Antonio Boccuto,* Department of Mathematics and Computer Sciences, University of Perugia, via Vanvitelli, 1, Perugia 06123, Italy. email: antonio.boccuto@unipg.it

Xenofon Dimitriou, Department of Mathematics, University of Athens, Panepistimiopolis, Athens 15784, Greece. email: xenofon11@gmail.com, dxenof@math.uoa.gr

ADDENDUM TO: "SOME NEW TYPES OF FILTER LIMIT THEOREMS FOR TOPOLOGICAL GROUP-VALUED MEASURES"

Abstract

The purpose of this note is to point out some corrections to the paper: A. Boccuto and X. Dimitriou, "Some new types of filter limit theorems for topological group-valued measures," *Real Anal. Exchange* **39** (1) (2014), 139-174.

We use the notation and terminology developed in [1].

On page 145, the definitions of $m^{\mathcal{L}}$ and m^+ should be formulated as follows:

$$m^{\mathcal{L}}(A) := \{ m(B) : B \in \mathcal{L}, B \subset A \}, \quad A \in \mathcal{L},$$

$$m^{+}(A) := m^{\Sigma}(A) = \{ m(B) : B \in \Sigma, B \subset A \}, \quad A \in \Sigma.$$

On page 148, formula (7), the definition of "positive" measure defined in a σ -algebra Σ and with values in a topological group R should be stated as follows:

A finitely additive measure $m: \Sigma \to R$ is said to be *positive* iff every neighborhood W of 0 contains a neighborhood U_0 of 0 such that, for every $A \in \Sigma$ with $m(A) \in U_0$ and for each $B \in \Sigma$ with $B \subset A$, we also get $m(B) \in U_0$.

Received by the editors November 22, 2014 *Corresponding author

On page 148, Proposition 2.10 should be formulated as follows.

Proposition 2.10 Let $m: \Sigma \to R$ be a σ -additive measure. Then

$$\lim_{k} m^{+}(H_k) = 0$$

for each decreasing sequence $(H_k)_k$ in Σ , satisfying

$$m\left(B\cap\left(\bigcap_{k=1}^{\infty}H_{k}\right)\right)=0$$
 for every $B\in\Sigma$.

On page 150, Theorem 2.13 should be stated as follows.

Theorem 2.13 Let $m: \Sigma \to R$ be an (s)-bounded measure. Then for each disjoint sequence $(C_k)_k$ in Σ there exists an infinite subset $P_0 \subset \mathbb{N}$, with

$$\lim_{r} \left\{ m \left(\bigcup_{k \in Y, k \ge r} C_k \right) : Y \subset P_0 \right\} = 0, \tag{1}$$

and m is σ -additive on the σ -algebra generated by the sets C_k , $k \in P_0$.

On page 150, Theorem 2.14 should be formulated as follows.

Theorem 2.14 Let $m_j: \Sigma \to R$, $j \in \mathbb{N}$, be a sequence of finitely additive (s)-bounded measures. Then for any disjoint sequence $(C_k)_k$ in Σ there exists an infinite subset $P \subset \mathbb{N}$, with

$$\lim_{h} \left\{ m_j \left(\bigcup_{k \in Y, k > h} C_k \right) : Y \subset P \right\} = 0$$

for every $j \in \mathbb{N}$, and each m_j is σ -additive on the σ -algebra generated by the sets C_k , $k \in P$.

The following result, which is more general than Theorem 2.17 on page 152, was proved in [2, Corollary 6.2].

Let (R,+) be a group, G be a locally compact Hausdorff topological space and m be a finitely additive R-valued set function, defined on the δ -ring of the relatively compact Baire subsets of G. Then m is regular if and only if m is σ -additive.

