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MEASURE SPACE

Abstract

We study a Henstock-Kurzweil type integral defined on a complete
metric measure space X endowed with a Radon measure µ and with
a family of “cells” F that satisfies the Vitali covering theorem with
respect to µ. This integral encloses, in particular, the classical Henstock-
Kurzweil integral on the real line, the dyadic Henstock-Kurzweil integral,
the Mawhin’s integral [19], and the s-HK integral [4]. The main result
of this paper is the extension of the usual descriptive characterizations
of the Henstock-Kurzweil integral on the real line, in terms of ACG∗

functions (Main Theorem 1) and in terms of variational measures (Main
Theorem 2).

1 Introduction

The following descriptive characterizations of the Henstock-Kurzweil integral
on the real line are well known:
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Theorem A. [13, Theorem 6.12, Theorem 6.13] A function f : [a, b] → R
is Henstock-Kurzweil integrable on [a, b] if and only if there exists a function
F : [a, b] → R such that F is ACG∗ and F ′(x) = f(x) almost everywhere on
[a, b].

Theorem B. [2, Theorem 3] A function f : [a, b]→ R is Henstock-Kurzweil
integrable on [a, b] if and only if there exists a function F : [a, b]→ R such that
its variational measure is absolutely continuous with respect to the Lebesgue
measure and F ′(x) = f(x) almost everywhere on [a, b].

Concerning the n-dimensional Henstock-Kurzweil integral, with n > 1,
theorems of type A were proved by Lee-Leng [14], by Lu-Lee [17], and by
Tuo-Yeong [25]. A theorem of type B was proved by Tuo-Yeong [24], [26],
[27].

Moreover, in contrast with the one-dimensional case, the n-dimensional
Henstock-Kurzweil integral, with n > 1, does not integrate all derivatives.
This was the reason for several modifications of the definition of the n-dimen-
sional Henstock-Kurzweil integral done by some mathematicians, including
Mawhin [19], Jarnik-Kurzweil-Schwabik [12], and Pfeffer [20], [21].

For such above integrals, extensions of theorems of type A and B were
done, by others, by Bongiorno-Pfeffer-Thomson [3], by Buczolich-Pfeffer [5],
by De Pauw [6], by Di Piazza [7], and by Faure [9].

In the more general setting of a generic metric measure space, it is well
known that the biggest difficulty in the definition of a Henstock-Kurzweil type
integral is that of finding a suitable family of measurable sets which plays the
role of “intervals”.

Leng-Yee [16] studied, on a complete metric measure space, the Henstock-
Kurzweil integral generated by the family of all finite intersections of sets that
are the difference of two closed balls.

Later, a theorem of type A for this integral was proved by Leng [15]. Un-
fortunately, his characterization requires, on the primitive function F , besides
an ACG∗-type notion, some strong additional conditions (see [15, Theorem
19]).

In this paper we prove that, if the family of “intervals”, used in the def-
inition of a Henstock-Kurzweil type integral on a complete metric measure
space, satisfies, besides the usual conditions, the Vitali covering theorem with
respect to the given measure, then it is possible to obtain natural extensions
of both Theorems A and B.
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2 Preliminaries

We denote by N and R the sets of all natural and real numbers, respectively.
Let X = (X, d) be a complete metric space. For each x ∈ X and E ⊂ X, we
denote by χE , diam(E), ∂E, Eo and d(x,E) the characteristic function of E,
the diameter of E, the boundary of E, the interior of E and the distance from
x to E, respectively.

Let µ be a non-atomic Radon measure on X, let G be a family of non-
empty closed subsets of X and let E ⊂ X. The family G is said to be a fine
cover of E if

inf{diamQ : Q ∈ G, Q 3 x} = 0,

for each x ∈ E.
A family F of non-empty closed subsets of X is said to be a µ-Vitali family if
it satisfies the following Vitali covering theorem:

Theorem 2.1. For each subset E of X and for each subfamily G of F that is
a fine cover of E, there exists a countable system {Q1, Q2, · · · , Qj , · · · } ⊂ G
such that Qi and Qj are non-overlapping (i.e. the interiors of Qi and Qj are
disjoint), for each i 6= j, and such that µ(E \

⋃
Qj) = 0.

A µ-Vitali family F is said to be a family of µ-cells if it satisfies the following
conditions:

(a) Given Q ∈ F and a constant δ > 0, there exist Q1, Q2, · · · , Qm, subcells
of Q, such that Qi and Qj are non-overlapping for each i 6= j, ∪mi=1Qi =
Q, and diam(Qi) < δ, for i = 1, · · · ,m;

(b) Given A,Q ∈ F with A ⊂ Q, there exist Q1, Q2, · · · , Qm, subcells of Q,
such that Qi and Qj are non-overlapping for each i 6= j, and A = Q1;

(c) µ(∂Q) = 0 for each Q ∈ F .

Example 2.1. Let X be the interval [0, 1] of the real line endowed with the
Euclidean distance in R and with the one-dimensional Lebesgue measure L.
The system F of all non-empty closed subintervals ofX is the simplest example
of a family of L-cells in [0, 1].

In fact, F is a L-Vitali family by the well known Vitali covering theorem
on the real line (see [23, Chapter IV, § 3]), and conditions (a), (b), and (c) are
trivially satisfied.

