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THE ESSENTIAL NORM OF
MULTIPLICATION OPERATORS ON

LORENTZ SEQUENCE SPACES

Abstract

We study some basic properties of Lorentz sequence spaces. Descrip-
tion of multiplication operators generated by a sequence is presented.
We calculate the essential norm of multiplication operators acting on
Lorentz sequence spaces.

1 Introduction

The multiplication operator, defined roughly speaking as the pointwise mul-
tiplication by a real-valued measurable function, is a well-studied transfor-
mation. This operator received considerable attention over the past several
decades specially on Lebesgue and Bergman spaces and also played an impor-
tant role in the study of operators on Hilbert spaces. For more detail on these
operators we refer to [1], [5], [8] and [9]. Studies of multiplication operators
on Lp spaces can be seen in [10] and [15], on Orlicz spaces in [12], on Lorentz
spaces in [2], on Lorentz-Bochner spaces in [3], on weak Lp spaces in [6], and
on Orlicz-Lorentz spaces in [7]. In the case of the Lorentz sequence space l(p,q),
Arora, Datt and Verma [4] characterized the symbols inducing multiplication

Mathematical Reviews subject classification: Primary: 47B37, 47B38; Secondary: 46E30
Key words: Lorentz sequence spaces, Multiplication operators
Received by the editors September 20, 2015
Communicated by: V. I. Kolyada

245



246 R. E. Castillo, J. C. Ramos-Fernández and M. Salas-Brown

operators continuous, invertible, with closed range, compact and Fredholm.
The multiplication operator Mu on the space l(p,q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞ is
induced by a sequence u = {u(n)}n∈N, where for a sequence a = {a(n)}, Mua
is the sequence u · a = c = {c(n)} defined by

c(n) = u(n) · a(n)

with n ∈ N. Clearly, this operator is not 1-1 unless u(n) 6= 0 for all n ∈
N. Furthermore, it follows immediately from [10], that the only compact
multiplication operator on the non-atomic Lorentz space is the zero operator.
However, in the case of the Lorentz sequence space, there exist compact non-
zero multiplication operators on l(p,q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. In fact, in [4],
the authors showed the following result:

Theorem 1 ([4]). The operatorMu is compact on l(p,q) if and only if u(n)→ 0
as n→∞.

The aim of this note is to obtain an estimation of the essential norm of
Mu : l(p,q) → l(p,q) which implies the above result. More precisely, in this note
we will show the following result:

Main Theorem. Let u = {u(n)} be a bounded sequence. Then

‖Mu‖e = lim sup
n→∞

|u(n)| . (1)

We present the proof of the above result in Section 3, and in Section 2 we
gather some properties of the Lorentz sequence space.

2 Some remarks on Lorentz sequence spaces

The Lorentz space is a two parameter family of functions L(p,q) which gener-
alizes the Lebesgue space Lp. The L(p,q) spaces were introduced by Lorentz
in [13] and [14]; a general treatment of Lorentz spaces is given in the article of
Hunt [11]. In the case that the domain of the functions considered is X = N
with the σ-algebra A = 2N, the power set of X, and the counting measure µ,
we obtain the Lorentz sequence space l(p,q) with 1 < p ≤ ∞ and 1 ≤ q ≤ ∞.
More precisely, the Lorentz sequence space l(p,q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, is
the set of all complex sequences a = {a(n)} such that ‖a‖s(p,q) <∞ where

‖a‖s(p,q) =


(∑∞

n=1

(
n1/pa∗(n)

)q 1
n

)1/q
, 1 < p <∞, 1 ≤ q <∞

supn≥1 n
1/pa∗(n), 1 < p ≤ ∞, q =∞
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where a∗(n) = inf{λ > 0 : Da(λ) ≤ n − 1} and the distribution function
of any complex-valued function a = {a(n)}n≥1 can be written as Da(λ) =
µ({n ∈ N : |a(n)| > λ}) with λ ≥ 0. The sequence a∗ = {a∗(n)} is obtained
by permuting {|a(n)|}n∈S where S = {n : a(n) 6= 0}, in the decreasing order
with a∗(n) = 0 for n > µ(S) if µ(S) <∞. The Lorentz sequence space l(p,q),
1 < p ≤ ∞, q = ∞, is a linear space and ‖ · ‖s(p,q) is a quasinorm. Moreover,
l(p,q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, is complete with respect to the quasinorm
‖ · ‖s(p,q). Observe that if the sequence a = {a(n)} ∈ l(p,q), then

a(n)→ 0 as n→∞. (2)