On page 156, formula (17), instead of

$$m_{j_{2h-1}}^+([l(n_{2h},+\infty[)\subset U_{2h}\subset U_2])$$

there should be

$$m_{j_{2h-1}}^+(]l(n_{2h},+\infty[)\subset U_{2h}\subset U_2.$$

On page 159, formula (26) should be written as follows:

$$m_j^+(H_k) = \{m_j(B) : B \in \Sigma, B \subset H_k\} =$$

$$= \{m_j(B \setminus H_\infty) : B \in \Sigma, B \subset H_k\} =$$

$$= \{m_j(C) : C \in \Sigma, C \subset H_k \setminus H_\infty\} =$$

$$= m_j^+(H_k \setminus H_\infty) = m_j^+\left(\bigcup_{l=k}^\infty C_l\right)$$

for every $j, k \in \mathbb{N}$.

On page 159, two lines above formula (28), instead of

$$\nu_j^+([k, +\infty[) := \bigcup \{\nu_j(D) : D \subset [k, +\infty[\} \subset m_j^+(\bigcup_{l=k}^\infty C_l)\})$$

there should be

$$\nu_j^+([k, +\infty[) := \{\nu_j(D) : D \subset [k, +\infty[\} \subset m_j^+(\bigcup_{l=k}^\infty C_l).$$

On pages 160-161, Theorem 3.5 should be formulated as follows.

Theorem 3.5 Let G be any infinite set, $\Sigma \subset \mathcal{P}(G)$ be a σ -algebra, $m_j : \Sigma \to R$, $j \in \mathbb{N}$, be a sequence of positive (s)-bounded measures, \mathcal{F} be a diagonal filter of \mathbb{N} . Assume that $m_0(E) = (\mathcal{F}) \lim_j m_j(E)$ exists in R for every $E \in \Sigma$, and that m_0 is σ -additive and positive on Σ .

Then for every disjoint sequence $(C_k)_k$ in Σ and $I \in \mathcal{F}^*$ there exists $J \in \mathcal{F}^*$, $J \subset I$, with

$$\lim_{k} \left(\bigcup_{j \in J} m_{j}^{+}(C_{k}) \right) = \lim_{k} \{ m_{j}(C_{k}) : j \in J \} = 0.$$

On page 161-162, after formula (30), the proof of the equality

$$\lim_{j \in J} m_j(B) = m_0(B) \text{ for all } B \in \mathcal{K}$$

in Theorem 3.5 should be as follows:

Arbitrarily choose $U \in \mathcal{J}(0)$, and let $W \in \mathcal{I}(0)$ be such that $5W \subset U$. In correspondence with W, let $U_0 \in \mathcal{J}(0)$, $U_0 \subset W$, satisfy the condition of positivity, that is $m(B) \in U_0$ whenever $A \in \Sigma$, $m(A) \in U_0$ and $B \in \Sigma$, $B \subset A$. In correspondence with U_0 there exists $k_0 \in \mathbb{N}$ with $m_0 \left(\bigcup_{k > k_0} C_k\right) \in U_0$ and therefore, by positivity of m_0 ,

$$m_0\Big(\bigcup_{k>k_0,k\in P}C_k\Big)\in U_0.$$

Moreover, there is $j_0 \in J$, $j_0 = j_0(U, k_0)$ such that for every $j \in J$ with $j \geq j_0$ we have:

$$m_{j}\left(\bigcup_{k\leq k_{0},k\in P}C_{k}\right)-m_{0}\left(\bigcup_{k\leq k_{0},k\in P}C_{k}\right)\in U_{0},$$

$$m_{j}\left(\bigcup_{k\leq k_{0}}C_{k}\right)-m_{0}\left(\bigcup_{k\leq k_{0}}C_{k}\right)\in U_{0},$$

$$m_{j}\left(\bigcup_{k=1}^{\infty}C_{k}\right)-m_{0}\left(\bigcup_{k=1}^{\infty}C_{k}\right)\in U_{0},$$

$$m_{j}\left(\bigcup_{k>k_{0}}C_{k}\right)-m_{0}\left(\bigcup_{k>k_{0}}C_{k}\right)\in 2U_{0},$$

and hence,

$$m_j \left(\bigcup_{k > k_0} C_k \right) = m_j \left(\bigcup_{k > k_0} C_k \right) - m_0 \left(\bigcup_{k > k_0} C_k \right) + m_0 \left(\bigcup_{k > k_0} C_k \right)$$