Example 2.2. Let X be the interval [0, 1] of the real line endowed with the
Euclidean distance in R and with the one-dimensional Lebesgue measure. It
is easy to see that the system Fd of all non-empty closed dyadic subintervals
of [0, 1] is also a family of L-cells in [0, 1].
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Example 2.3. Let n > 1 and letX be the unit cube [0, 1]n of Rn endowed with
the Euclidean distance in Rn and with the n-dimensional Lebesgue measure
Ln. For a fixed α ∈ (0, 1], the system Fα of all non-empty closed subintervals
Q of [0, 1]n such that Ln(Q) ≥ αLn(B), for some ball B containing Q, is a
family of Ln-cells.

In fact, Fα is a Ln-Vitali family by [23, Chapter IV, § 3], and conditions
(a), (b) and (c) are trivially satisfied.

Example 2.4. Let X be the interval [0, 1] of the real line endowed with the
Euclidean distance in R, and let K ⊂ [0, 1] be an s-set; i.e., a closed fractal
subset of [0, 1] of positive s-Hausdorff measure Hs, with 0 < s < 1. The
system FK of all non-empty closed subintervals of [0, 1] is a family of cells
with respect to the measure µK(·) = Hs(· ∩K).

In fact, the measure µK is Radon by [18, Theorem 1.9 (2) and Corollary
1.11], FK is a µK-Vitali family by [18, Theorem 2.8], and conditions (a), (b)
and (c) are trivially satisfied.

In the next definition of the HK-integral on X, a family of µ-cells will takes
the role of the usual “intervals” in the classical definition of the Henstock-
Kurzweil integral on the real line.

3 The HK-Integral

Throughout this paper, X = (X, d) is a fixed complete metric space endowed
with a non-atomic Radon measure µ and with a family F of µ-cells. For
simplicity, in the rest of this paper, we use the name cell instead of the name
of µ-cell each time there is no ambiguity.

A gauge on a cell Q is any positive real function δ defined on Q. Let
Q ∈ F , let E ⊂ Q and let δ be a gauge on Q. A collection P = {(xi, Qi)}mi=1

of ordered pairs (points-cells) is said to be

• a partition of Q, if Q1, Q2, · · · , Qm are pairwise non-overlapping ele-
ments of F such that ∪mi=1Qi = Q and xi ∈ Qi for i = 1, · · · ,m;

• a partial partition of Q, if Q1, Q2, · · · , Qm are pairwise non-overlapping
elements of F such that ∪mi=1Qi ⊂ Q and xi ∈ Qi for i = 1, · · · ,m;

• δ-fine, if diam(Qi) < δ(xi) for i = 1, · · · ,m;

• E-anchored, if the points x1, · · · , xm belong to E.

The following Cousin’s type lemma addresses the existence of δ-fine partitions
of a given cell Q.
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Lemma 3.1. If δ is a gauge on a cell Q, then there exists a δ-fine partition
of Q.

Proof. Let us observe that if Q = ∪mi Qi, with Qi ∈ F , and if P1, ...,Pm are
δ-fine partitions of cells Q1, Q2, · · · , Qm, respectively, then

⋃m
i=1 Pi is a δ-fine

partition of Q. Using this observation we proceed by contradiction.
By condition (a) there existQ1, Q2, · · · , Qm subcells ofQ such that ∪mi Qi =

Q and diam(Qi) < diam(Q)/2. Let us suppose that Q does not have a δ-fine
partition. Then, there exists an index i ∈ {1, 2, · · · ,m} such that Qi does not
have a δ-fine partition.

Let us say i = 1. By indefinitely repeating this argument we obtain a
sequence of nested cells:

Q ⊃ Q1 ⊃ · · · ⊃ Qk ⊃ · · ·

such that diam(Qk) ≤ diam(Q)/2k and Qk does not have a δ-fine partition.
Since diam(Qk) → 0, and the cells are closed sets, then there exists a point
ξ ∈ Q such that

∞⋂
k=1

Qk = {ξ}.

So, by δ(ξ) > 0, we can find a natural k such that diam(Qk) < δ(ξ). Thus,
{(ξ,Qk)}k is a δ-fine partition of Qk, contrary to our assumption.

Given a partition P = {(xi, Qi)}mi=1 of a cell Q and a function f : Q→ R
we set

S(f,P) =

m∑
i=1

f(xi)µ(Qi).

Definition 3.1. We say that a function f : Q→ R is HK-integrable on a cell
Q (with respect to µ) if there exists a number I such that for each ε > 0 there
is a gauge δ on Q with

|S(f,P)− I| < ε,

for each δ-fine partition P = {(xi, Qi)}mi=1 of Q. The number I is called the
HK-integral of f on Q (with respect to µ), and we write

I =

∫
Q

f dµ.

The collection of all HK-integrable functions on Q (with respect to µ) will be
denoted by µ-HK(Q), or simply by HK(Q) if it is clear that µ is our fixed
non-atomic Radon measure.
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Remark 3.1. If X, µ, and F are defined as in the Example 2.1, then the
µ-HK integral is the classical Henstock-Kurzweil integral on [0, 1].

Remark 3.2. If X, µ, and F are defined as in the Example 2.2, then the
µ-HK integral is the dyadic Henstock-Kurzweil integral on [0, 1].

Remark 3.3. If X, µ, and F are defined as in the Example 2.3, then the
µ-HK integral is the Mawhin’s integral on [0, 1]n.

Remark 3.4. If X, µ, and F are defined as in the Example 2.4, then the
µ-HK integral is the s-HK integral on a s-set studied in [4].

