
RESEARCH Real Analysis Exchange
Vol. 42(1), 2017, pp. 149–166

Carl P. Dettmann,∗ University of Bristol, School of Mathematics, University
Walk, Bristol BS8 1TW, UK. email: Carl.Dettmann@bris.ac.uk

Mrinal Kanti Roychowdhury,† School of Mathematical and Statistical
Sciences, University of Texas Rio Grande Valley, 1201 West University Drive,
Edinburg, TX 78539-2999, USA. email: mrinal.roychowdhury@utrgv.edu

QUANTIZATION FOR UNIFORM
DISTRIBUTIONS ON EQUILATERAL

TRIANGLES

Abstract

We approximate the uniform measure on an equilateral triangle by
a measure supported on n points. We find the optimal sets of points (n-
means) and corresponding approximation (quantization) error for n ≤ 4,
give numerical optimization results for n ≤ 21, and a bound on the
quantization error for n→∞. The equilateral triangle has particularly
efficient quantizations due to its connection with the triangular lattice.
Our methods can be applied to the uniform distributions on general sets
with piecewise smooth boundaries.

1 Introduction

The representation of a given quantity with less information is often referred to
as ‘quantization’ and it is an important subject in information theory. It has
broad applications in signal processing, telecommunications, data compres-
sion, image processing and cluster analysis. We refer to [2,4,8] for surveys on
the subject and comprehensive lists of references to the literature, see also [3].
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Rigorous mathematical treatment of the quantization theory is given in Graf-
Luschgy’s book (see [6]).

Let P denote a Borel probability measure on Rd and let ‖ · ‖ denote the
Euclidean norm on Rd for any d ≥ 1. We consider an approximation of P
by a measure supported on at most a finite number of points, n. The nth
quantization error for P is defined by

Vn := Vn(P ) = inf
{∫

min
a∈α
‖x− a‖2dP (x) : α ⊂ Rd, card(α) ≤ n

}
,

where the infimum is taken over all subsets α of Rd with card(α) ≤ n for
n ≥ 1. Notice that if

∫
‖x‖2dP (x) < ∞, then there is some set α for which

the infimum is achieved (see [6]). This set α can then be used to give a best
approximation of P by a discrete probability supported on a set with no more
than n points. Such a set α for which the infimum occurs and contains no
more than n points is called an optimal set of n-means, or optimal set of
n-quantizers. It is known that for a continuous probability measure P an op-
timal set of n-means always has exactly n elements (see [6]). The probability
measure P considered in this paper is a uniform distribution which is abso-
lutely continuous with respect to the Lebesgue measure λ, and so there exists
a probability density function f , known as Radon-Nikodym derivative of P
with respect to λ, with f ≥ 0 and

∫
fdλ = 1 such that for any Borel subset

B ⊂ Rd, we have

P (B) =

∫
B

fdλ. (1)

Given a finite subset α ⊂ Rd, the Voronoi region generated by a ∈ α is defined
by

M(a|α) = {x ∈ Rd : ‖x− a‖ = min
b∈α
‖x− b‖}

i.e., the Voronoi region generated by a ∈ α is the set of all points in Rd which
are closest to a ∈ α, and the set {M(a|α) : a ∈ α} is called the Voronoi diagram
or Voronoi tessellation of α. A Borel measurable partition {Aa : a ∈ α} of
Rd is called a Voronoi partition of Rd with respect to α (and P ) if P -almost
surely, we have

Aa ⊂M(a|α) for every a ∈ α.
Notice that if α = {a1, a2, · · · , an} is an optimal set of n-means for P and
{A1, A2, · · · , An} is a Voronoi partition with respect to α, then

Vn =

n∑
i=1

∫
Ai

‖x− ai‖2dP (x).

Let us now state the following proposition (see [2, 6]).
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Proposition 1.1. Let α be an optimal set of n-means, a ∈ α, and M(a|α) be
the Voronoi region generated by a ∈ α, i.e.,

M(a|α) = {x ∈ Rd : ‖x− a‖ = min
b∈α
‖x− b‖}.

Then, for every a ∈ α,
(i) P (M(a|α)) > 0, (ii) P (∂M(a|α)) = 0, (iii) a = E(X : X ∈ M(a|α)),

and (iv) P -almost surely the set {M(a|α) : a ∈ α} forms a Voronoi partition
of Rd.

Let α be an optimal set of n-means and a ∈ α, then by Proposition 1.1,
we have

a =
1

P (M(a|α))

∫
M(a|α)

xdP =

∫
M(a|α) xdP∫
M(a|α) dP

=

∫
M(a|α) xf(x)dλ∫
M(a|α) f(x)dλ

,

which implies that a is the centroid of the Voronoi region M(a|α) associated
with the probability measure P (see also [1]).

