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ABSOLUTE CONTINUITY IN PARTIAL
DIFFERENTIAL EQUATIONS

Abstract

In this note, we study a function which frequently appears in partial
differential equations. We prove that this function is absolutely continu-
ous; hence it can be written as a definite integral. As a result, we obtain
some estimates regarding solutions of the Hamilton-Jacobi systems.

1 Introduction

Let H be a differential operator of order m ∈ N and let f ∈ Lp(D) be a
positive function, where p ∈ (1,∞) and D is a smooth bounded domain in Rn.
Consider the equation:

H(u) = f, in D (1)

A function u ∈ Wm,p(D) ∩ C(D) is called a strong solution of (1) provided
that H(u) = f almost everywhere (a. e.) in D. We assume the operator H
satisfies the following condition:

For any u ∈Wm(D) and γ ∈ R : H(u) = 0 a. e. in Eγ := {x ∈ D | u(x) = γ}.
(P)
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For a measurable function h : D → R, the distribution function of h,
denoted λh(α), is defined as follows:

λh(α) := | {x ∈ D | h(x) ≥ α} | ≡ | {h ≥ α} |, (∀α ∈ R)

where | · | denotes the n-dimensional Lebesgue measure. Clearly λh is decreas-
ing, and if h is continuous, then λh will be strictly decreasing. Moreover, in
case the graph of h has no significant flat sections (i.e. ∀γ ∈ R : | {h = γ} | = 0),
then λh will be continuous. The decreasing rearrangement of h, denoted h∗(s),
is defined as follows: {

h∗ : [0, |D |]→ R
h∗(s) = inf{α | λh(α) ≤ s}

.

Note that if h is continuous and its graph has no significant flat sections, then

λh ◦ h∗(s) = s and h∗ ◦ λh(α) = α.

We also need to recall some background from rearrangements of functions.
Given g0 : D ⊆ Rn → R, the rearrangement class generated by g0, denoted
R(g0), is the set of functions g : D → R such that λg(α) = λg0(α) for every real
α. If g0 ∈ Lp(D), then R(g0) ⊆ Lp(D), and ∀g ∈ R(g0) : ‖g‖p = ‖g0‖p. The

weak closure ofR(g0) in Lp(D) is denoted byR(g0) which, unlikeR(g0), enjoys
some nice properties and characterizations that are stated in the following
lemma. For the proof and further reading see [3, 4, 5, 9]:

Lemma 1. Let g0 ∈ Lp(D) be a non-negative function, and R(g0) be the
rearrangement class generated by g0. Then:

(1) R(g0) is convex and weakly compact in Lp(D).

(2) R(g0) = co (R(g0)), the closed convex hull of R(g0).

(3) The following characterization stands:

R(g0) =

{
g | ∀s ∈ (0, |D |) :∫ s

0

g∗(t) dt ≤
∫ s

0

g∗0(t) dt and

∫ |D |
0

g∗(t) dt =

∫ |D |
0

g∗0(t) dt

}
.

The set of measure-preserving maps from D onto [0, |D |] is a non-empty
set (e.g. see [12, Chapter 11]) which will be denoted by M(D, [0, |D |]). By a
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result attributed to Ryff [13], given g : D → R, there exists φ ∈M(D, [0, |D |])
such that g = g∗ ◦ φ almost everywhere in D.

We now introduce the function that is the main drive behind writing this
note. To this end, we assume u ∈Wm,p(D)∩C(D) is a strong solution of (1).
We are interested in the function ξ : [0, |D |]→ R defined by:

ξ(s) =

∫
{u≥u∗(s)}

f(x) dx. (2)

Thanks to property (P) on page 209, and of course the fact that f is positive,
the level sets {u = γ} must have zero measure; hence ξ is well-defined. This
function is frequently referred to in partial differential equations, particularly
when one is interested in comparing the solution of a boundary value problem
to that of a symmetrized problem, the latter being readily solved. There are
many references in this regard, e.g. [2, 6, 14], to mention a few. In this note
we prove that ξ is absolutely continuous; hence it can be represented by a
definite integral of the form

∫ s
0
F (τ)dτ. Then, we will prove that the integrand

F composed with any measure-preserving map φ ∈M(D, [0, |D |]) belongs to
R(f). Using these two results, we point out a couple of applications.

Throughout this paper, we use some standard notations. For example,
Wm,p(D) and Wm(D) denote the usual Sobolev spaces. The space Lp(D)
comprises functions whose p-th powers are integrable, and the norm in this

space is defined by ‖f‖p =
(∫
D
|f |p dx

)1/p
. Moreover, C(D) and C(D) denote

the spaces of continuous functions over D and its closure D, respectively,
and the corresponding norm is denoted by ‖ · ‖∞. The arrow “→” indicates
strong convergence, whilst “⇀” indicates weak convergence in spaces under
discussion.

