysis, group theory, and lattice theory, we sacrifice some
brevity for clarity by giving detailed definitions and proofs throughout the
paper.

2 Preliminaries

We begin by stating some definitions and fixing notation which will be used
throughout. If G and H are groups with H a subgroup of G, then we denote
this by H ≤ G. Further, L(G) will denote the lattice of subgroups of a group
G, partially ordered by ⊆. If f : G → H is a homomorphism and G = H,
then f is said to be an endomorphism of G. A bijective endomorphism is an
automorphism. A group G ≤ R is discrete if and only if G is discrete as a
topological subspace of R (with the usual topology). It is well-known that G
is discrete if and only if G is cyclic. Moreover, if G is not cyclic, then G is
dense in R. For any real number r, Zr := {mr : m ∈ Z} denotes the cyclic
subgroup of R generated by r.

If G and K are groups and f : G → K is a homomorphism, then f maps
subgroups of G to subgroups of K. However, this property of group homo-
morphisms is weaker than being a homomorphism itself. We isolate it because
it plays a central role in our exposition.

Property 1. Let G and K be groups. The function f : G→ K maps subgroups
of G to subgroups of K.

Property 1 is a weak assumption for our purposes, because as the next
proposition shows, there are many functions f : R → R which possess an
even stronger version of it, but are poorly behaved both algebraically and
analytically. The functions fail to be additive and do not have a limit at
nonzero points.

Proposition 2. There exists a family F of 22
ℵ0

bijections f : R→ R with the
following properties:

(a) f(G) = G for every subgroup G of R,
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(b) for every nonzero r, there exists s such that f(r + s) 6= f(r) + f(s), and

(c) f is continuous at 0, but fails to have a limit at every other point.

Proof. We start by letting C denote the usual ternary Cantor set in [0, 1],
and consider the collection C∩Qc of irrational members of C. Since |C| = 2ℵ0 ,
it follows that C ∩ Qc also has the cardinality of the continuum. For any set
X ⊆ C ∩Qc, define a function fX : R→ R as follows:

fX(r) :=


r if r ∈ (X ∪Q) ∩ [0,∞),

−r if r ∈ (X ∪Q)c ∩ [0,∞),

−fX(−r) if r ≤ 0.

(1)

We now set F := {fX : X ⊆ C ∩ Qc}. It is easy to see that if X and Y are
distinct subsets of C∩Qc, then fX 6= fY . To see this, assume that there exists
x ∈ X − Y . Then x 6= 0 and fX(x) = x, yet fY (x) = −x. It follows that

|F| = 22
ℵ0

.
Fix an arbitrary set X ⊆ C ∩Qc. It is clear from the definition of fX that

fX is odd. (2)

It is also obvious from the definition of fX that fX(r) = ±r for every r ∈ R.
Moreover, since fX is odd, it follows that for all r ∈ R:

if fX(r) = r, then fX(−r) = −r. If fX(r) = −r, then fX(−r) = r. (3)

We conclude that fX is bijective. Moreover, (a) follows at once from the above
observations.

We now prove (b). Let r > 0 be arbitrary. Suppose first that r ∈ X∪Q, and
pick s > 0 such that r+s ∈ (X∪Q)c. Then fX(r+s) = −(r+s) < r−s ≤ r+
fX(s) = fX(r) + fX(s). Now assume that r ∈ (X ∪Q)c. Pick a rational s > 0
such that r+s ∈ (X∪Q)c. Then fX(r+s) = −(r+s) < −r+s = fX(r)+fX(s).
Suppose now that r < 0. Then −r > 0. By what we proved above, there exists
−s > 0 such that fX(−r +−s) 6= fX(−r) + fX(−s). Since fX is odd, we get
−fX(r + s) 6= −fX(r) +−fX(s). Therefore, fX(r + s) 6= fX(r) + fX(s).

Finally, we establish (c). Since fX(r) = ±r for all r ∈ R, it is clear that fX
is continuous at 0. As fX is odd, it suffices to show that limx→r fX(x) does
not exist for any positive real number r. Thus let r > 0 be arbitrary. Since the
Cantor set is closed and nowhere dense, it follows that (C∪Q)c∩[0, 1] is dense in
[0, 1]. Therefore, (C∪Q)c is dense in [0,∞). Noting that (C∪Q)c ⊆ (X∪Q)c,
clearly (X ∪Q)c is dense in [0,∞) as well. Thus way may choose a sequence
(sn) in (X ∪Q)− {r} converging to r and a sequence (tn) in (X ∪Q)c − {r}
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converging to r. Applying fX to both sequences, it follows that limx→r fX(x)
does not exist.

