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BASIC INTRODUCTION TO
EXPONENTIAL AND LOGARITHMIC

FUNCTIONS

Abstract

This article discusses the definitions and properties of exponential
and logarithmic functions. The treatment is based on the basic proper-
ties of real numbers, sequences and continuous functions. This treatment
avoids the use of definite integrals.

1 Introduction

Exponential and logarithmic functions are elementary and they are taught to
all science and economics students. However, their rigorous definitions and
some of their properties are not straightforward. In most calculus textbooks
they are introduced by defining the logarithmic function as an indefinite in-
tegral as in [4]. This approach is a nice application of powerful tools like the
Fundamental Theorem of Calculus. If we follow this approach, a simple ex-

pression like 2
√
3 will have no meaning until we learn definite integrals. This is

the main disadvantage of this approach. There are other different approaches
to introduce these functions. Most elementary real analysis textbooks define
the exponential function as a power series [2].

In some cases, first year students need to learn about these functions in an
early stage before the introduction of integration. The definition in this case

will be intuitive rather than rigorous. The number 2
√
3, as an example, can

be introduced as the limit of sequence (2qn)n≥1, where (qn)n≥1 is a sequence

of rational numbers converging to
√

3. The general case will be understood by
analogy. This approach is demonstrated in many calculus textbooks, see [1].
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The latter approach gives an intuitive definition to exponential functions.
It is used in Rudin’s book [2, page 22]. However, the introduction of the
number e and the derivation of differentiation properties of these functions in
this book were established using power series [2, page 178].

This article establishes the differentiation and other basic properties for
the exponential and logarithmic functions using the intuitive definition of the
exponential function. The proofs are basic (but not elementary) without any
use of definite integrals. However, we need some properties of continuous
functions and sequences. The main step is showing that the following limit

lim
h→0

ah − 1

h

exists for any a > 0. After studying this limit all the properties of exponential
and logarithmic functions follow easily.

I should add that after finishing the first draft, I found the paper [3] by
H. Samelson and I found that my work is almost identical with Samelson’s
work. The only difference is the use of convexity in his proof. What surprises
me is that Samelson ideas had gone unnoticed for 40 years. This approach
deserves to be known and I use it as an excuse for finishing and submitting
an article demonstrating these ideas in some detail. The note [5] by J. P. Tull
gives a similar approach in a very brief discussion.

2 Exponential Functions

In this section we introduce exponential functions and their basic properties.
The main theorem is the differentiability of exponential functions. We will
need the following remark in some of the following arguments.

Remark 1. If a > 1 and m ∈ N, then

a− 1

ma
< a

1
m − 1 <

a− 1

m
.

To show this note that a − 1 = (a1/m)m − 1 = (a1/m − 1)
∑m−1

k=0 ak/m. Since

1 < ak/m < a, we find that m <
∑m−1

k=0 ak/m < ma. By multiplying both
sides of the latter inequality by (a1/m − 1), we get the required result.

Lemma 2. If a > 0, there is a constant Ca such that |aq − 1| ≤ Ca |q| for any
rational number q with |q| < 1.

Proof. Assume first that a > 1. Let q be a rational number such that
0 < q < 1. Then q = n

m where n,m are positive integers such that n < m.
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Hence,

aq − 1 =
(
a

1
m

)n
− 1 =

(
a

1
m − 1

) n−1∑
k=0

a
k
m .

Note that a
k
m < aq < a whenever 0 ≤ k < n. Thus,

∑n−1
k=0 a

k
m < naq, and this

implies

aq − 1 < naq
(
a

1
m − 1

)
.

Using Remark 1, we get

aq − 1 < qaq (a− 1) < qa (a− 1) . (2.1)

Now, if 0 > q > −1, then 0 < −q < 1. Hence, by the last inequality
a−q − 1 < −qa−q (a− 1). Multiplying by aq yields

1− aq < −q (a− 1) < −qa (a− 1) . (2.2)

By both of inequalities (2.1) and (2.2), we get

|aq − 1| < |q|a (a− 1) ,

whenever a > 1 and |q| < 1.
Now, if 0 < a < 1, then a−1 > 1. Applying the previous inequality we get:

|aq − 1| =
∣∣∣(a−1)−q − 1

∣∣∣ < | − q|a−1
(
a−1 − 1

)
= |q|a−1

(
a−1 − 1

)
,

whenever 0 < a < 1 and |q| < 1.