4 Some Properties of the HK-Integral

It is easy to see that the HK-integral is uniquely determined and that for each
cell Q the space HK(Q) is closed under addition and scalar multiplication.
Furthermore, by condition (b), it follows that if f ∈ HK(Q), and if A is a
subcell of Q, then f ∈ HK(A) and∫

A

f dµ =

∫
Q

f χA dµ.

Moreover, if f ∈ HK(Q) and if Q1, Q2, · · · , Qm are non-overlapping subcells
of Q such that Q =

⋃
i Qi, then∫

Q

f dµ =

m∑
i=1

∫
Qi

f dµ.

The map

F : A 
∫
A

f dµ,

defined on each subcell A of Q, is called the indefinite HK-integral of f on Q.
Obviously, the indefinite HK-integral is an additive function of cells.

It is useful to remark that each Lebesgue integrable function on a cell Q is
also HK-integrable on Q and the two integrals coincide.

Theorem 4.1. Let Q be a cell and let f : Q→ R. If f is Lebesgue integrable
on Q with respect to µ, then f is HK-integrable on Q and

(L)

∫
Q

f dµ =

∫
Q

f dµ,

where by (L)
∫
Q
f dµ we denote the Lebesgue integral of f on Q with respect

to µ.



An Integral on a Complete Metric Measure Space 163

Proof. By the Vitali-Carathéodory Theorem (see [22, Theorem 2.25]), given
ε > 0 there exist functions u and v on Q that are upper and lower semicontin-
uos respectively, such that −∞ ≤ u ≤ f ≤ v ≤ +∞ and (L)

∫
Q

(v− u) dµ < ε.
Define on Q a gauge δ so that

u(t) ≤ f(x) + ε and v(t) ≥ f(x)− ε,

for each t ∈ Q with d(x, t) < δ(x).
Let P = {(x1, Q1), (x2, Q2), · · · , (xm, Qm)} be a δ-fine partition of Q.

Then, for each i ∈ {1, 2, · · · , p}, we have

(L)

∫
Qi

u dµ ≤ (L)

∫
Qi

f dµ ≤ (L)

∫
Qi

v dµ. (1)

Moreover, by u(t) ≤ f(xi) + ε, for each t ∈ Qi, it follows that

(L)

∫
Qi

(u− ε) dµ ≤ (L)

∫
Qi

f(xi) dµ,

and therefore,

(L)

∫
Qi

u dµ− ε µ(Qi) ≤ f(xi)µ(Qi).

Similarly, by v(t) ≥ f(xi)− ε, for each t ∈ Qi, it follows that

f(xi)µ(Qi) ≤ (L)

∫
Qi

v dµ+ ε µ(Qi).

So, for i = 1, 2, · · · , p, we have

(L)

∫
Qi

u dµ− ε µ(Qi) ≤ f(xi)µ(Qi) ≤ (L)

∫
Qi

v dµ+ ε µ(Qi).

Hence,

(L)

∫
Q

u dµ− ε µ(Q) ≤ S(f,P) ≤ (L)

∫
Q

v dµ+ ε µ(Q),

and, by (1),

(L)

∫
Q

u dµ ≤ (L)

∫
Q

f dµ ≤ (L)

∫
Q

v dµ.

Thus,∣∣∣∣S(f,P)− (L)

∫
Q

f dµ

∣∣∣∣ ≤ (L)

∫
Q

(v − u) dµ+ 2ε µ(Q) < ε+ 2ε µ(Q),

and the theorem is proved.
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In the sequel, we need the following Saks-Henstock type Lemma, whose
proof is identical to that used in the case X = [0, 1]. Therefore, it will be
omitted.

Lemma 4.2. A function f : Q → R is HK-integrable on a cell Q if and only
if there exists an additive cell function π defined on the family of all subcells
of Q such that, for each ε > 0, there exists a gauge δ on Q with

∑
(xi,Qi)∈P

∣∣∣∣π(Qi)− f(xi)µ(Qi)

∣∣∣∣ < ε

for each δ-fine partial partition P of Q. In this situation, π is the indefinite
HK-integral of f on Q.

5 Absolutely HK-integrable Functions

Let Q be a cell. We recall that a function f : Q → R is said to be absolutely
HK-integrable on Q if |f | is HK-integrable on Q. In this section we study
the absolutely HK-integrable functions. In particular, we prove that these
functions are Lebesgue integrable and that their primitives are differentiable
µ-almost everywhere.

Given a cell function F defined on F and given x ∈ X, we remind the
reader that the upper derivative of F at x, with respect to µ, is defined as
follows

DF (x) = lim sup
F3B→x

F (B)

µ(B)
,

where B → x means µ(B) 6= 0, diam(B)→ 0, and x ∈ B.
Analogously, lower derivative of F at x is defined, and it is denoted by

DF (x). Whenever DF (x) = DF (x) 6=∞, then F is said to be differentiable at
x and their common value is called the derivative of F at x and it is denoted
by F ′(x).

Theorem 5.1. If f is a non-negative HK-integrable function on a cell Q and
if F is its indefinite HK-integral, then F is differentiable µ- almost everywhere
on Q and F ′ = f.

Proof. To prove that F ′ = f µ-almost everywhere on Q, it is enough to show
that DF ≤ f ≤ DF µ-almost everywhere on Q, since DF ≤ DF everywhere.