We further explicate the weakness of Property 1 by the following. Even
the additional assumptions of continuity and surjectivity are not enough to
guarantee additivity. More precisely, there exist continuous, surjective f : R→
R, mapping subgroups of R to subgroups of R, that fail to be additive.

Before constructing such an f , we first define some notation which will help
to streamline the argument. Suppose that I := [i1, i2] and J := [j1, j2] are
closed bounded intervals on the real line. Define I < J to mean that i2 < j1.
Further, assuming I < J , let d(I, J) := ji − i2. Lastly, if k is a real number,
then we set kI := {kx : x ∈ I}.

Proposition 3. There exists a continuous, surjective map f : R → R which
is not additive, yet f(G) is a subgroup of R for every subgroup G of R.

Proof. For each n ∈ Z+, let In := [ 1n , n]. Next observe that Z+ × Q × Q is
countable; let {(li, ri, si) : i ∈ Z+} be an enumeration. We now recursively
define a sequence (kn : n ∈ Z+) of positive integers as follows: set k1 := 1.
Suppose that k1, . . . , kn have been defined. We then choose kn+1 to be any
positive integer satisfying

(i) knIn < kn+1In+1, and

(ii) d(knIn, kn+1In+1) ≥ 1.

Set J(ln,rn,sn) := knIn := [an, bn] for every n ∈ Z+. Note that since In has
rational endpoints, the same is true of J(ln,rn,sn). We now define a piecewise-
linear map f : R→ R via the following steps:

Step 1. For each n ∈ Z+, define f on [an, bn] by f(x) := ( rnkn )x + sn.
Since rn, kn, sn, an, and bn are rational, we see that f(an) and f(bn) are also
rational. Moreover, f is linear with rational slope and rational y-intercept.

Step 2. Let n ∈ Z+ be arbitrary. We now define f on [bn, an+1] as follows:

let mn := f(an+1)−f(bn)
an+1−bn . For x ∈ [bn, an+1], put f(x) := mnx+(f(bn)−mnbn).

Again, f is linear on [bn, an+1] with rational slope and rational y-intercept.

Step 3. To extend f to R, we need only define f on (−∞, a1]. To do
this, we set f(x) := f(1) · x for x ≤ a1. Once more, we see that f is linear on
(−∞, a1] with rational slope and rational y-intercept.
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It is easy to check that the definitions given above for f agree at every
an, bn and that f is piecewise-linear. It follows that f is continuous on R. We
now prove that f(G) is a subgroup of R for every subgroup G of R.

Toward this end, we let G be an arbitrary subgroup of R. If G = {0}, then
by the definition in Step 3, we see that f(G) = {0}. Thus, assume that G is
nontrivial and set G+ := {g ∈ G : g > 0}. Then clearly,

{rg : r ∈ Q, g ∈ G+} := QG+ = QG := {rg : r ∈ Q, g ∈ G}. (4)

The very definition of f yields

f(G) ⊆ QG+ Q. (5)

Now let g ∈ G+ and x, y ∈ Q be arbitrary. Note that g ∈ In for all but finitely
many n. It follows that kng ∈ J(ln,rn,sn) for all but finitely many n. Now,
there are infinitely many triples (a, b, c) ∈ Z+ × Q × Q for which b = x and
c = y. Hence, there are infinitely many n such that rn = x and sn = y. We
deduce that for some such n, we have kng ∈ J(ln,rn,sn). But now, by definition
of f , f(kng) = ( rnkn )(kng)+sn = rng+sn = xg+y. Since g ∈ G+ and x, y ∈ Q
were arbitrary, we have shown that

QG+ + Q ⊆ f(G+). (6)

We now complete the proof. We conclude from (4) - (6) above that f(G) ⊆
QG+ Q = QG+ + Q ⊆ f(G+) ⊆ f(G), whence equality holds throughout. It
is apparent that QG+ Q is a subgroup of R. Moreover, f(R) = QR + Q = R;
therefore f is surjective. Finally, we must justify that f is not additive, but
this is easy. Suppose by way of contradiction that f is additive. Then f is
linear by Lemma 1. However, it is clear from the definition of f that f is
neither increasing nor decreasing on R, and thus f cannot be linear. This
contradiction completes the argument.