Let a, x ∈ R where a > 0. Then, the number ax is defined as

ax = lim
n

aqn

where (qn)n≥1 is an increasing sequence of rational numbers such that qn → x.
This limit always exists since (aqn)n≥1 is bounded and monotone (increasing
if a > 1 and decreasing if a < 1). Moreover, Lemma 2 implies that this limit is
the same if (qn)n≥1 is replaced by any sequence of rational numbers (pn)n≥1
(not necessarily monotone) with pn → x. Thus, the number ax is well defined.
Moreover, using elementary convergence argument, this definition establishes
some of the basic lows of exponents as: ax+y = axay, (ab)

x
= axbx.

For any a > 0, define the function Ea : R → R, x 7→ ax. This function is
called the exponential function with base a. It has the following basic properties
for any a > 0, x, y ∈ R:
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1. a > 1, x < y ⇒ Ea(x) < Ea(y) (Ea is strictly increasing when a > 1);

2. a < 1, x < y ⇒ Ea(x) > Ea(y) (Ea is strictly decreasing when a < 1);

3. a > 1 ⇒ limx→−∞Ea(x) = 0, limx→+∞Ea(x) = +∞;

4. a < 1 ⇒ limx→−∞Ea(x) = +∞, limx→+∞Ea(x) = 0;

5. The function Ea is continuous on R for any a > 0;

6. axy = (ax)
y
.

Let a > 0 and a 6= 1. By the properties of the function Ea and its
continuity, we find that Ea is a one-to-one correspondence from R onto the
interval (0,+∞). Thus, Ea has an inverse function which will be denoted by
loga : (0,+∞)→ R. We call loga the logarithmic function with base a.

Let a be a positive number. Define the function

`a : R \ {0} → R, `a(x) =
ax − 1

x
.

It is obvious that `a is continuous. Now, we prove that limt→0 `a(t) exists. To
do this we need the following two lemmas.

Lemma 3. Let a be a positive number such that a 6= 1. If m1,m2 are non-zero
integers such that m1 < m2, then `a(m1) < `a(m2).

Proof. Let m be a positive integer. Then,

`a(m + 1)− `a(m) =
mam(a− 1)− (am − 1)

m(m + 1)

=
(a− 1)

∑m−1
k=0

(
am − ak

)
m(m + 1)

=
(a− 1)2

∑m−1
k=0

∑m−k−1
j=0 ak+j

m(m + 1)
> 0.

Thus, `a(m) < `a(m + 1). By induction, we can show that `a(m1) < `a(m2)
whenever 0 < m1 < m2.

Now, suppose that m1 < m2 < 0. Then 0 < −m2 < −m1. By the previous
argument, `a−1(−m2) < `a−1(−m1). Note that `a(x) = −`a−1(−x) for any
x 6= 0. Thus, `a(m1) = −`a−1(−m1) < −`a−1(−m2) = `a(m2).

Note that `a(1)− `a(−1) =
(a− 1)2

a
> 0. Thus, `a(1) > `a(−1).

Now, if m1 < 0 < m2, then `a(m1) ≤ `a(−1) < `a(1) ≤ `a(m2). This
completes the proof.
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Lemma 4. If a is a positive number such that a 6= 1, then `a is strictly
increasing.

Proof. Let p1, p2 be non-zero rational numbers with p1 < p2. Then, we can
write p1 = m1/n, p2 = m2/n, where m1,m2, n are integers such that m1 < m2

and n > 0. Hence,

`a(p1) = n`
a

1
n

(m1) < n`
a

1
n

(m2) = `a(p2).

Now, let x, p be two non-zero real numbers and suppose that p is a rational
number. If p < x, then `a(p) < `a(x). To show this, choose a strictly increasing
sequence of non–zero rational numbers (rn)n≥1 such that r1 = p and rn → x.
Note that (`a(rn))n≥1 is strictly increasing. By continuity, `a(rn) → `a(x),
thus, `a(p) < `a(x). Similarly, if x < p, then `a(x) < `a(p).

Now, if x1, x2 ∈ R \ {0} with x1 < x2, then we can choose a non-zero
rational number p such that x1 < p < x2. Thus, `a(x1) < `a(p) < `a(x2).