Indeed, if (2) is false then we can find a δ > 0 and a subsequence {a (nk)}
such that |a (nk)| ≥ δ for all k ∈ N. Hence Da (λ) = +∞ for all λ ∈ (0, δ], and
{λ > 0 : Da(λ) ≤ n− 1} ⊂ (δ,+∞) for all n ∈ N. We conclude that a∗(n) ≥ δ
for all n ∈ N which implies that ‖a‖s(p,q) = +∞, giving us a contradiction with
the fact that a ∈ l(p,q).

The Lorentz sequence space l(p,q) is a normed linear space if and only if
1 ≤ q ≤ p < ∞; see [11]. Moreover, l(p,q) is normable when 1 < p < q ≤ ∞;
that is, there exists a norm equivalent to ‖ · ‖s(p,q). For the remaining cases
l(p,q) cannot be equipped with an equivalent norm. The normable case for
p < q comes up in the following way:

‖a‖∗(p,q) =

{(∑∞
n=1 (a∗∗(n))

q
nq/p−1

)1/q
, q <∞

supn≥1
{
n1/pa∗∗(n)

}
, q =∞

where a∗∗ = {a∗∗(n)} is called the maximal sequence of a∗ = {a∗(n)} and it
is defined as

a∗∗(n) =
1

n

n∑
k=1

a∗(k).

It is known that for 1 < p ≤ q <∞ the following relation holds:

‖a‖s(p,q) ≤ ‖a‖
∗
(p,q) ≤

(
p

p− 1

)q

‖a‖s(p,q).

Remark 2. By definition of the rearrangements, if a = {a(n)} and b = {b(n)}
are complex sequences, b ∈ l(p,q) with 1 < p ≤ ∞, 1 ≤ q ≤ ∞ and |a(n)| ≤
|b(n)| for all n ∈ N, then a∗(n) ≤ b∗(n) for all n ∈ N. Hence a ∈ l(p,q) and
‖a‖∗(p,q) ≤ ‖b‖

∗
(p,q).

The following result is due to Hardy-Littlewood.
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Theorem 3. If a = {a(n)} and b = {b(n)} are complex sequences, then

∞∑
n=1

|a(n)b(n)| ≤
∞∑

n=1

a∗(n)b∗(n). (3)

As a consequence of the above result, we have that if a = {a(n)} ∈ l(p,t)
and b = {b(n)} ∈ l(q,r), where 1

p + 1
q = 1 and 1

t + 1
r = 1, then

∞∑
n=1

|a(n)b(n)| ≤ ‖a‖s(p,t) ‖b‖
s
(q,r) .

This last inequality tells us that each a ∈ l(p,q) defines a bounded linear func-

tional h on l(r,t), where 1
p + 1

r = 1 and 1
q + 1

t = 1, which is given by

h(b) =

∞∑
n=1

a(n) · b(n). (4)

Conversely (see [11]), each bounded linear functional h on l(r,t) is of the form
(4) for some a ∈ l(p,q) and ‖h‖ ' ‖a‖(p,q). We refer this fact as Riesz’s theorem
for Lorentz sequence spaces.