To this end, we consider positive rational numbers p, q such that q > p and
we set

Ap,q = {x ∈ Q : DF (x) > q > p > f(x)}.
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If we prove that µ(Ap,q) = 0 for each p and q, then DF (x) ≤ f(x) µ-almost
everywhere on Q. Similarly, we can prove that DF (x) ≥ f(x) µ-almost every-
where on Q.

Given ε > 0, by Lemma 4.2 there exists a gauge δ on Q such that

m∑
j=1

|F (Qj)− f(xj)µ(Qj)| < ε,

for each δ-fine partial partition {(xj , Qj)}mj=1 of Q.

Let V be the system of all cells B ⊂ Q such that F (B) ≥ q µ(B) and that
there exists x ∈ B ∩ Ap,q with diam(B) < δ(x). It is easy to see that this
system V is a fine cover of Ap,q. Therefore, (F being a µ-Vitali family) there
exists a system of pairwise non-overlapping cells {Bj}mj=1 ⊂ V such that

µ(Ap,q) ≤
m∑
j=1

µ(Bj) + ε. (2)

For j = 1, 2, · · · ,m, let xj ∈ Bj ∩ Ap,q such that diam(Bj) < δ(xj). Since
{(xj , Bj)}mj=1 is a δ-fine partial partition of Q, we get

q

m∑
j=1

µ(Bj) ≤
m∑
j=1

F (Bj)

≤
m∑
j=1

|F (Bj)− f(xj)µ(Bj)|+
m∑
j=1

f(xj)µ(Bj)

< ε+ p

m∑
j=1

µ(Bj).

Therefore (q − p)
∑m
j=1 µ(Bj) < ε.

So, by (2) and by the arbitrariness of ε we obtain µ(Ap,q) = 0.

Now, we prove that each absolutely HK-integrable function is Lebesgue
integrable. To this end, we need the following Monotone Convergence type
Theorem.

Theorem 5.2. Let {fk}k be an non-decreasing sequence of HK-integrable
functions on a cell Q and let f = limk fk. If

lim
k→∞

∫
Q

fk dµ <∞,
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then f is HK-integrable on Q and∫
Q

f dµ = lim
k→∞

∫
Q

fk dµ.

The proof is similar to that for the classical HK-integral on the real line,
and it is omitted.

Theorem 5.3. If f is a non-negative HK-integrable function on a cell Q and
if F is its indefinite HK-integral, then f is µ-measurable.

Proof. For k ∈ N, let Pk be a 1/k-fine partial partition of Q, and let fk be
the simple function defined as follows

fk(x) =
∑

(x,B)∈Pk

F (B)

µ(B)
.

We set C =
⋃∞
k=1

⋃
B∈Pk

∂B and

D = {x ∈ Q : F ′(x) does not exist, or F ′(x) exists and F ′(x) 6= f(x)}.

By condition (c) and by Theorem 5.1, the set E = C ∪D is µ-null.

Now, let x ∈ Q \ E. For each k ∈ N there exists Qk,x ∈ F such that
(x,Qk,x) ∈ Pk, diam(Qk,x) < 1/k and fk(x) = F (Qk,x)/µ(Qk,x). Then, by
F ′(x) = f(x), we obtain fk(x) → f(x). Thus, the claim follows by the µ-
measurability of fk, for each k ∈ N .

Theorem 5.4. If f is absolutely HK-integrable on a cell Q, then f is Lebesgue
integrable on Q.

Proof. For k ∈ N, let fk(x) = min{|f(x)|, k}, for each x ∈ Q. By Theorem
5.3, |f | is Lebesgue measurable. Therefore, if fk is Lebesgue measurable and
bounded, then it is Lebesgue integrable on Q. Thus, by Theorem 4.1, fk
is HK-integrable on Q. Hence, since {fk}k is an non-decreasing sequence of
non-negative functions convergent to |f |, by Theorem 5.2 we have

(L)

∫
Q

|f | dµ = (L) lim
k→∞

∫
Q

fk dµ = lim
k→∞

∫
Q

fk dµ =

∫
Q

|f | dµ <∞,

and the proof is complete.
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6 Characterization of the indefinite HK-integral

Hereafter, we denote by π a fixed additive function defined on the family of
all subcells of Q. Given E ⊂ Q and a gauge δ on E, we set

V δπ(E) = sup

{
m∑
i=1

|π(Qi)|

}
,

where the supremum is taken over all the δ-fine E-anchored partial partition
P = {(x1, Q1), (x2, Q2), · · · , (xm, Qm)} of Q.

The critical variation of π on E is defined as

V π(E) = inf V δπ(E),

where the infimum is taken over all gauges δ on E.
It is easy to prove that the extended real-valued function V π : E  V π(E)

is a metric outer measures on Q. Therefore, by the Carathéodory criterion
([8, Theorem 1.5]), V π is a Borel measure.

We note that the measure V π is said to be absolutely continuous with
respect to µ (or µ-AC) on Q if, for each E ⊂ Q with µ(E) = 0, we have
V π(E) = 0.

Theorem 6.1. If f is HK-integrable on a cell Q and if F is its indefinite
HK-integral, then the critical variation V F is µ-AC on Q.

Proof. Let E ⊂ Q such that µ(E) = 0. We set

h(x) =

{
f(x), for x ∈ Q \ E,
0, for x ∈ E.