Mapping subgroups to subgroups is not a strong assumption, even in the
presence of continuity. Therefore, we will make use of variants of Property
1 to produce automatic homomorphisms. For example, nonzero, continuous
functions that map discrete subgroups of R to discrete subgroups of R are
automatically automorphisms of (R,+).

3 Main results

We have seen that even in the presence of continuity, a surjective function
f : R→ R which maps subgroups to subgroups need not be additive. Our first
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proposition of the section demonstrates, however, that if we replace “surjec-
tive” with “injective,” then the function f is much better-behaved.

Proposition 4. Suppose f : R→ R is a continuous injective map which sat-
isfies

(a) f(0) = 0, and

(b) in every neighborhood of 0, there is a non-zero x such that f(Zx) is a
subgroup of R.

Then f is an automorphism of (R,+).

Proof. Let f : R → R be continuous, injective map satisfying (a) and (b)
above. We will show that f is an additive automorphism of R. Replacing f by
−f if necessary, we may assume that f is strictly increasing on R. Let r ∈ R
be arbitrary. We claim:

if f(Zr) is a subgroup of R, then f(mr) = mf(r) for all m ∈ Z. (7)

To verify (7), assume that f(Zr) is a subgroup of R. Since f is strictly in-
creasing, f is an order isomorphism between Zr and f(Zr). As mentioned in
Section 2, every subgroup of R is either cyclic or dense in R. Because Zr is a
discrete subset of R and f : Zr → f(Zr) is an order isomorphism, we conclude
that f(Zr) is a cyclic subgroup of R. Since in addition f(0) = 0, (7) is clear.

Now suppose that r ∈ R and f(mr) = mf(r) for every m ∈ Z. Let m0 ∈ Z
be arbitrary. Then

for any m ∈ Z, f(m(m0r)) = mm0f(r) = m(m0f(r)) = mf(m0r). (8)

Next, set X := {r ∈ R : f(mr) = mf(r) for all m ∈ Z}. We deduce from
assumption (b), (7), and (8) that X is a dense subset of R. The continuity
of f implies that X = R. It then follows from the proof of Lemma 1 that
f(r) = f(1)r for all r ∈ R. As f is injective, f(1) 6= 0, and thus f is an
automorphism of (R,+).

Remark 1. The assumption that f(0) = 0 in the previous proposition cannot
be eliminated. To see why, let f(x) := x+ 1. Then f is injective, and for any
n > 0, we have f(Z 1

n ) = (Z + n) 1
n = Z 1

n . But since f(0) 6= 0, f is not an
automorphism of (R,+).

Corollary 5. Let f : R→ R be a continuous injective map. If f maps discrete
subgroups to discrete subgroups, then f is an automorphism of (R,+).
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If we remove the injectivity hypothesis, but replace it with nonincreasing
or nondecreasing, then we may prove the following more general result using
Corollary 5.

Proposition 6. If f : R→ R is a continuous, monotonic function which maps
discrete subgroups to discrete subgroups, then f is additive.

Proof. We may assume that f is not identically zero. Then either f is not
identically 0 on (−∞, 0] or f is not identically 0 on [0,∞). We may assume
without loss of generality, replacing f(x) with f(−x) if necessary, that

f is not identically 0 on [0,∞). (9)

Further, replacing f with −f if necessary, we may suppose

f is increasing on [0,∞). (10)

As f maps the subgroup {0} to a subgroup of R, we see that

f(0) = 0. (11)

Since f(0) = 0, f is increasing, and f is not identically zero on [0,∞), clearly
f−1(0) is bounded above; let x∗ :=sup(f−1(0)). Then x∗ ≥ 0; we claim
that x∗ = 0. Suppose not, and choose x1 such that x∗ < x1 < 2x∗ and

x2 ∈ (x∗, x1) such that f(x2) = 2f(x1)
3 . Finally, choose x3 ∈ (x∗, x2) such that

f(x3) = f(x1)
3 . Next, consider the group G := f(Zx3). Since f is increasing,

f(0) = 0, and f(x3) > 0, it follows that f(x3) is the least positive element of
G. As G is a group, 2f(x3) = f(x2) ∈ G. By definition of G, f(x2) = f(nx3)
for some integer n > 1. But x∗ < x3, and thus x1 < 2x∗ ≤ nx∗ < nx3.
Since f is increasing, we deduce that f(x1) ≤ f(nx3) = f(x2), and this is a
contradiction. Therefore, x∗ = 0, and

f(x) > 0 for all x > 0. (12)