$$\in 3U_0.$$

By positivity of m_j , we have also $m_j \Big(\bigcup_{k>k_0, k\in P} C_k\Big) \in U_0$. Thus,

for every
$$B \in \mathcal{K}$$
, $B = \bigcup_{k \in P} C_k$, we get
$$m_j(B) - m_0(B) = m_j \left(\bigcup_{k \in P} C_k\right) - m_0 \left(\bigcup_{k \in P} C_k\right)$$
$$= m_j \left(\bigcup_{k \le k_0, k \in P} C_k\right) - m_0 \left(\bigcup_{k \le k_0, k \in P} C_k\right) +$$
$$+ m_j \left(\bigcup_{k > k_0, k \in P} C_k\right) - m_0 \left(\bigcup_{k > k_0, k \in P} C_k\right)$$
$$\in U_0 + 3U_0 + U_0 = 5U_0 \subset 5W \subset U.$$

Thus, $\lim_{j \in J} m_j(B) = m_0(B)$ for all $B \in \mathcal{K}$.

On pages 162-163, Theorem 3.6 should be formulated as follows.

Theorem 3.6 Let Σ , \mathcal{F} be as in Theorem 3.5, τ be a Fréchet-Nikodým topology on Σ , $m_j: \Sigma \to R$, $j \in \mathbb{N}$, be a sequence of positive finitely additive (s)-bounded and τ -continuous measures. Assume that $m_0(E) := (\mathcal{F}) \lim_j m_j(E)$ exists in R for each $E \in \Sigma$, and that m_0 is σ -additive and positive on Σ .

Then for every set $I \in \mathcal{F}^*$ and for each decreasing sequence $(H_k)_k$ in Σ with τ - $\lim_k H_k = \emptyset$ there exists a set $J \in \mathcal{F}^*$, $J \subset I$, with

$$\lim_{k} \left(\bigcup_{j \in J} m_{j}^{+}(H_{k}) \right) = \lim_{k} \{ m_{j}(H_{k}) : j \in J \} = 0.$$

On pages 163, Theorem 3.7 should be formulated as follows.

Theorem 3.7 Let Σ , \mathcal{F} be as in Theorem 3.6, $m_j : \Sigma \to R$, $j \in \mathbb{N}$, be a sequence of positive σ -additive measures. If

$$m_0(A) := (\mathcal{F}) \lim_j m_j(A)$$

exists in R for each $A \in \Sigma$, and m_0 is σ -additive and positive on Σ , then for each $I \in \mathcal{F}^*$ and for every decreasing sequence $(H_k)_k$

in
$$\Sigma$$
 with $\bigcap_{k=1}^{\infty} H_k = \emptyset$ there exists $J \in \mathcal{F}^*$, $J \subset I$, with

$$\lim_{k} \left(\bigcup_{j \in J} m_{j}^{+}(H_{k}) \right) = \lim_{k} \{ m_{j}(H_{k}) : j \in J \} = 0.$$

On page 168, formula (34), instead of

$$\lim_{s} \left(\bigcup_{j \in M^*} m_j(C_{k_{r_s}}) \right) = 0$$

there should be

$$\lim_{s} \left(\bigcup_{j \in M^*} m_j^+(C_{k_{r_s}}) \right) = 0.$$

On page 169, formula (35), instead of

$$\lim_{k} \left(\bigcup_{j \in M^*} m_j(C_k) \right) = 0,$$

there should be

$$\lim_{k} \left(\bigcup_{j \in M^*} m_j^+(C_k) \right) = 0.$$

Acknowledgements. The authors thank Professor Hans Weber and the referee for their suggestions and remarks.

References

- [1] A. Boccuto and X. Dimitriou, Some new types of filter limit theorems for topological group-valued measures, Real Anal. Exchange, **39** (1) (2014), 139-174.
- [2] H. Weber, Fortsetzung von Massen mit Werten in uniformen Halbgruppen, Arch. Math. (Basel), **27** (4) (1976), 412-423.