The classical Cantor set C is generated by the two contractive similarity
mappings S1(x) = 1

3x and S2(x) = 1
3x + 2

3 for all x ∈ R. Then, there exists
a unique Borel probability measure P on R with support C such that P =
1
2P ◦S

−1
1 + 1

2P ◦S
−1
2 , where P ◦S−1i denotes the image measure of P with respect

to Si for i = 1, 2 (see [5]). Such a probability measure is mutually singular
with respect to the Lebesgue measure, and in [7], Graf-Luschgy investigated
the optimal quantization for this measure P .

In this paper, we have considered a uniform distribution on an equilateral
triangle, and investigated the optimal sets of n-means and the nth quantization
error for this distribution for all n ≥ 1. Moreover, in Theorem 3.1, we have
shown that the Voronoi regions generated by the two points in an optimal set
of two-means partition the equilateral triangle into an isosceles trapezoid and
an equilateral triangle in the Golden ratio. In subsequent sections, we find
the optimal sets of three- and four-means. In the last section, in Theorem 6.3
and in its corollary, we have given some numerical optimization results and
conjectures about the optimal configurations for n points, a rigorous bound
on the quantization error for n → ∞, and a final conjecture about uniform
distributions in more general geometries.

Our approach illustrates methods for far more general geometries, includ-
ing the use of symmetry to find optimal sets for small n, numerical optimisation
for intermediate n, and configurations close to the triangular lattice for large
n. Efficient quantization due to matching of the boundaries to a triangular
lattice is only possible in polygons with all angles a multiple of π/3. The
simplest and most natural example of this is the equilateral triangle.
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2 Some basic results relating to quantization and uni-
form distributions

In this section we give some basic results relating to optimal sets and the
uniform probability distributions defined on equilateral triangles. Let X =
(X1, X2) be a bivariate continuous random variable with uniform distribution

taking values on the triangle 4 with vertices (0, 0), (1, 0), ( 1
2 ,
√
3
2 ). Then, the

probability density function (pdf) f(x1, x2) of the random variable X is given
by

f(x1, x2) =


4√
3

for 0 < x1 <
1
2 , 0 < x2 <

√
3x1,

4√
3

for 1
2 < x1 < 1, 0 < x2 < −

√
3x1 +

√
3,

0 otherwise.

Notice that the pdf satisfies the following two necessary conditions:
(i) f(x1, x2) ≥ 0 for all (x1, x2) ∈ R2, and

(ii)
∫∫

R2 f(x1, x2) dx1dx2 =
∫ 1

2

0

∫√3x1

0
f(x1, x2) dx2dx1

+
∫ 1

1
2

∫ −√3x1+
√
3

0
f(x1, x2) dx2dx1 = 1.

Moreover, one should notice that the pdf of the bivariate random variable
X can also be written in the following form:

f(x1, x2) =

{
4√
3

for 0 < x2 <
√
3
2 ,

x2√
3
< x1 <

√
3−x2√

3
,

0 otherwise.

Let f1(x1) and f2(x2) represent the marginal pdfs of the random variables X1

and X2 respectively. Then, following the definitions in Probability Theory, we
have

f1(x1) =

∫ ∞
−∞

f(x1, x2) dx2 and f2(x2) =

∫ ∞
−∞

f(x1, x2) dx1.

Since
∫√3x1

0
f(x1, x2) dx2 = 4x1 for 0 < x1 <

1
2 , and

∫ −√3x1+
√
3

0
f(x1, x2) dx2 =

4(1− x1) for 1
2 < x1 < 1, we have

f1(x1) =

 4x1 for 0 < x1 <
1
2 ,

4(1− x1) for 1
2 < x1 < 1,

0 otherwise.

Similarly, we can write

f2(x2) =

{
4√
3
(1− 2x2√

3
) for 0 < x2 <

√
3
2 ,

0 otherwise.
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Notice that both f1(x1) and f2(x2) satisfy the necessary conditions for pdfs:
f1(x1) ≥ 0, f2(x2) ≥ 0 for all x1, x2 ∈ R, and∫ ∞

−∞
f1(x1) dx1 = 1 =

∫ ∞
−∞

f2(x2) dx2.

For a random variable Y , let E(Y ) and V (Y ) represent the expected vector
and the expected squared distance of Y . Let i and j be the unit vectors in
the positive directions of x1 and x2-axes respectively. By the position vector

ã of a point A, it is meant that
−→
OA = ã. In the sequel, we will identify the

position vector of a point (a1, a2) by (a1, a2) := a1i + a2j, and apologize for
any abuse in notation. For any two vectors ~u and ~v, let ~u · ~v denote the dot
product between the two vectors ~u and ~v. Then, for any vector ~v, by (~v)2,
we mean (~v)2 := ~v · ~v. Thus, |~v| :=

√
~v · ~v, which is called the length of the

vector ~v. For any two position vectors ã := (a1, a2) and b̃ := (b1, b2), we write
ρ(ã, b̃) := ((a1 − b1, a2 − b2))2 = (a1 − b1)2 + (a2 − b2)2.