We now show that f is injective on [0,∞). Suppose not. Then f(a) = f(b) := y
for some a, b with 0 ≤ a < b. Since f(0) = 0 and f(x) > 0 for every x > 0, we
deduce 0 < a < b and y > 0. Without loss of generality, we may assume that
a is the least positive real number for which f(a) = y. Using (10)–(12) above
along with the continuity of f , we obtain x1 ∈ R with the following properties:

(i) 0 < f(x1) < y (hence 0 < x1 < a),

(ii) f(x1) 6= y
n for any positive integer n, and
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(iii) x1 < b− a.

Again, note that f(x1) is the positive generator of the group f(Zx1). Now let
k be the largest positive integer for which kf(x1) < y. Then kf(x1) ∈ f(Zx1),
whence kf(x1) = f(mx1) for some positive integer m. We may assume that
m is the largest integer for which f(mx1) = kf(x1). But then we have:

(i) kf(x1) < y < (k + 1)f(x1) (the second inequality follows from (ii)), and

(ii) f((m+ 1)x1) = (k + 1)f(x1) (since f is increasing).

However, note from above that f(mx1) = kf(x1) < y and f((m + 1)x1) > y.
Thus mx1 < a and (m + 1)x1 > b. This contradicts (iii) above. Thus f
is injective on [0,∞). Since f is injective on [0,∞), it follows that f(Z) is
a nonzero subgroup of R. Therefore, f is surjective. A symmetric argument
shows that f is injective on (−∞, 0]. As f is surjective, we see that f is strictly
increasing on (−∞, 0], hence is strictly increasing on the entire line. Corollary
5, then, yields the desired conclusion.

Recall from Proposition 3 that if f : R → R is continuous and f(G) ≤ R
for every G ≤ R, then it does not follow that f is additive, even when f is
surjective. If we assume instead that f is one-to-one, then Corollary 5 shows
that f is an automorphism of (R,+). The next proposition examines the
natural question that arises when we replace injectivity with the preservation
of discrete subgroups.

Proposition 7. Let f : R → R be a continuous function. If f maps discrete
subgroups to discrete subgroups, then f is additive.

Proof. First, we claim that

f is monotonic on [0,∞). (13)

Suppose not. Then there exist real numbers 0 ≤ a < c such that f(a) = f(c)
and f is not constant on [a, c]. Let max(f) denote the absolute max of f on
[a, c]. By replacing f with−f if necessary, we may assume that max(f) > f(a).
Let b ∈ (a, c) be such that f(b) = max(f), and choose some rational number
q ∈ (1, cb ).
Case 1. max(f) > 0. Without loss of generality, we may assume

(i) f(a) = f(c) > 0,

(ii) f(x) > f(a) for all x ∈ (a, b), and
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(iii) f(c) < f(x) < f(b) for all x ∈ (b, c).

Define G : [a, b]→ R by G(x) := f(x)
f(qx) . Then G is well-defined and continuous

on [a, b]. Furthermore, G(a) = f(a)
f(qa) ≤ 1 and G(b) = f(b)

f(qb) > 1. Since G is

continuous and nonconstant on [a, b], we conclude that the range of G must

contain an irrational number; let x ∈ [a, b] be such that f(x)
f(qx) is irrational.

Then {f(x), f(qx)} is linearly independent over Q. Since q is a positive ra-
tional number, q = m

n for some positive integers m and n. Now consider the
group H := Z x

n , and note that {x, qx} ⊆ H. But then {f(x), f(qx)} ⊆ f(H),
and f(H) is not discrete, a contradiction.

Case 2. max(f) < 0. This is analogous.

Case 3. max(f) = 0. Let b := sup([a, c] ∩ f−1(0)). Recall from above that
q ∈ (1, cb ) ∩ Q. Choose α ∈ R such that qb < qα < c, and define G on [b, α]

as above by G(x) := f(x)
f(qx) . Again, G is well-defined. Moreover, G(b) = 0 and

G(α) > 0. The remainder of the argument proceeds just as in Case 1 and is
omitted.