3 The essential norm of multiplication operators on
Lorentz sequence spaces

Recall that if X is a Banach space and T : X → X a continuos operator, then
the essential norm of T , denoted by ‖T‖e, is the distance of T to the class of
the compact operators on X; that is,

‖T‖e = inf {‖T −K‖ : K : X → X is compact} ,

where ‖T‖ denotes the operator norm of T , which is defined by ‖T‖ =
sup {‖Tf‖X : ‖f‖X = 1}. Observe that T : X → X is compact if and only if
‖T‖e = 0. With this notation, now we are ready to show our main result:

Proof of Main Theorem

For each N ∈ N, we set uN = (u(1), u(2), ..., u(N), 0, 0, ...). Then by Theorem
1, the multiplication operator MuN

is compact on l(p,q). Hence

‖Mu‖e ≤ ‖Mu −MuN
‖ = ‖Mu−uN

‖ .
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But if a = {a(n)} ∈ l(p,q) is such that ‖a‖∗(p,q) = 1, then clearly

|(u(n)− uN (n)) · a(n)| ≤ SN |a(n)|

for all n ∈ N, where SN = sup {|u(k)| : k ≥ N}. Thus, by Remark 2, we
conclude that

‖Mu−uN
(a)‖∗(p,q) = ‖(u− uN ) · a‖∗(p,q) ≤ SN ‖a‖∗(p,q) = SN ,

and therefore ‖Mu‖e ≤ SN for all N ∈ N. That is,

‖Mu‖e ≤ lim sup
n→∞

|u(n)| .

On the other hand, let K : l(p,q) → l(p,q) be any compact operator and consider
the sequence {ek} ⊂ l(p,q) given by

ek(n) =

{
1, n = k

0, otherwise
.

Then ‖ek‖s(p,q) = 1 for all k ∈ N, and {ek} is a bounded sequence in l(p,q). We
claim that

lim
k→∞

‖K (ek)‖∗(p,q) = 0. (5)

Indeed, if (5) is false, then we can find a δ > 0 and a subsequence {ekm
} such

that
‖K (ekm)‖∗(p,q) ≥ δ (6)

for all m ∈ N. Since K : l(p,q) → l(p,q) is compact and {ekm
} is bounded

in l(p,q), by passing to a subsequence if is necessary, we can suppose that
{K (ekm)} converges in l(p,q). That is, there exists a b ∈ l(p,q) such that

lim
m→∞

‖K (ekm
)− b‖∗(p,q) = 0.

Note that, if b = 0, then this fact leads us to contradict (6). By Hahn-
Banach’s theorem, it is enough to show that h(b) = 0 for all bounded linear
functionals h on l(p,q). Let h be any bounded linear functional on l(p,q). Then
the composition hK is also a bounded linear functional on l(p,q), so that, by the
Riesz representation theorem for l(p,q) spaces, there exists a = {a(n)} ∈ l(r,t)
with 1

p + 1
r = 1 and 1

q + 1
t = 1 such that

hK(c) =

∞∑
n=1

a(n) · c(n)
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for all c = {c(n)} ∈ l(p,q). In particular, by (2) and evaluating at ekm , we have
hK (ekm) = a (km)→ 0 as m→∞. Hence

|h(b)| ≤ |h(b)− hK (ekm
)|+ |a (km)|

≤ ‖h‖ ‖b−K (ekm
)‖∗(p,q) + |a (km)| → 0

as m→∞ and h(b) = 0. This proves the claim.
Next we can conclude the proof of our result. Observe that e∗∗k = e∗∗1 =(

1, 12 , ...,
1
n , ...

)
for all k ∈ N. Hence there exists a constant D(p,q) > 0, de-

pending only on p and q, such that D(p,q) = ‖ek‖∗(p,q) for all k ∈ N. Thus, for
each k ∈ N, the vector

fk =
ek

‖ek‖∗(p,q)
is unitary in l(p,q), and we can write

‖Mu −K‖ ≥ ‖Mu (fk)−K (fk)‖∗(p,q)

≥ 1

D(p,q)
‖Mu (ek)‖∗(p,q) −

1

D(p,q)
‖K (ek)‖∗(p,q)

= |u(k)| − 1

D(p,q)
‖K (ek)‖∗(p,q) .

Thus taking limit when k →∞, we conclude that

‖Mu −K‖ ≥ lim sup
k→∞

|u(k)| ,

and therefore ‖Mu‖e ≥ lim supk→∞ |u(k)| since the compact operator K on
l(p,q) was arbitrary. This finishes the proof. �
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