Let us now prove the following lemma.

Lemma 2.1. Let X = (X1, X2) be a bivariate continuous random variable
with uniform distribution taking values on the triangle 4. Then,

E(X) = (E(X1), E(X2)) = (
1

2
,

√
3

6
) and V (X) = V (X1) + V (X2) =

1

12
.

Proof. We have

E(X1) =

∫ ∞
−∞

x1f1(x1) dx1 =

∫ 1
2

0

4x21 dx1 +

∫ 1

1
2

4 (1− x1)x1 dx1 =
1

2
,

E(X2) =

∫ ∞
−∞

x2f2(x2) dx2 =

∫ √
3

2

0

4√
3

(
1− 2x2√

3

)
x2 dx2 =

√
3

6
,

E(X2
1 ) =

∫ ∞
−∞

x21f1(x1) dx1 =

∫ 1
2

0

4x31 dx1 +

∫ 1

1
2

4 (1− x1)x21 dx1 =
7

24
,

E(X2
2 ) =

∫ ∞
−∞

x22f2(x2) dx2 =

∫ √
3

2

0

4√
3

(
1− 2x2√

3

)
x22 dx2 =

1

8
,

and so,

E(X) =

∫∫
(x1i+ x2j)f(x1, x2)dx1dx2 = i

∫
x1f1(x1)dx1 + j

∫
x2f2(x2)dx2

= (E(X1), E(X2)) = (
1

2
,

√
3

6
),

V (X1) = E(X2
1 )− [E(X1)]2 =

1

24
and V (X2) = E(X2

2 )− [E(X2)]2 =
1

24
.
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Figure 1: Optimal configuration of two points P and Q.

Thus, we have

V (X) = E‖X−E(X)‖2 =

∫∫ (
(x1−E(X1))2+(x2−E(X2))2

)
f(x1, x2) dx1dx2,

which yields,

V (X) =

∫
(x1 − E(X1))2f1(x1) dx1 +

∫
(x2 − E(X2))2f2(x2) dx2

= V (X1) + V (X2) =
1

12
.

Hence the lemma.

Note 2.2. We have E(X1) = 1
2 and E(X2) =

√
3
6 , and so by the standard rule

of probability theory, for any two real numbers a and b, we deduce E(X1 −
a)2 = E(X1− 1

2 )2 + (a− 1
2 )2 = V (X1) + (a− 1

2 )2, and similarly E(X2− b)2 =

V (X2) + (b −
√
3
6 )2. Thus, for any (a, b) ∈ R2, we have E‖X − (a, b)‖2 =∫∫

R2 [(x1 − a)2 + (x2 − b)2]f(x1, x2)dx1dx2 =
∫
R(x1 − a)2f1(x1)dx1 +

∫
R(x2 −

b)2f2(x2)dx2 = E(X1 − a)2 +E(X2 − b)2 = V (X1) + V (X2) + (a− 1
2 )2 + (b−

√
3
6 )2 = 1

12 + ‖(a, b)− ( 1
2 ,
√
3
6 )‖2.

Note 2.3. From Note 2.2 it is clear that the optimal set of one-mean consists

of the expected vector ( 1
2 ,
√
3
6 ) of the random variable X, which is the centroid

of the triangle 4 and the corresponding quantization error is 1
12 , which is the

expected squared distance of the random variable X.

3 Optimal sets of 2-means

In this section we obtain all the optimal sets of two-means and the corre-
sponding quantization error. Let 4 be the equilateral triangle with vertices
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O(0, 0), A(1, 0), and B( 1
2 ,
√
3
2 ). Let us divide the triangle 4 by a straight line

` into two regions. Let us first assume that the vertex O is in one side of `
and the vertices A and B are in the other side of `. It might be that one of A
and B lies on the line `. Thus, the triangle 4 is divided into two regions: the
triangle OCD and the quadrilateral CABD, where C and D are the points of
intersections of the line with the sides OA and OB respectively. If either A or
B is on the line `, then CABD will also be a triangle. Let P and Q be the cen-
troids of the regions OCD and CABD respectively. Let the position vectors
of A, B, P, Q, C, D be denoted respectively by ã, b̃, p̃, q̃, c̃, d̃. Then, there
exist scalars α and β such that c̃ = αã, d̃ = βb̃, p̃ = 1

3 (c̃ + d̃) = 1
3 (αã + βb̃),

and the area of the triangle OCD =
√
3
4 αβ. Since the probability measure is

uniformly distributed over 4, taking moments about the origin, we have

q̃ =
1
3 (ã+ b̃)

√
3
4 −

1
3 (αã+ βb̃)

√
3
4 αβ√

3
4 −

√
3
4 αβ

=
ã+ b̃− αβ(αã+ βb̃)

3(1− αβ)
.