We have shown that f is monotonic on [0,∞). Similarly, it follows that

f is monotonic on (−∞, 0]. (14)

If f is identically zero on R, then f is additive and we are done. Assume now
that f is not identically zero; say f(r) 6= 0. Then f(Zr) is a nonzero subgroup
of R, and it follows that f is surjective. This fact along with (13) and (14)
above implies that f is monotonic on R. We apply Proposition 6 to conclude
that f is additive.

Corollary 8. Let f : R→ R be continuous. Then f(D) = D for every discrete
subgroup D of R if and only if f(x) = x or f(x) = −x.

Proof. If f(x) = x or f(x) = −x, the result is clear. Suppose now that
f(D) = D for every discrete D ≤ R. The previous proposition implies that
f is an automorphism of (R,+), and therefore f(x) = ax for some non-zero
real number a. But then Za = Z. In particular, a = 1 · a ∈ Z. Therefore, a
generates Z, and so a = ±1.

Having considered continuous functions f which map subgroups to sub-
groups, we now turn our attention to lattice endomorphisms. Recall that a
lattice is a poset (X,≤) with the property that every pair {x, y} of elements
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of X has both a greatest lower bound x ∧ y (the meet of x and y) and a
smallest upper bound x∨ y (the join of x and y) with respect to ≤. A lattice
is bounded provided X has a smallest element 0 and a largest element 1. A
bounded lattice endomorphism of X is a function ϕ : X → X with the property
that ϕ(0) = 0, ϕ(1) = 1, ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y), and ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y)
for all x, y ∈ X. A bijective bounded lattice endomorphism is called a bounded
lattice automorphism. It is easy to see that for any group G, the collection
L(G) of subgroups of G is a bounded lattice with respect to set inclusion.
Specifically, 0 = {e}, 1 = G, H ∧K = H ∩K, and H ∨K = 〈H,K〉 for any
H,K ∈ L(G). Note 〈H,K〉 is the subgroup of G generated by H and K.

Suppose now that G is a group and ϕ is a bounded lattice endomorphism
of L(G). Then for all subgroups H and K of G,

if H ∩K = {e}, then ϕ(H) ∩ ϕ(K) = {e}. (15)

We will shortly investigate a class of continuous functions on the real line
which satisfy a more general version of (15). We will make use of the following
lemma.

Lemma 9. Let [a, c] be an interval of positive measure for which 0 is not
interior, and suppose that f : [a, c] → R is a continuous function with f(a) =
f(c). Then there exist distinct α, β ∈ [a, c] such that f(α) = f(β) and {α, β}
is linearly independent over Q.

Proof. We prove the lemma only for the case 0 ≤ a, as the case c ≤ 0 is
analogous. Clearly, we may assume that f is not constant on [a, c]. Thus
there is some number b ∈ (a, c) such that f(b) 6= f(a). We assume that
f(b) > f(a) (a similar argument applies if f(b) < f(a)). Now define a function
f∗ : [f(a), f(b)]→ R by

f∗(y) :=
inf([a, b] ∩ f−1(y))

sup([b, c] ∩ f−1(y))
. (16)

As y increases, the Intermediate Value Theorem implies that the numerator of
the above function strictly increases while the denominator strictly decreases.
Therefore, f is injective. We deduce that f∗(y) is irrational for some y ∈
[f(a), f(b)]. Set x1 := inf([a, b]∩ f−1(y)) and x2 := sup([b, c]∩ f−1(y)). Since
[a, b] ∩ f−1(y) is closed, we see that x1 ∈ [a, b] ∩ f−1(y), and thus f(x1) = y.
Similarly, f(x2) = y. As x1

x2
/∈ Q, it follows that x1 and x2 are linearly

independent over Q, completing the proof.

Remark 2. In the statement of Lemma 9, we cannot dispense with the as-
sumption that 0 is not in the interior of the interval [a, b]. A counterexample
is provided by f(x) = |x| on [−1, 1]. Then, f(α) = f(β) only for α = ±β.
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Recall from Proposition 3 that the assumption that f : R → R maps dis-
crete subgroups of R to subgroups of R is not sufficient to imply that f is
additive. However, if we assume in addition that f satisfies (15) above for all
discrete subgroups H and K of R, then this is sufficient.