It is clear that F is also the indefinite HK-integral of h. Then, by Lemma 4.2,
given ε > 0 we can find a gauge δ on Q such that

m∑
i=1

|F (Qi)− h(xi)µ(Qi)| < ε,

for each δ-fine partial partition P = {(x1, Q1), (x2, Q2), · · · , (xm, Qm)} of Q.
In particular, if P is anchored in E, then we have

m∑
i=1

|F (Qi)| < ε.

Hence, by the arbitrariness of ε, it follows that V F (E) = 0. Thus, V F is
µ-AC on Q.
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Theorem 6.2. If π is differentiable µ-almost everywhere on a cell Q and
V π is µ-AC on Q, then π′ is HK-integrable on Q, and π is the indefinite
HK-integral of π′ on Q.

Proof. We denote by E the µ-negligible set of all x ∈ Q at which π is not
differentiable, and we define

f(x) =

{
π′(x), for x ∈ Q \ E,
0, for x ∈ E.

It suffices to show that f is HK-integrable on Q and that π is the indefinite
HK-integral of f . Since V π is µ-AC, given ε > 0 there exists a gauge δ1 on
E such that

∑p
i=1 |π(Ai)| < ε/2 for each δ1-fine E-anchored partial partition

{(y1, A1), · · · , (yp, Ap)} of Q.
Moreover, given x ∈ Q \ E there exists δ2(x) > 0 such that

|π(B)− f(x)µ(B)| < ε

2µ(Q)
µ(B),

for each subset B of Q such that B ∈ F , x ∈ B, and diam(B) < δ2(x). Now,
we define a gauge δ on Q by setting

δ(x) =

{
δ1(x), for x ∈ E,
δ2(x), for x ∈ Q \ E,

and we choose a δ-fine E-anchored partial partition P = {(xi, Qi)}mi=1 of Q.
Then,

m∑
i=1

|π(Qi)− f(xi)µ(Qi)| ≤
∑
xi∈E

|π(Qi)|+
∑
xi /∈E

|π(Qi)− f(xi)µ(Qi)|

<
ε

2
+

ε

2µ(Q)

∑
xi /∈E

µ(Qi) = ε,

since f(xi) = 0 for xi ∈ E and
∑
xi /∈E µ(Qi) = µ(Q \E) = µ(Q). Therefore f

is HK-integrable on Q and π is the indefinite HK-integral of f .

Definition 6.1. Let Q be a cell. We say that π is BV 4 on E ⊂ Q if there
exists a gauge δ on E such that V δπ(E) <∞.

We say that π is BVG4 on Q if there exists a countable sequence of closed
sets {Ek}k such that

⋃
k Ek = Q and π is BV 4 on Ek, for each k ∈ N.
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Definition 6.2. Let Q be a cell. We say that π is AC4 on E ⊂ Q if for ε > 0
there exists a gauge δ on E and a positive constant η such that the condition∑m
i=1 µ(Qi) < η implies

∑m
i=1 |π(Qi)| < ε, for each δ-fine E-anchored partial

partition P = {(xi, Qi)}mi=1 of Q.
We say that π is ACG4 on Q if there exists a countable sequence of closed

sets {Ek}k such that
⋃
k Ek = Q and π is AC4 on Ek, for each k ∈ N.

Theorem 6.3. Let E be a compact subset of a cell Q. If π is AC4 on E,
then π is BV 4 on E.

Proof. Since π is AC4 on E, there exists a gauge δ on Q and a positive
constant η such that

∑m
i=1 |π(Qi)| < 1 whenever P = {(xi, Qi)}mi=1 is a δ-fine

E-anchored partial partition of Q with
∑m
i=1 µ(Qi) < η.

Moreover, since µ is non-atomic, for each x ∈ Q there exists an open
neighborhood G of x such that µ(G) < η. Then, by the compactness of E,
there exist open sets G1, G2, · · · , Gp with µ(Gj) < η, for j = 1, 2, · · · , p, and
E ⊂

⋃p
j=1Gj . Given x ∈ E, let j ∈ {1, · · · , p} such that x ∈ Gj , and define

δ1(x) = min{δ(x),d(x, ∂Gj)}.
Let {(xi, Qi)}mi=1 be an arbitrary δ1-fine E-anchored partial partition, and

let Ij = {i : Qi ⊂ Gj}. Therefore, we have

m∑
i=1

|π(Qi)| ≤
p∑
j=1

∑
i∈Ij

|π(Qi)| ≤ p <∞,

since µ
(⋃

i∈Ij Qi

)
≤ µ(Gj) < η. Hence, V δ1π(E) < ∞, and the proof is

complete.

Theorem 6.4. If f is HK-integrable on a cell Q and F is its indefinite HK-
integral, then there exists a sequence {Ek}k of closed sets such that Q =⋃∞
k=1Ek and that f is Lebesgue integrable on Ek for each k ∈ N.

Proof. By Theorem 5.3, |f | is µ-measurable. For each natural number m,
let

Am = {x ∈ Q : |f(x)| ≤ m}.

Since µ is a Radon measure, we have Am = Nm ∪
⋃∞
i=1Am,i where Nm is

µ-null and the Am,i, i = 1, 2, · · · , are closed sets.
Now, let N =

⋃∞
m=1Nm and let {Ck}k be a rearrangement of {Am,i}i. More-

over, let

Q = N ∪
∞⋃
k=1

Ck,
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and let

h(x) =

{
f(x), for x ∈

⋃∞
k=1 Ck,

0, for x ∈ N.