If P and Q form an optimal set of two-means, then CD will be the boundary of

their corresponding Voronoi regions, and so we have |
−−→
CP | = |

−−→
CQ| and |

−−→
DP | =

|
−−→
DQ|, i.e., (

−−→
CP )2 = (

−−→
CQ)2 and (

−−→
DP )2 = (

−−→
DQ)2. Using the dot product of

vectors, we have ã2 = b̃2 = 1 and ã · b̃ = 1 ·1 ·cos π3 = 1
2 . Then, (

−−→
CP )2 = (

−−→
CQ)2

implies (1

3
(αã+ βb̃)− αã

)2
=
( ã+ b̃− αβ(αã+ βb̃)

3(1− αβ)
− αã

)2
which after simplification yields

4α3β + α2β2 − 6α2β − 5α2 − 2αβ3 + 3αβ2 − 2αβ + 9α+ β2 − 3 = 0. (2)

Due to symmetry, (
−−→
DP )2 = (

−−→
DQ)2 yields,

4αβ3 + α2β2 − 6αβ2 − 5β2 − 2α3β + 3α2β − 2αβ + 9β + α2 − 3 = 0. (3)

Solving (2) and (3), we get the five sets of solutions for α and β: {α =
1
2 , β = 1}, {α = 1, β = 1

2}, {α = 1, β = 1}, {α = 1
2 (−1 −

√
5), β = 1

2 (−1 −√
5)}, and {α = 1

2 (
√

5 − 1), β = 1
2 (
√

5 − 1)}, among which the admissible

solutions are {α = 1
2 , β = 1}, {α = 1, β = 1

2}, {α = 1
2 (
√

5 − 1), β = 1
2 (
√

5 −
1)}. If {α = 1

2 , β = 1}, then the line ` passes through the vertex B, and if
{α = 1, β = 1

2}, then the line ` passes through the vertex A. Let us first take
{α = 1

2 , β = 1}. Then, p̃ = ( 1
3 ,

1
2
√
3
) and q̃ = ( 2

3 ,
1

2
√
3
), and the corresponding
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quantization error

=

∫ 1
2

0

∫ √3x1

0

4((x1 − 1
3 )2 + (x2 − 1

2
√
3
)2)

√
3

dx2dx1

+

∫ 1

1
2

∫ −√3(x1−1)

0

4((x1 − 2
3 )2 + (x2 − 1

2
√
3
)2)

√
3

dx2dx1 =
1

18
= 0.0555556.

Similarly, it can be shown that if {α = 1, β = 1
2}, then the quantization error is

0.0555556. Now take α = β = 1
2 (
√

5−1). Then, p̃ = (0.309017, 0.178411) and q̃ =
(0.618034, 0.356822), and the corresponding quantization error

=

∫ 1
4 (
√
5−1

0

∫ √3x1

0

4((x1 − 0.309017)2 + (x2 − 0.178411)2)√
3

dx2dx1

+

∫ 1
2 (
√
5−1)

1
4 (
√
5−1)

∫ 1
2 (
√
15−
√
3)−
√
3x1

0

4((x1 − 0.309017)2 + (x2 − 0.178411)2)√
3

dx2dx1

+

∫ 1
2

1
4 (
√
5−1)

∫ √3x1

1
2 (
√
15−
√
3)−
√
3x1

4((x1 − 0.618034)2 + (x2 − 0.356822)2)√
3

dx2dx1

+

∫ 1
2 (
√
5−1)

1
2

∫ −√3(x1−1)

1
2 (
√
15−
√
3)−
√
3x1

4((x1 − 0.618034)2 + (x2 − 0.356822)2)√
3

dx2dx1

+

∫ 1

1
2 (
√
5−1)

∫ −√3(x1−1)

0

4((x1 − 0.618034)2 + (x2 − 0.356822)2)√
3

dx2dx1

= 0.0532767.