Theorem 5. The limit limx→0 `a(x) = limx→0
ax − 1

x
exists for any a > 0.

Proof. Since `a is increasing, both of its one-sided limits at 0 exist. Let
l± = limx→0± `a(x). It is easy to check that `a(x) = ax`a(−x). Thus,

l− = lim
x→0−

`a(x) = lim
x→0−

ax`a(−x) = lim
t→0+

a−t`a(t) = l+.

The equality l− = l+ implies that the limit exists.

For any a > 0, we define ln a = limx→0 `a(x) = limx→0
ax − 1

x
. Note that

ln : (0,+∞)→ R is a well-defined function. This function is called the natural
logarithm. Note that

lim
h→0

Ea(x + h)− Ea(x)

h
= lim

h→0

ax+h − ax

h
= ax lim

h→0

ah − 1

h
= ax ln a.

Thus, the following result is immediate.

Theorem 6. The exponential function Ea is differentiable at any x ∈ R with
E′a(x) = ax ln a.

3 The Natural Logarithm

In this section we study the natural logarithm and its relation with exponential
and logarithmic functions.
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Theorem 7. Let x, y be positive numbers. The following statements hold:

1. ln(xy) = lnx + ln y;

2. lnxr = r lnx for any r ∈ R;

3.
x− 1

x
≤ lnx ≤ x− 1;

4. limx→0
ln (x + 1)

x
= 1;

5. ln is differentiable at any x > 0 with
d

dx
lnx =

1

x
;

6. ln is strictly increasing and limx→0+ lnx = −∞, limx→+∞ lnx = +∞.

Proof. (1) For any x > 0, y > 0, we have

ln(xy) = lim
t→0

(xy)t − 1

t
= lim

t→0

xtyt − yt + yt − 1

t

=
(

lim
t→0

yt
)(

lim
t→0

xt − 1

t

)
+ lim

t→0

yt − 1

t

= 1 · lnx + ln y = lnx + ln y.

(2) It is obvious when r = 0. If r 6= 0, then

lnxr = lim
t→0

(xr)
t − 1

t
= r lim

t→0

xrt − 1

rt

= r lim
u→0

xu − 1

u
= r lnx.

(3) Let x > 1. Then Remark 1 yields

x− 1

x
<

x1/m − 1

1/m
< x− 1,

for any positive integer m. By Theorem 5, lnx = limm→∞
x1/m − 1

1/m
.” Hence,

x− 1

x
< lnx < x− 1

for x > 1. Now, if 0 < x < 1, then x−1 > 1, and we use the previous inequality
to obtain the desired inequality.
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(4) We substitute x by x + 1 in the inequality in 3, and we get

x

x + 1
< ln(x + 1) < x.

If x > 0, then 1
x+1 < ln(x+1)

x < 1, and this implies limx→0+
ln(x+1)

x = 1. In the

case x < 0, we have 1
x+1 > ln(x+1)

x > 1, which implies limx→0−
ln(x+1)

x = 1.
(5) Let x > 0. Then,

lim
h→0

ln(x + h)− lnx

h
=

1

x
lim
h→0

ln(1 + h/x)

h/x
=

1

x
lim
t→0

ln(1 + t)

t
=

1

x
.

Thus, d
dx (ln(x)) = 1

x .
(6) Since its derivative is positive, ln is strictly increasing. Let x > 0.

By property (3), ln 2 > 1
2 . Thus, ln 2x > x

2 for any x > 0. This implies that
ln is unbounded. Since it is increasing, we have limx→+∞ lnx = +∞. On the
other hand, limx→0+ lnx = limt→+∞ ln t−1 = − limt→+∞ ln t = −∞.

For x > 0, x 6= 1, we define ex = x1/ ln x. Note that ln ex = 1. Since ln
is one-to-one, we find that ex is constant for any x > 0, x 6= 1. Thus, the
function x 7→ ex is constant. We denote this constant by e. This constant is
called the base of the natural logarithms. Note that eln x = x.

We denote the function Ee by exp. Note that ln (exp(x)) = ln(ex) = x and
exp (lnx) = eln x = x. Therefore, ln is the inverse of Ee = exp, in other words
ln = loge. It follows immediately that ax = ex ln a and loga y = ln y

ln a . From
these equalities we can derive all the properties of exponential and logarithmic
functions.
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