2 Main results

Our first main result is the following:

Theorem 2. The function ξ, as defined in (2), is absolutely continuous on
[0, |D |].

Proof. Let ε > 0, and consider a finite sequence {(αi, βi) | 1 ≤ i ≤ N} of

non-overlapping subintervals of [0, |D |] such that
∑N
i=1(βi − αi) < δ, where

δ is a positive number to be determined later. By setting t(αi) = u∗(αi) and
t(βi) = u∗(βi), we will have:

N∑
i=1

|ξ(βi)− ξ(αi)| =
N∑
i=1

∣∣∣∣∣
∫
{t(βi)<u<t(αi)}

f(x) dx

∣∣∣∣∣ =

∫
E

f(x) dx, (3)
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where E =
⋃N
i=1{x : u∗(βi) < u(x) < u∗(αi)}. By applying the Hölder

inequality we obtain: ∫
E

f(x) dx ≤ |E|
1
q ‖f‖p, (4)

where 1
p + 1

q = 1. Note that |E| =
∑N
i=1(βi − αi). This, along with (3) and

(4), will give the desired result, provided that δ <
(

ε
‖f‖p

)q
.

Corollary 3. The function ξ, as defined in (2), satisfies

ξ(s) =

∫ s

0

F (τ) dτ (5)

for some integrable function F .

Proof. By Theorem 2, ξ is absolutely continuous. Hence, we can apply
Corollary 14 in [12], together with the fact that ξ(0) = 0, to deduce that

ξ(s) =

∫ s

0

ξ ′(τ) dτ

almost everywhere in [0, |D |]. So by setting F (s) = ξ′(s), we get the desired
result.

We now state our second main result:

Theorem 4. Let F be the function in Corollary 3 and φ ∈ M(D, [0, |D |]).
Then F ◦ φ ∈ R(f).

Proof. Note that λF◦φ(α) = λF (α) for every α ∈ R. Thus, (F ◦ φ)∗(s) =
F ∗(s) for almost every s ∈ [0, |D |]. Hence, in view of item (3) of Lemma 1, it
suffices to prove:

(i)
∫ |D |
0

F ∗(s) ds =
∫ |D |
0

f∗(s) ds.

(ii)
∫ s
0
F ∗(t) dt ≤

∫ s
0
f∗(t) dt, ∀s ∈ (0, |D |).

Proving (i) is straightforward as

∫ |D |
0

F ∗(t) dt =

∫ |D |
0

F (t) dt = ξ(|D |)

=

∫
{u≥ t( |D |) }

f dx =

∫
{u≥0}

f dx =

∫
D

f dx =

∫ |D |
0

f∗(t) dt,
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where we have used Corollary 3. To prove (ii), we consider the following steps:
Step 1. Let U be an open subset of (0, |D |). Then, we can write U =⋃∞

i=1(Ai, Bi), where (Ai, Bi) are mutually disjoint. Hence,∫
U
F (τ)dτ =

∞∑
i=1

∫ Bi

Ai

F (τ)dτ =

∞∑
i=1

(∫ Bi

0

F (τ)dτ −
∫ Ai

0

F (τ)dτ

)

=

∞∑
i=1

(∫
{u≥t(Bi)}

f dx −
∫
{u≥t(Ai)}

f dx

)
=

∞∑
i=1

∫
{t(Bi)≤u<t(Ai)}

f dx

=

∫
⋃
{t(Bi)≤u<t(Ai)}

f dx ≤
∫ |⋃{t(Bi)≤u<t(Ai) |

0

f∗(s) ds

=

∫ ∑
(Bi−Ai)

0

f∗(s) ds =

∫ | U |
0

f∗(s) ds.

Step 2. Let V be a measurable subset of (0, |D |) and let ε > 0. By Theorem
3.6 in [15], there exists an open set G containing V such that |G \ V| < ε.
Whence ∫

V
F (t) dt ≤

∫
G

F (t) dt ≤
∫ |G|
0

f∗(s) ds

=

∫ |V|
0

f∗(s) ds+

∫ |G|
|V|

f∗(s) ds

≤
∫ |V|
0

f∗(s) ds+ ‖f‖p(|G| − |V|)1/q,

(6)

using Step 2 and Hölder’s inequality. Since |G| − |V| = |G \ V| < ε, from (6)
we infer ∫

V
F (t) dt ≤

∫ | V |
0

f∗(s) ds+ ε1/q‖f‖p. (7)

Since ε is arbitrary, (7) implies∫
V
F (t) dt ≤

∫ | V |
0

f∗(s) ds.

Step 3. We recall the following maximization from [1] where the sup is
taken over {ω ⊆ [0, |D |] : |ω | = γ}:

sup

∫
ω

F (t) dt =

∫ |ω |
0

F ∗(s) ds.
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Now, fix s ∈ (0, |D |), and apply Step 2 to obtain

sup

∫
ω

F (t) dt =

∫ s

0

F ∗(t) dt, (8)

with the sup taken over {ω ⊆ [0, |D |] : |ω | = s}. On the other hand, from
Step 2, we have: ∫

ω

F (t) dt ≤
∫ |ω |
0

f∗(s) ds. (9)

From (8) and (9) we deduce∫ s

0

F ∗(t) dt ≤
∫ s

0

f∗(t) dt,

as desired.