Since 0.0532767 < 0.0555556, an optimal set of two-means is obtained for
α = β = 1

2 (
√

5 − 1), i.e., the set {(0.309017, 0.178411), (0.618034, 0.356822)}
forms an optimal set of two-means, and the two means lie on the median
passing through the vertex O (see Figure 1). Notice that g−1 = 1

2 (
√

5 − 1),

where g :=
√
5+1
2 is the golden ratio. Since α = β = g−1, we can say that the

line ` is parallel to the side AB, and cuts the triangle 4 into an equilateral
triangle and an isosceles trapezoid. Due to symmetry, the line ` can also be
parallel to either OA or OB, i.e., the two means can also lie either on the
median passing through the vertex B, or on the median passing through the
vertex A. Moreover, it can be seen that

Area of the isosceles trapezoid CABD

Area of the equilateral triangle OCD
=

1
8

√
3(
√

5− 1)
1
8

√
3(3−

√
5)

=

√
5− 1

3−
√

5
=
g2

g
= g.

Therefore, we can deduce the following theorem.
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P Q

D

N
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M

Figure 2: Optimal configuration of three points P , Q, and R.

Theorem 3.1. Let X be a random variable with uniform distribution on the

equilateral triangle 4 with vertices (0, 0), (1, 0), and ( 1
2 ,
√
3
2 ). Then, there

are three optimal sets of two-means with quantization error 0.0532767. If
the triangle 4 is partitioned into an isosceles trapezoid and an equilateral
triangle in the golden ratio, then the centroids of the isosceles trapezoid and
the equilateral triangle form an optimal set of two-means.

4 Optimal set of 3-means

Theorem 4.1. For uniform distribution on the equilateral triangle with ver-

tices (0, 0), (1, 0), and ( 1
2 ,
√
3
2 ), the set {( 7

24 ,
7

24
√
3
), ( 17

24 ,
7

24
√
3
), ( 1

2 ,
11

12
√
3
)} is the

only optimal set of three-means. The three means in this case form an equi-
lateral triangle having the sides parallel to the sides of the original triangle.

Proof. Due to symmetry of the triangle with the uniform distribution, we
can assume that one element in the optimal set of three-means lies on a median
of the triangle, and the other two are equidistant from the median. As shown
in Figure 2, let the median passing through the vertex B cuts the side OA at
the point N , and let one element in the optimal set of three-means lie on this
median. Let the boundaries of the Voronoi regions cut the sides OB and AB
at the points C and D respectively. Let the three boundaries of the Voronoi
regions meet at the point M which lies on the median BN . Let the position
vectors of the points A, B, C, D, M, N be respectively ã, b̃, c̃, d̃, m̃, ñ. Let
α and β be two scalars such that the length of BC equals α and the length of

BM equals
√
3
2 β. Due to symmetry, the length of BD is also α. Then, c̃ = (1−

α)b̃, d̃ = αã+ (1−α)b̃, and m̃ = βñ+ (1−β)b̃. Area of the triangle BCM =

Area of the triangle BDM =
√
3
8 αβ. Let the centroids of the quadrilaterals

ONMC, NADM , and BCMD be P , Q, and R with position vectors p̃, q̃,
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and r̃ respectively. Since the probability measure is uniformly distributed over
4, taking moments about the origin, we have

p̃ =
1
3 (b̃+ ñ)

√
3
8 −

1
3 (b̃+ c̃+ m̃)

√
3
8 αβ√

3
8 −

√
3
8 αβ

=
b̃+ ñ− (b̃+ c̃+ m̃)αβ

3(1− αβ)
,

q̃ =
1
3 (ã+ b̃+ ñ)

√
3
8 −

1
3 (b̃+ d̃+ m̃)

√
3
8 αβ√

3
8 −

√
3
8 αβ

=
ã+ b̃+ ñ− (b̃+ d̃+ m̃)αβ

3(1− αβ)
,

r̃ =
1
3 (b̃+ c̃+ m̃)

√
3
8 αβ + 1

3 (b̃+ d̃+ m̃)
√
3
8 αβ√

3
4 αβ

=
c̃+ d̃+ 2(b̃+ m̃)

6
.

If P , Q and R be the optimal points, we must have (
−→
RC)2 = (

−−→
PC)2, (

−−→
RM)2 =

(
−−→
PM)2, (

−−→
RM)2 = (

−−→
QM)2 and (

−−→
RD)2 = (

−−→
QD)2. Using the dot product of

vectors, we have ã2 = 1, b̃2 = 1, ñ2 = 1
4 , ã · ñ = 1

2 , ã · b̃ = 1
2 , b̃ · ñ = 1

4 . Then,

(
−→
RC)2 = (

−−→
PC)2 implies

(
(1− α)b̃− c̃+ d̃+ 2(b̃+ m̃)

6

)2
=
(

(1− α)b̃− b̃+ ñ− (b̃+ c̃+ m̃)αβ

3(1− αβ)

)2
,

which after simplification yields

5α4β2+6α3β+α2(6β2−28β−15)−6α(β3−2β2+2β−7)+3β2−13 = 0. (4)