Proposition 10. Let f : R → R be a continuous function satisfying the fol-
lowing two conditions:

(a) f maps discrete subgroups of R to subgroups of R (not assumed to be
discrete), and

(b) for any discrete subgroups H and K of R for which H ∩K = {0}, we have
f(H) ∩ f(K) = {0}.

Then f is additive.

Proof. Suppose that f : R → R is a continuous function on R satisfying
(a) and (b). We may further assume that f is not identically zero. We now
establish a sequence of claims. Since f is not identically 0, it follows that f
is not identically 0 on (−∞, 0] or f is not identically 0 on [0,∞). Replacing
f(x) with f(−x) if necessary, we may assume

f is not identically 0 on [0,∞). (17)

Since f maps discrete subgroups of R to subgroups of R, it follows that

f(0) = 0. (18)

We now prove:

If 0 ≤ a < c and f(a) = f(c), then f is identically 0 on [a, c]. (19)

We first show that f(a) = f(c) = 0. Suppose not. Replacing f by −f if
necessary, we may assume that f(a) = f(c) := y > 0. Observe that f cannot
be constant on [a, c]; if so, choose α, β ∈ [a, c] which are linearly independent
over Q. Then Zα ∩ Zβ = {0}. By (b) above, we obtain f(Zα) ∩ f(Zβ) =
{0}. However, this is impossible since 0 6= y ∈ f(Zα) ∩ f(Zβ). Thus there
exists b ∈ (a, c) such that f(b) > 0 and f(b) 6= f(a). Suppose first that
f(b) > f(a). Then we may assume without loss of generality that f(b) is the
global max of f on [a, c]. By continuity of f , there exists an interval [a′, c′]
contained in [a, c] for which b is interior and f(x) > f(a) = f(c) on [a′, c′].
By the Intermediate Value Theorem, we may assume that f(a′) = f(c′). We
now invoke Lemma 9 to obtain linearly independent elements α′, β′ ∈ [a, c]
such that f(α′) = f(β′) := y′ ≥ min(f(a), f(b)) > 0. We obtain the same
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conclusion via an analogous argument in case f(b) < f(a). But then Zα′ ∩
Zβ′ = {0}, yet 0 < y′ ∈ f(Zα′) ∩ f(Zβ′), another contradiction. We conclude
that f(a) = f(c) = 0. Suppose again by contradiction that f is not identically
0 on [a, c]. Without loss of generality, we may assume there exists b ∈ (a, c)
with f(b) > 0. By the Intermediate Value Theorem, there exists x1 ∈ (a, b)

such that f(x1) = f(b)
2 and there exists x2 ∈ (b, c) such that f(x2) = f(b)

2 .
But then by what we just proved above, f(x1) = f(x2) = 0, a contradiction.
Thus (19) is established.

It follows that f is monotonic on [0,∞). A symmetric argument can be
used to show that f is monotonic on (−∞, 0]. Since f is not identically zero
and as f maps discrete subgroups to subgroups, we conclude as before that f
is surjective. Therefore, f is monotonic on R. Proposition 6 implies that f is
additive.

Corollary 11. Let f : R → R be continuous. Then the following are equiva-
lent:

(a) f is an automorphism of (R,+).

(b) The map G 7→ f(G) is a bounded lattice automorphism of L(R).

(c) The map G 7→ f(G) is a bounded lattice endomorphism of L(R).

Our final study will be of continuous functions f : R → R for which the
preimage of a discrete subgroup of R is also a discrete subgroup of R. Observe
that not every such function is additive, as the following example shows.

Example 1. Let f(x) := |x| for all x ∈ R. Then f is not additive, yet
f−1(G) = G for every subgroup G of R.

We now prove a lemma which will be used in our final proposition.

Lemma 12. Suppose that f : R → R is continuous and that f−1(D) is a
discrete subgroup of R for every discrete subgroup D of R. Then

(a) f(0) = 0, and

(b) f is strictly monotonic on (−∞, 0] and strictly monotonic on [0,∞).

Proof. Assume that f is as stated above. Then f−1({0}) is a (discrete)
subgroup of R. In particular, 0 ∈ f−1({0}), and we have verified (a). As for
(b), we only show that f is strictly monotonic on [0,∞), the other case being
analogous. It suffices to show that f is one-to-one on [0,∞). Suppose not.
Then there exist a, b ∈ [0,∞) such that f(a) = f(b) and a < b. Invoking
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Lemma 9, we obtain distinct elements α, β ∈ [a, b] which are linearly indepen-
dent over Q such that f(α) = f(β). Therefore, {α, β} ⊆ f−1(Z(f(α))). But
f−1(Z(f(α))) is discrete. Since a discrete subgroup of R cannot contain two
distinct elements which are linearly independent over Q, we have reached a
contradiction.

