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THE ESSENTIAL NORM OF
MULTIPLICATION OPERATORS ON
LORENTZ SEQUENCE SPACES

Abstract

We study some basic properties of Lorentz sequence spaces. Descrip-
tion of multiplication operators generated by a sequence is presented.
We calculate the essential norm of multiplication operators acting on
Lorentz sequence spaces.

1 Introduction

The multiplication operator, defined roughly speaking as the pointwise mul-
tiplication by a real-valued measurable function, is a well-studied transfor-
mation. This operator received considerable attention over the past several
decades specially on Lebesgue and Bergman spaces and also played an impor-
tant role in the study of operators on Hilbert spaces. For more detail on these
operators we refer to [1], [5], [8] and [9]. Studies of multiplication operators
on L, spaces can be seen in [10] and [15], on Orlicz spaces in [12], on Lorentz
spaces in [2], on Lorentz-Bochner spaces in [3], on weak L, spaces in [6], and
on Orlicz-Lorentz spaces in [7]. In the case of the Lorentz sequence space [, 4),
Arora, Datt and Verma [4] characterized the symbols inducing multiplication
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operators continuous, invertible, with closed range, compact and Fredholm.
The multiplication operator M, on the space l(, ), 1 <p < o0, 1 < g < oo is
induced by a sequence u = {u(n)}nen, where for a sequence a = {a(n)}, M,a
is the sequence u - a = ¢ = {¢(n)} defined by

c¢(n) = u(n) - a(n)

with n € N. Clearly, this operator is not 1-1 unless u(n) # 0 for all n €
N. Furthermore, it follows immediately from [10], that the only compact
multiplication operator on the non-atomic Lorentz space is the zero operator.
However, in the case of the Lorentz sequence space, there exist compact non-
zero multiplication operators on I(, ), 1 <p < 00, 1 < ¢ < oco. In fact, in [4],
the authors showed the following result:

Theorem 1 ([4]). The operator M, is compact on ly, o) if and only if u(n) — 0
as n — oo.

The aim of this note is to obtain an estimation of the essential norm of
Myt lp,q) = l(p,q) Which implies the above result. More precisely, in this note
we will show the following result:

Main Theorem. Let u = {u(n)} be a bounded sequence. Then

[My ||, = limsup [u(n)]. (1)
n—oo
We present the proof of the above result in Section 3, and in Section 2 we
gather some properties of the Lorentz sequence space.

2 Some remarks on Lorentz sequence spaces

The Lorentz space is a two parameter family of functions L, 5 which gener-
alizes the Lebesgue space L,. The L, ;) spaces were introduced by Lorentz
in [13] and [14]; a general treatment of Lorentz spaces is given in the article of
Hunt [11]. In the case that the domain of the functions considered is X = N
with the o-algebra A = 2N, the power set of X, and the counting measure pu,
we obtain the Lorentz sequence space l(, 4 with 1 < p < occ and 1 < g < oo.
More precisely, the Lorentz sequence space I, 4), 1 <p < 00,1 < g < o0, is
the set of all complex sequences a = {a(n)} such that [all(, , < oo where

1/q
(S (e @)’ ) 7, 1<p<oo, 1<g<oo

Suanl nl/pa*(n), 1< p < 0, g =0

||a||fp,q) -
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where a*(n) = inf{\ > 0 : Dy(A\) < n — 1} and the distribution function
of any complex-valued function a = {a(n)},>1 can be written as D,(\) =
p({n € N :|a(n)] > A}) with A > 0. The sequence a* = {a*(n)} is obtained
by permuting {|a(n)|}nes where S = {n : a(n) # 0}, in the decreasing order
with a*(n) = 0 for n > u(S) if u(S) < co. The Lorentz sequence space [, 4),
1 <p <00, q= 00, is a linear space and || - ||fp’q) is a quasinorm. Moreover,
lpg)y 1 <p <00, 1 < g < oo, is complete with respect to the quasinorm
II - |fp,q)' Observe that if the sequence a = {a(n)} € 4y, then

a(n) =0 as n — oo. (2)

Indeed, if (2) is false then we can find a § > 0 and a subsequence {a (ng)}
such that |a (ng)| > § for all k € N. Hence D, (A) = +oo for all A € (0, 4], and
{A>0:D,(\) <n—1} C (6, +00) for all n € N. We conclude that a*(n) > ¢
for all n € N which implies that Ha||fp7q) = 400, giving us a contradiction with
the fact that a € [, 4).