(
−−→
RM)2 = (

−−→
PM)2 implies

(βñ+(1−β)b̃− c̃+ d̃+ 2(b̃+ m̃)

6
)2 = (βñ+(1−β)b̃− b̃+ ñ− (b̃+ c̃+ m̃)αβ

3(1− αβ)
)2

which after simplification yields

α4
(
−β2

)
− 6α3β + α2

(
6β2 + 14β + 3

)
+ 12αβ

(
β2 − 2β − 1

)
−15β2 + 36β − 13 = 0. (5)

Solving the equations (4) and (4), we have α = 1
2 and β = 2

3 . Then, we have

p̃ = ( 7
24 ,

7
24
√
3
), q̃ = ( 17

24 ,
7

24
√
3
), and r̃ = ( 1

2 ,
11

12
√
3
). Moreover, c̃ = ( 1

4 ,
√
3
4 ) and

d̃ = ( 3
4 ,
√
3
4 ). Here the equation of the line OB is x2 =

√
3x1, and the equation

of the line CM is x2 = −x1−1√
3

. Thus, if V3(P ) is the quantization error due
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O A

B

C

R
S

G

N

P

M

Q

D F

N1 N2

Figure 3: Optimal configuration of four points P , Q, R, and S.

to the point P in its Voronoi region, then we have

V3(P ) =

∫ 1
4

0

∫ √3x1

0

4((x1 − 7
24 )2 + (x2 − 7

24
√
3
)2)

√
3

dx2dx1

+

∫ 1
2

1
4

∫ − x1−1√
3

0

4((x1 − 7
24 )2 + (x2 − 7

24
√
3
)2)

√
3

dx2dx1 =
11

1296
.

Due to the uniform distribution and the symmetry of the points, we have
V3(P ) = V3(Q) = V3(R) = 11

1296 . Thus, the set {( 7
24 ,

7
24
√
3
), ( 17

24 ,
7

24
√
3
), ( 1

2 ,
11

12
√
3
)}

forms an optimal set of three-means with quantization error V3 = 3× 11
1296 =

11
432 . Notice that the points ( 7

24 ,
7

24
√
3
) and ( 17

24 ,
7

24
√
3
) lie on the medians

passing through the vertices O and A respectively, and the three points in
this case form an equilateral triangle having the sides parallel to the sides
of the original triangle. Thus, due to symmetry, we can say that the set
{( 7

24 ,
7

24
√
3
), ( 17

24 ,
7

24
√
3
), ( 1

2 ,
11

12
√
3
)} is the only optimal set of three-means. Hence,

the proof of the theorem is complete.

5 Optimal sets of 4-means

In this section we calculate the optimal sets of four-means. Let OAB be the

equilateral triangle with vertices (0, 0), (1, 0) and ( 1
2 ,
√
3
2 ). As shown in Figure

3, let BN be the median of the triangle passing through the vertex B which
cuts OA at the point N . Let {P, Q, R, S} be an optimal set of four-means,
where P, Q are on the median BN ; and R, S are in the opposite sides of the
median. Notice that our assumption is also verified by a numerical search
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algorithm as mentioned in the next section. Let CD be the boundary of the
Voronoi regions of the points P and R, DF be the boundary of the Voronoi
regions of the points P and Q which cuts the median BN at the point M ,
FG be the boundary of the Voronoi regions of the points P and S. Let DN1

and FN2 be the boundaries of the Voronoi regions of the points R, Q and Q,
S respectively. Let α, β, γ, δ be four constants such that BC = BG = α,

ON1 = AN2 = δ, BM =
√
3
2 β; x1-coordinate of D be γ, and so due to

symmetry x1-coordinate of F is 1− γ. Then we have

ã = (1, 0), b̃ = ( 1
2 ,
√
3
2 ), ñ = ( 1

2 , 0),

c̃ = (1− α)b̃, d̃ = (γ, 12
√

3(1− β)), g̃ = ãα+ (1− α)b̃,

m̃ = b̃(1− β) + βñ, ñ1 = (δ, 0), ñ2 = (1− δ, 0),

f̃ = (1− γ, 12
√

3(1− β)).

The equation of the line CD is x2 = 1
2

√
3(1−β)+

√
3(α−β)(x1−γ)
α+2γ−1 . The equation

of the line BD is x2 =
√
3β(x1− 1

2 )

1−2γ +
√
3
2 . If Ar1 is the area of the triangle BCD,

then

Ar1 =

∫ γ

1−α
2

∫ √3x1

1
2

√
3(1−β)+

√
3(α−β)(x1−γ)
α+2γ−1

1 dx2dx1 +

∫ 1
2

γ

∫ √3x1

√
3β(x1−

1
2
)

1−2γ +
√

3
2

1 dx2dx1

=
1

8

√
3(α+ 2γ − 1)(β + 2γ − 1)− 1

4

√
3βγ −

√
3βγ

2(1− 2γ)
+

√
3β

4(1− 2γ)

−
√

3β

8
− 1

2

√
3γ2 +

√
3γ

2
−
√

3

8
.