We remark that h is still HK-integrable on Q and that F is its indefinite
HK-integral. Therefore, by Lemma 4.2, there exists a gauge δ on Q such that

m∑
i=1

|F (Qi)− h(xi)µ(Qi)| < 1, (3)

for each δ-fine partial partition P = {(xi, Qi)}mi=1 of Q. Then, in particular,

m∑
i=1

|F (Qi)| < 1, (4)

for each δ-fine N -anchored partial partition P = {(ξi, Qi)}mi=1 of Q.
For each natural number k, let

Wk =

{
x ∈ N : δ(x) ≥ 1

k

}
.

It is clear that N =
⋃∞
i=1Wk. Hence, N ⊂

⋃
kW k. Then, Q =

⋃
kW k∪

⋃
k Ck.

The function h is Lebesgue integrable on Ck, for k = 1, 2, · · · , since it is
measurable and bounded. Then to complete the proof, it is enough to show
that h is Lebesgue integrable on W k, for k = 1, 2, · · · . To this aim, for each
q ∈ N, we remark that the function hq(x) = min{|h(x)|, q} is measurable
and bounded; therefore, hq,k := hq χWk

is Lebesgue integrable on Q. Hence,
by Theorem 4.1, hq,k is HK-integrable on Q. Let Fq,k be the indefinite HK-
integral of hq,k with respect to µ (or the indefinite HK-integral of hq with
respect to µk, with µk(E) = µ(E ∩W k)); then by Lemma 4.2 there exists a
gauge δ1 on Q such that δ1(x) < inf{δ(x), 1/k}, for each x ∈ Q, and∑

i

|Fq,k(Qi)− hq(xi)µk(Qi)| < 1,

for each δ1-fine partial partition {(xi, Qi)}i of Q. Let P = {(xi, Qi)}mi=1 be a
fixed δ1-fine partition of Q, and let I = {i : Wk ∩Q◦i 6= ∅}. Then,

• If i /∈ I, we have (Qi ∩W k) ⊆ ∂Qi; so, by condition (c),

0 ≤
∑
i/∈I

Fq,k(Qi) =
∑
i/∈I

∫
Qi∩Wk

hq dµ ≤
∑
i/∈I

∫
∂Qi

hq dµ = 0;
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• If i ∈ I, there exists ξ ∈ Qi ∩Wk; so {(ξi, Qi)}i is a δ1-fine Wk-anchored
partial partition.

Thus, by (3) and (4) we have∑
i∈I
|hq(ξi)µk(Qi)| ≤

∑
i∈I
|h(ξi)µ(Qi)|

≤
∑
i∈I
|h(ξi)µ(Qi)− F (Qi)|+

∑
i∈I
|F (Qi)|

≤ 1 + 1 = 2.

Hence,

Fq,k(Q) =
m∑
i=1

|Fq,k(Qi)| =
∑
i∈I
|Fq,k(Qi)|

≤
∑
i∈I
|Fq,k(Qi)− hq(ξi)µk(Qi)|+

∑
i∈I
|hq(ξi)µk(Qi)|

≤ 1 + 2 = 3.

Thus, 0 ≤
∫
Q
hq dµk = Fq,k(Q) ≤ 3; i.e., hq is Lebesque integrable on Q. In

conclusion, since hq → |h|, by the Monotone Convergence Theorem, we have

(L)

∫
Q

|h| dµk = lim
k→∞

(L)

∫
Q

hq dµk ≤ 3;

i.e., h is Lebesgue integrable on W k.

Theorem 6.5. Let f be HK-integrable on a cell Q and let F be its indefinite
HK-integral. If f is Lebesgue integrable on a closed subset A of Q, then F is
AC4 on A.

Proof. By Lemma 4.2, for each ε > 0 there exists a gauge δ1 on Q such that

m∑
i=1

|F (Qi)− f(xi)µ(Qi)| <
ε

3
, (5)

for each δ1-fine partial partition P = {(xi, Qi)}mi=1 of Q. Moreover, since f is
Lebesgue integrable on A, the function fχA is HK-integrable on Q. We set
fA := fχA, and we denote by FA(Q) the indefinite HK-integral of fA on Q.
Therefore, by Lemma 4.2, there exists a gauge δ2 on Q such that

m∑
i=1

|FA(Qi)− fA(ξi)µ(Qi)| =
m∑
i=1

|FA(Qi)− f(ξi)µ(Qi)| <
ε

3
, (6)
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for each δ2-fine A-anchored partial partition {(ξi, Qi)}mi=1 of Q. Now, since f
is Lebesgue integrable on A, the function FA is µ-AC on A. Consequently, we
can find a positive η such that the condition µ (

⋃m
i=1Qi) =

∑m
i=1 µ(Qi) < η

implies

m∑
i=1

|FA(Qi)| ≤
m∑
i=1

∫
Qi∩A

|f | dµ ≤
∫
⋃
Qi∩A

|f | dµ < ε

3
. (7)

Therefore, by (5), (6) and (7), we infer

m∑
i=1

|F (Qi)| ≤
m∑
i=1

|F (Qi)− f(ξi)µ(Qi)|

+

m∑
i=1

|f(ξi)µ(Qi)− FA(Qi)|+
m∑
i=1

|FA(Qi)| < ε,

for each δ-fine A-anchored partial partition {(ξi, Qi)}mi=1, where

δ(x) = min{δ1(x), δ2(x)}.

Hence, F is AC4 on A.

Theorem 6.6. If f is HK-integrable on a cell Q and if F is its indefinite
HK-integral, then F is ACG4 on Q.