We are now ready to prove our final proposition.

Proposition 13. Let f : R→ R be a continuous function. Then f−1(D) is a
discrete subgroup of R for every discrete subgroup D of R if and only if there
exists a positive a ∈ R such that |f(x)| = a|x| for all x ∈ R.

Proof. Suppose first that |f(x)| = a|x| for some a > 0. Then it is easy to see
that f−1(G) = G

a for any G ≤ R. Therefore, f−1(Zr) = Z( ra ) for any r ∈ R.
Conversely, assume that f−1(D) is a discrete subgroup of R for every dis-

crete subgroup D of R. Using Lemma 12 and replacing f with −f if necessary,
we may assume that f is strictly increasing on [0,∞). We claim

f is not bounded above on [0,∞). (20)

Suppose not and let y be the sup of f on [0,∞). Since f(0) = 0 and f is
strictly increasing on [0,∞), it follows that y > 0 and that y /∈ f([0,∞)). Let
x > 0 be such that f(x) = y

2 . Then x is the unique positive member of the
group f−1(Zy

2 ), which is absurd, and (20) is established. Lemma 12 implies
that f is either strictly increasing or strictly decreasing on (−∞, 0]. We con-
sider these two cases separately to finish the proof.

Case 1. f is strictly increasing on (−∞, 0]. By a similar argument, we see
that f is not bounded below on (−∞, 0]. But then f : R → R is bijective,
whence f−1 : R→ R is a continuous injective function with the property that
f−1(D) ≤ R for every discrete D ≤ R. Lemma 1 and Corollary 5 imply that
f−1(x) = bx for some nonzero b ∈ R. Setting a := | 1b |, we see that |f(x)| = a|x|
for all x ∈ R, completing this case.

Case 2. f is strictly decreasing on (−∞, 0]. Again, argument similar to the
one used to prove (20) above shows that f is not bounded above on (−∞, 0].
Define a new function G : R→ R by

G(x) :=

{
f(x) if x ≥ 0,

−f(x) if x ≤ 0.
(21)

Then G : R → R is bijective, and therefore so is G−1. Now let K be an
arbitrary subgroup of R and let x ≥ 0. Then x ∈ G−1(K) iff G(x) ∈ K
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iff f(x) ∈ K iff x ∈ f−1(K). Now suppose x < 0. Then x ∈ G−1(K) iff
G(x) ∈ K iff −f(x) ∈ K iff (since K is a group) f(x) ∈ K iff x ∈ f−1(K). It
follows that G−1(D) is a subgroup of R for every discrete subgroup D of R.
Again, we invoke Lemma 1 and Corollary 5 to conclude that G−1(x) = bx for
some nonzero b ∈ R. Setting a := | 1b |, we see that |f(x)| = a|x| for all x ∈ R,
concluding the proof.

Corollary 14. Let f be a countinuous function. If f−1(D) is a discrete
subgroup of R for every discrete subgroup D of R, then the map G 7→ f−1(G)
is a bounded lattice automorphism of L(R).

Proof. By the previous proposition, |f(x)| = a|x| for some a > 0. This
implies that f−1(G) = G

a for every G ≤ R. It is now a simple task to verify

that G 7→ G
a is a bounded lattice automorphism of L(G).

We conclude the paper with the following synopsis of our results.

Theorem 15. Let f : R→ R be a continuous function which is not identically
0. Then the following are equivalent:

(a) f is an automorphism of (R,+).

(b) f maps discrete subgroups to discrete subgroups.

(c) f(D) is a subgroup of R for every discrete subgroup D of R. Moreover, if
H and K are discrete subgroups of R such that H ∩K = {0}, then also
f(H) ∩ f(K) = {0}.

(d) The map G 7→ f(G) is a bounded lattice automorphism of L(R).

(e) The map G 7→ f(G) is a bounded lattice endomorphism of L(R).

(f) f is injective and f−1(D) is a discrete subgroup of R for all discrete sub-
groups D of R.

(g) f is surjective and f−1(D) is a discrete subgroup of R for all discrete
subgroups D of R.
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