If Ar2 is the area of the triangle BDF , then Ar2 =
√
3β(1−2γ)

2·2 = 1
4

√
3β(1−2γ).

If Ar3 is the area of the triangle BFG, then Ar3 = Ar1. If Ar4 is the area of
the triangle OCD, then

Ar4 =

∫ 1−α
2

0

∫ √3x1

√
3(1−β)x1

2γ

1 dx2dx1 +

∫ γ

1−α
2

∫ 1
2

√
3(1−β)+

√
3(α−β)(x1−γ)
α+2γ−1

√
3(1−β)x1

2γ

1 dx2dx1

=

√
3(α− 1)2(β + 2γ − 1)

16γ
−
√

3(α− 1)(α+ 2γ − 1)(β + 2γ − 1)

16γ
.

If Ar5 is the area of the triangle ODN1, then Ar5 =
√
3(1−β)δ
2·2 . If Ar6 is the area

of the triangle DN1N2, then Ar6 =
√
3(1−β)(1−2δ)

2·2 = 1
4

√
3(1−β)(1−2δ). If Ar7

is the area of the triangle DFN2, then Ar7 =
√
3(1−β)(1−2γ)

2·2 = 1
4

√
3(1−β)(1−
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2γ). Notice that due to symmetry, if Ar8 is the area of the triangle FN2A and
Ar9 the area of the triangle FAG, then Ar8 = Ar5 and Ar9 = Ar4. As P , Q, R,
S are assumed to form an optimal set of four-means, they are also the centroids
of their corresponding Voronoi regions associated with the density function
f(x1, x2) which is constant due to the uniform distribution over the triangle.
Thus, P, Q, R, S are respectively the centroids of the pentagon BCDFG,
quadrilaterals DN1N2F , OCDN1, and AN2FG. Hence, we have

p̃ =
1
3Ar1(b̃+ c̃+ d̃) + 1

3Ar2(b̃+ d̃+ f̃) + 1
3Ar3(b̃+ f̃ + g̃)

Ar1 + Ar2 + Ar3
,

q̃ =
1
3Ar7(d̃+ f̃ + ñ2) + 1

3Ar6(d̃+ ñ1 + ñ2)

Ar6 + Int7
,

r̃ =
1
3Ar4(c̃+ d̃) + 1

3Ar5(d̃+ ñ1)

Ar4 + Ar5
,

s̃ =
1
3Ar9(ã+ f̃ + g̃) + 1

3Ar8(ã+ f̃ + ñ2)

Ar8 + Ar9
.

Write Q1 := ρ(p̃, c̃) − ρ(c̃, r̃), Q2 := ρ(p̃, d̃) − ρ(d̃, r̃), Q3 := ρ(q̃, d̃) − ρ(d̃, r̃),
and Q4 := ρ(q̃, ñ1)− ρ(ñ1, r̃). Since the line passing through the boundary of
the Voronoi regions of any two points in an optimal set of n-means, n ≥ 2, is
the perpendicular bisector of the line segment joining the two points, we must
have Q1 = 0, Q2 = 0, Q3 = 0 and Q4 = 0. Using Mathematica, we solve
these four equations for the parameters α, β, γ and δ up to 20 decimal places
and obtain

α = 0.49729450782679201845, β = 0.57487645285849021867,

γ = 0.34568004381771961464, δ = 0.38346841237225538981.

Now, using the above values of α, β, γ, and δ we obtain the position vectors
p̃, q̃, r̃ and s̃ as follows:

p̃ = (
1

2
, 0.5436907490155839431),

q̃ = (
1

2
, 0.1926448341274137497),

r̃ = (0.2302330149367283460, 0.1649562245075873150),

s̃ = (0.769766985063271654, 0.1649562245075873150).

Hence, the points ( 1
2 , 0.5436907490155839431), ( 1

2 , 0.1926448341274137497),
(0.2302330149367283460, 0.1649562245075873150)
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and (0.769766985063271654, 0.1649562245075873150) form an optimal set of
four-means. Notice that due to symmetry there are three optimal sets of
four-means. As before, we can also calculate the quantization error in this
case.