The Lorentz sequence space [, ) is a normed linear space if and only if
1 < g < p < oo; see [11]. Moreover, [, 4y is normable when 1 < p < ¢ < o0;
that is, there exists a norm equivalent to || - [[¢, ,)- For the remaining cases
l(p,qy cannot be equipped with an equivalent norm. The normable case for
p < g comes up in the following way:

. (2, (a* () nt/r~ )" g <
||aH(p7q) =

sup,,>; {n'/Pa**(n)}, q= 00

where a** = {a**(n)} is called the maximal sequence of a* = {a*(n)} and it
is defined as

a**(n) = % S (k).
k=1

It is known that for 1 < p < ¢ < oo the following relation holds:

q
* p
el < ol < (527 ol

Remark 2. By definition of the rearrangements, if a = {a(n)} and b = {b(n)}
are complex sequences, b € l(,q) With 1 < p < o0, 1 < ¢ < oo and |a(n)| <
|b(n)| for all n € N, then a*(n) < b*(n) for all n € N. Hence a € [, ) and

”a”?p,q) = ||b||z<1774)'

The following result is due to Hardy-Littlewood.
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Theorem 3. If a ={a(n)} and b = {b(n)} are complex sequences, then
> la(mb(n)] < Y a*(n)b* (n). 3)
n=1 n=1

As a consequence of the above result, we have that if a = {a(n)} € l,4)
and b= {b(n)} € l(g,), where % + % =1land 1 +1 =1, then

Z la(n)b(n)] < ||a||?p,t) Hb“?qﬂ“) :
n=1

This last inequality tells us that each a € [(, 4) defines a bounded linear func-
tional h on l(;), where % +1=1and é + 1 =1, which is given by

h(b) = a(n) - b(n). (4)

Conversely (see [11]), each bounded linear functional & on I(,4) is of the form
(4) for some a € l(;, q) and [|h]| ~ ||al[(,, ;). We refer this fact as Riesz’s theorem
for Lorentz sequence spaces.

3 The essential norm of multiplication operators on
Lorentz sequence spaces

Recall that if X is a Banach space and T': X — X a continuos operator, then
the essential norm of T, denoted by ||T'||,, is the distance of T to the class of
the compact operators on X; that is,

|T||, =inf{||T — K| : K:X — X is compact},

where ||T|| denotes the operator norm of T, which is defined by ||T] =
sup{||Tf|lx : |Ifllx = 1}. Observe that T : X — X is compact if and only if
|IT]|, = 0. With this notation, now we are ready to show our main result:

Proof of Main Theorem

For each N € N, we set uny = (u(1),u(2),...,u(N),0,0,...). Then by Theorem
1, the multiplication operator M, is compact on I(, ). Hence

||MuHe < HMu - MuNH = ”Mu—uN”



THE ESSENTIAL NORM OF MULTIPLICATION OPERATORS ON [, o) 249

But if a = {a(n)} € l(p,q) is such that ||a||?p’q) =1, then clearly

|(u(n) —un(n)) - a(n)| < Snfa(n)]

for all n € N, where Sy = sup{|u(k)|: k> N}. Thus, by Remark 2, we
conclude that

1My (@)l q) = 1w = un) - allg, ) < Sn llall, g = S,
and therefore || M,||, < Sy for all N € N. That is,

| M,||, <limsup |u(n)].
n—oo
On the other hand, let K : l(,, ;) — l(,q) be any compact operator and consider
the sequence {ex} C l(,,q) given by

(n) 1, n=k
er(n) = .
¥ 0, otherwise

Then HekH‘Ep,q) = 1forall k € N, and {ey} is a bounded sequence in [, . We
claim that

Jim |5 (e, = 0. (5)

Indeed, if (5) is false, then we can find a § > 0 and a subsequence {eg, } such
that
1K (ex,,)

m

rp»q) >0 (6)

for all m € N. Since K : I, 4 — lipq) is compact and {e,, } is bounded
in l(,q), by passing to a subsequence if is necessary, we can suppose that
{K (ex,,)} converges in [, 4. That is, there exists a b € [(,, 4y such that

i || K (ex,,) = bl ) = 0.

Note that, if b = 0, then this fact leads us to contradict (6). By Hahn-
Banach’s theorem, it is enough to show that h(b) = 0 for all bounded linear
functionals h on [, 4. Let h be any bounded linear functional on [(, ;). Then
the composition h K is also a bounded linear functional on [, 4), so that, by the
Riesz representation theorem for [, ) spaces, there exists a = {a(n)} € l(, 4
with%—i—%:land%—i—%:lsuchtha‘u

hK(c) = Z a(n) - c(n)

n=1
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for all ¢ = {c(n)} € l(p,q)- In particular, by (2) and evaluating at ey, , we have
hK (e, ) = a(km) — 0 as m — oo. Hence

m

Lol |h(b) — hK (e, )| + |a (km)]

IRl 1B = K (en, )l (p,g) + la (k)] =0

[VARVAN

as m — oo and h(b) = 0. This proves the claim.

Next we can conclude the proof of our result. Observe that e;* = ej* =
(1, %, e %,) for all k¥ € N. Hence there exists a constant D, ;) > 0, de-
pending only on p and ¢, such that D, ;) = ||ek||z<p7q) for all kK € N. Thus, for
each k € N, the vector o

= —_—
||€k||(p,q)

fr
is unitary in I, 4), and we can write

1M, = K[| > M (fi) = K (fi)ll{0)

1 1
> Mo (ex)p.g) — 75— I (ex) ¢
Do) (p,9) Do) (p,9)
1 «
= |u(k)| - % HK(ek)H(p,qy

Thus taking limit when k — oo, we conclude that

[My, — K|| = lim sup [u(k)|,

k—o0

and therefore ||M,||, > limsup,_, .. |u(k)| since the compact operator K on
l(p,q) Was arbitrary. This finishes the proof. |
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