Proof. By Theorem 6.4, there exists a sequence {Ek}k of closed sets such
that Q =

⋃∞
k=1Ek and f is Lebesgue integrable on Ek for each k ∈ N. More-

over, by Theorem 6.5, F is AC4 on Ek for each k. Therefore, F is ACG4 on
Q.

Theorem 6.7. If π is ACG4 on a cell Q, then V π is µ-AC on Q.

Proof. By hypothesis, there exists a sequence of closed sets {Ek}k such that⋃
k Ek = Q and that π is AC4 on Ek for each k ∈ N. Therefore, for ε > 0 there

exists a gauge δ on Ek and a positive η such that the condition
∑m
i=1 µ(Qi) < η

implies
∑m
i=1 |π(Qi)| < ε for each δ-fine Ek-anchored partial partition P =

{(xi, Qi)}mi=1 of Q. Let E ⊂ Q be µ-null. Since E ∩ Ek is µ-null, for each
k ∈ N, there exists an open set Gk such that E ∩ Ek ⊂ Gk and µ(Gk) < η.

For each x ∈ E ∩ Ek, we define δ1(x) = min {δ(x),d(x, ∂Gk)}. So, if
{(xi, Qi)}mi=1 is a δ1-fine E ∩ Ek-anchored partial partition of Q, we have
Qi ⊂ Gk, for each i. Therefore,

∑m
i=1 µ(Qi) ≤ µ(Gk) < η, which implies∑m

i=1 |π(Qi)| < ε. Then, V δ1π(E ∩ Ek) ≤ ε and V π(E ∩ Ek) ≤ ε. By the
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arbitrariness of ε, it follows that V π(E∩Ek) = 0. Hence, since V π is an outer
measure and E =

⋃∞
k=1(E ∩ Ek), we have

V π(E) ≤
∞∑
k=1

V π(E ∩ Ek) = 0.

Thus, V π is µ-AC on Q.

We note that a signed measure λ, defined on the σ-algebra of all µ-
measurable subsets of Q, is said to be absolutely continuous with respect to
µ, and we write λ � µ if the condition µ(E) = 0 implies |λ|(E) = 0 for each
µ-measurable E ⊂ A. Here, |λ|(E) denotes the variation of λ on E.

Lemma 6.8. Let A be a closed subset of Q and let λ be a signed measure on
Q such that λ� µ. Then, λ is AC4 on A.

The proof follows easily by [22, Theorem 6.11].

Lemma 6.9. If π is an additive function of cells that is AC4 on a closed
subset A of a cell Q, then

E =

{
x ∈ A : lim

Q→x

|π(Q)|
µ(Q)

6= 0

}
is µ-null.

Proof. Let

En =

{
x ∈ E : there exists {Qxk}k → x, with

|π(Qxk)|
µ(Qxk)

>
1

n
for each k ∈ N

}
.

It is trivial to remark that E =
⋃
nEn; therefore, to end the proof it is enough

to show that µ(En) = 0, for each n ∈ N. Proceeding towards a contradiction,
we can suppose that there exists a natural n̄ ∈ N such that µ(En̄) 6= 0. Thus,
there exists a compact set K ⊂ En̄ for which µ(K) > 0. Less than substracting
from K a µ-null relatively open subset, we can assume that µ(K ∩U) > 0 for
each open set U ⊂ X with K ∩ U 6= ∅.

Since K is compact there exists a countable dense subset C of K. Let
H ⊃ C be a µ-null Gδ set. Therefore, K ∩H is a µ-null Gδ subset of K that
is dense on K. We show that Vπ(K ∩H) > 0, contradicting Theorem 4.7.

Set D = K ∩ H, and let δ be a gauge on D. We define Dm = {x ∈ D :
δ(x) > 1/m}, for m ∈ N. Then, by D =

⋃
mDm and by the Baire Category

theorem, there exists an open set U such that D ∩ U 6= ∅ and there exists a
natural m̄ such that Dm̄ is dense on D ∩ U, and hence on K ∩ U.

Let B be the system of all cells Q such that |π(Q)| > µ(Q)/m̄, and
diam(Q) < 1/m̄. Therefore, B is a fine cover of K ∩ U . Moreover, since
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µ(K ∩ U) > 0 and since F is a µ-Vitali family, by the previous remark on
the choice of K, there exists a non-overlapping system of cells {Qi ∈ B}i that
covers K ∩ U up to a µ-null set. Then,

∞∑
i=1

|π(Qi)| >
1

m̄

∞∑
i=1

µ(Qi) >
1

m̄
µ(K ∩ U) = M.

So, there exists an integer p ≥ 1 such that
∑p
i=1 |π(Qi)| > M, and, since

µ does not charge the boundaries of cells (condition (c)), the interior of
each Qi meets K ∩ U. Thus, by the density of Dm̄ on K ∩ U, we have
Dm̄ ∩ Qi 6= ∅, and we can select xi ∈ Dm̄ ∩ Bi for each natural i. So,
{(x1, B1), (x2, B2), . . . (xp, Bp)} is a δ-fine Dm̄-anchored partial partitions of
K ∩ U , and consequently, V δπ (Dm̄) ≥ M. Then, by the arbitrariness of δ, we
have Vπ(Dm̄) ≥M, the required contradiction.

Theorem 6.10. Let π be an additive cell function. If π is AC4 on a closed
subset A of a cell Q, then π is differentiable µ-almost everywhere on A.