6 Optimal sets of n-means

As the number of points increases, so does the number of algebraic equations
to be solved. We apply a numerical search algorithm that makes random
shifts to the point locations, accepting better configurations, and gradually
decreasing the shift amplitude in the absence of improvement. In Figure 4 we
present the results of this numerical search for n ≤ 21 points. Based on these
results we make the following conjectures (“most” means a set with density
greater than 1/2):

Conjecture 6.1. For most n, there is an optimal configuration with at least
one line of symmetry.

In Figure 4 this line of symmetry is chosen to be vertical. In each case the
number of points on each side of the vertical line is equal, however for n = 8
and n = 19, the locations of points do not appear to be quite symmetrical.

We also note that when n is a triangular number, the points lie very close
to a triangular lattice, and for other values, are located in identifiable rows,
and are close to the union of two subsets of triangular lattices. Specifically

Conjecture 6.2. For most n, there is an optimal configuration with N =
b
√

2nc rows. The jth row has j points for j ≤ J where J = N − |n−N(N +
1)/2|. If n > N(N + 1)/2 the rows with j > J each have one extra point (so,
the jth row has j + 1 points), while if n < N(N + 1)/2 they each have one
fewer point (so, the jth row has j − 1 points).

Notice that b
√

2nc identifies the closest triangular number to a natural
number n. The conjecture is not stated for all n as possible exceptions are
n = 12 (wrong number of rows) and n = 14 (wrong distribution of points in
rows).

When n is a triangular number N(N + 1)/2, the locations are close to a
triangular lattice, and it is possible to obtain a good bound on the quantization
error:

Theorem 6.3. When n = N(N + 1)/2 for some positive integer N ≥ 3, the
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Figure 4: Results of a numerical search algorithm for 1 ≤ n ≤ 21 points,
rotated so that the symmetry axis is vertical.
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d a

L

Figure 5: The construction in the proof of Theorem 6.3, illustrating the split
of the Voronoi regions of centre, edge and corner points into triangles and
rectangles. The value of a chosen is the optimal value aopt defined below.

quantization error is controlled by the bound

Vn ≤
45N3 − 28

√
21N2 + (301− 28

√
21)N − 98

324N3(N − 1)2

=
5

36N2
− 14

√
21− 45

162N3
+O(N−4).

Proof. The proof is by direct calculation for the specific configuration shown
in Figure 5. The points lie on a triangular lattice aligned with the triangular
domain and have Voronoi regions as shown. There are two parameters, the
lattice spacing d, and the distance from any of the edge or corner points to
the edge of the triangle a. We set L to be the side length of the large triangle
(set equal to unity at the end), so that the area is Area = L2

√
3/4. We then

have

L = (N − 1)d+ 2
√

3a.

It is convenient to make d the subject of this equation and substitute into the
expressions below. Placing a point at the origin, we can find the quantization



Quantization for Uniform Distributions 165

error due to right triangular or rectangular domains:

Vπ/6(r) =

∫ r

0

dx

∫ x/
√
3

0

dy
x2 + y2

Area
=

10r4

27L2
,

Vπ/3(r) =

∫ r

0

dx

∫ x
√
3

0

dy
x2 + y2

Area
=

2r4

L2
,

Vrect(l, w) =

∫ l

0

dx

∫ w

0

dy
x2 + y2

Area
=

4lw(l2 + w2)

3
√

3L2
.

Then, each point has a combination of these contributions:
Vcenter = 12Vπ/6(d/2), Vedge = 6Vπ/6(d/2) + 2Vrect(d/2, a), Vcorner =

2Vπ/6(d/2)+2Vrect(d/2, a)+2Vπ/3(a), and the overall quantization error (giv-
ing a bound for the optimal quantization error) is a sum of these, counting
the number of points of each type

Vn ≤
(N − 3)(N − 2)

2
Vcenter + 3(N − 2)Vedge + 3Vcorner (6)

=
144
√

3a4N(N − 2) + 144a3N(N − 2)L+ 144
√

3a2L2 − 84aL3 + 5
√

3L4

144(N − 1)2
.

Expanding for large N and L, keeping both quantities at the same order, gives
to leading order the optimal

aopt =

√
7L

6N

which, substituted into the expression (6) gives the stated result.

In the general case (arbitrary n) we have an asymptotic result:

Corollary 6.4. The quantization error satisfies

Vn ≤
5

72n
+O(n−3/2)

as n→∞.

Proof. This follows from Theorem 6.3. For arbitary n, the distance to the
previous triangular number is order

√
n. Thus we can add the extra points

without increasing the leading term of the quantization error.

We expect that the triangular lattice is optimal to leading order, so that
≤ may be replaced by ∼. Furthermore, by placing a triangular lattice within
a more general domain, we expect
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Conjecture 6.5. If we consider a measure P uniform on a domain with finite
area A and finite perimeter, then as n→∞,

Vn ∼
5
√

3A

54n
.
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