Corollary 5. Suppose the hypotheses of Theorem 4 hold. Then there ex-
ists a sequence of functions {Fn} such that F ∗n(s) = f∗(s) and Fn ⇀ F in
Lp(0, |D |).

Proof. By Ryff’s result, f = f∗ ◦ φ for some φ ∈ M(D, [0, |D |]). From
Theorem 4, we infer F ◦ φ ∈ R(f). So, there exists a sequence {fn} ⊆ R(f)
such that fn ⇀ F ◦ φ in Lp(D). Therefore, fn ◦ φ−1 ⇀ F in Lp(0, |D |).
Clearly, λfn◦φ−1(α) = λf (α), and so (fn ◦ φ−1)∗(s) = f∗(s). This completes
the proof.

3 Applications

In this section we will present a couple of applications of the results of the
previous section. Throughout we will assume the extra condition f ∈ C(D).
Let us consider the following Hamilton-Jacobi system:{

| ∇u | = f(x) in D

u = 0 on ∂D.
(10)

Lemma 6. The system (10) has a strong positive solution u ∈W 1,∞(D).

Proof. From [10] we know that the system (10) has a strong solution u ∈
W 1,∞(D). Replacing u by |u | ∈ W 1,∞(D) if necessary, taking into account
that | ∇(|u |) | = | ∇u |, we can assume u is non-negative. On the other hand,
since f is positive, we can apply Lemma 7.7 in [7] to ensure that the level sets
{u = γ} have zero measure. Thus, u is essentially positive, as desired.
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Remark 1. For f and u as in Lemma 6, the function

ξ(s) =

∫
{u≥t}
f(x) dx (where s = λu(t))

is well defined. As a result, the function F from Corollary 3 is also well defined.
Moreover, the conclusions of Theorem 2 and Theorem 4 hold.

Our first application is as follows:

Theorem 7. Let u ∈W 1,∞(D) be a strong positive solution of the Hamilton-
Jacobi system (10), and let v be the unique solution of the following system{

| ∇Z | = F (ωn|x |n) in B

Z = 0 on ∂B,
(11)

in which:

• B is the ball centred at the origin with radius (|D |/ωn)1/n, and ωn
indicates the volume of the unit n-dimensional ball.

• The function F is as in Corollary 3, which is well defined by Remark 1.

Also, let u](x) ≡ u∗(ωn|x |n), which in the literature is referred to as the
Schwarz symmetrization of u. Then, u](x) ≤ v(x) for x ∈ B.

Proof. The proof is a consequence of Corollary 3, along the same lines as in
the proof of Lemma 2.2 in [6].

Example 1. Choosing f(x) = 1 in Theorem 7 yields F (t) = 1. Thus, the
conclusion of Theorem 7 states:

u](x) ≤ v(x) = R− |x |, x ∈ B,

where R = (|D |/ωn)1/n. This estimate can be obtained directly as follows:

λu(t) =

∫
{u≥t}

dx =

∫
{u≥t}
| ∇u | dx

=

∫ ‖u‖∞
t

(∫
{u=τ}

dHn−1
)
dτ =

∫ ‖u‖∞
t

P ({u ≥ τ}) dτ,
(12)

where we have used the co-area formula (e.g. see [11]). Here, P (E) stands
for the perimeter of E in the sense of De Giorgi. By differentiating (12), and
applying the classical Isoperimetric Inequality (e.g. see [8]), we derive
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λ′u(t) = −P ({u ≥ t}) ≤ −nω
1
n
n λ

1− 1
n

u (t).

Thus, we obtain

1 ≤ − λ′u(t)

nω
1
n
n λ

1− 1
n

u (t)
. (13)

Integrating (13) from 0 to t leads to

t ≤ − 1

nω
1/n
n

∫ t

0

λ′u(τ)

λ
1− 1

n
u (τ)

dτ = − 1

nω
1/n
n

∫ λu(t)

|D |

ds

s1−
1
n

=
1

ω
1/n
n

(|D |1/n − λ1/nu (t)) = R−
(
λu(t)

ωn

)1/n

.

(14)

By letting t = u∗(ωn|x |n) in (14) and recalling λu(u∗(ωn|x |n)) = ωn|x |n, we
obtain u](x) ≤ R− |x | for x ∈ B, as expected.

The second application is stated in the following Theorem:

Theorem 8. Let u be as in Theorem 7. Then

‖u‖∞ ≤ C|D |1/n‖f‖∞.

Proof. The proof is a consequence of Corollary 5, along the same lines as in
the proof of Corollary 2.1 in [6].
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