Proof. Given an arbitrary subset Y of Q, we define the functions

V δ+π(Y ) = sup

{
m∑
i=1

(π(Qi))
+

}
and V δ−π(Y ) = sup

{
m∑
i=1

(π(Qi))
−

}
,

where (π(Qi))
+ = max{π(Qi), 0} and (π(Qi))

− = max{−π(Qi), 0} are the
positive and the negative parts of π, respectively, and the supremum is taken
over all δ-fine Y -anchored partial partition P = {(xi, Qi)}mi=1 of Q.

As for the definition of V π, we can define V+π and V−π by

V+π(Y ) = inf V δ+π(Y ) and V−π(Y ) = inf V δ−π(Y ),

where the infimum is taken over all gauges δ on E. It is easy to prove that
V+π and V−π are finite measures.

For each measurable set E of Q, we define ν+(E) = V+π(E ∩ A) and
ν−(E) = V−π(E ∩ A). Since π is AC4 on A, given ε > 0 there exists
a gauge δ on A and η > 0 such that the condition

∑m
i=1 µ(Qi) < η im-

plies
∑m
i=1 |π(Qi)| < ε for each δ-fine A-anchored partial partition P =

{(xi, Qi)}mi=1 of Q.
Let E ⊂ Q be µ-null. Therefore, E ∩ A is µ-null, and thus, there ex-

ists an open set G such that E ∩ A ⊂ G and µ(G) < η. By the argu-
ment used in the proof of Theorem 6.7, we have

∑m
i=1 µ(Qi) ≤ µ(G) < η,

which implies
∑m
i=1(π(Qi))

+ ≤
∑m
i=1 |π(Qi)| < ε, for each δ1-fine (E ∩ A)-

anchored partial partition {(xi, Qi)}mi=1 of Q. Therefore, V δ1+ π(E ∩ A) ≤ ε
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and ν+(E) = V+π(E ∩ A) ≤ ε. Thus, ν+ � µ. Similarly, we can prove that
ν− � µ.

So, by the Radon-Nikodym Theorem ([11, Theorem 19.23]), there exist
non-negative Lebesgue integrable functions f+ and f− on Q such that

ν+(E) = (L)

∫
E

f+ dµ and ν−(E) = (L)

∫
E

f− dµ,

for every µ-measurable subset E of Q.
We set f = f+ − f−, and we remark that f is Lebesgue integrable on Q.

Therefore, by Theorem 4.1, f is HK-integrable on Q, and ν = ν+ − ν− is the
indefinite HK-integral of f . Since f is the Radon-Nikodym derivative of ν
with respect to µ, we have

lim
F3R→x

ν(R)

µ(R)
= f(x), (8)

µ-almost everywhere on A.
Now, by Lemma 6.8, the signed measure ν is AC4 on A. Then also, π− ν

is AC4 on A. Hence, by Lemma 6.9, we have limR→x(π(R)−ν(R))/µ(R) = 0
µ-almost everywhere on A, and by (8) we have limR→x π(R)/µ(R) = f(x),
µ-almost everywhere on A; i.e., π′(x) = f(x) µ-almost everywhere on A.

Theorem 6.11. Let π be an additive cell function. If π is ACG4 on a cell
Q, then π is differentiable µ-almost everywhere on Q.

Proof. Since π is ACG4 on Q, then there exists a countable sequence of
closed sets {Ek}k such that

⋃
k Ek = Q and π is AC4 on Ek, for each k ∈ N.

So, by Theorem 6.10, π is differentiable µ-almost everywhere on Ek for each
k ∈ N. Thus, it is differentiable µ-almost everywhere on Q.

Main Theorem 1 (of Type A). Let Q be a cell. A function f : Q → R is
HK-integrable on Q if and only if there exists an additive cell function F that
is ACG4 on Q and F ′(x) = f(x) µ-almost everywhere on Q.

Proof. Let f : Q→ R be HK-integrable on Q, and let F be its HK-primitive.
By Theorem 6.6, F is ACG4 on Q, then by Theorem 6.11 F is differentiable
µ-almost everywhere on Q. Moreover, by Theorem 6.7, V F is µ-AC on Q. So,
by Theorem 6.2, F ′(x) = f(x) µ-almost everywhere on Q.

Vice versa, let F be an additive function of cells that is ACG4 on Q
and such that F ′(x) = f(x) µ-almost everywhere on Q. By Theorem 6.7,
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V F is µ-AC on Q, and then, by Theorem 6.2, F is the HK-primitive of F ′.
Thus, the condition f(x) = F ′(x), µ-almost everywhere on Q, implies the
HK-integrability of f on Q.

Main Theorem 2 (of Type B). Let Q be a cell. A function f : Q → R is
HK-integrable on Q if and only if there exists an additive cell function F such
that V F is µ-AC on Q and F ′(x) = f(x) µ-almost everywhere on Q.

Proof. Let f : Q→ R be HK-integrable on Q, and let F be its HK-primitive.
By Theorems 6.6 and 6.7, V F is µ-AC. Moreover by Theorems 6.6 and 6.10, F
is differentiable µ-almost everywhere on Q, and, by Theorem 6.2, F ′(x) = f(x)
µ-almost everywhere on Q.

Vice versa, let F be an additive function of cells such that V F is µ-AC on
Q and F ′(x) = f(x) µ-almost everywhere on Q. Then, by Theorem 6.2, F
is the HK-primitive of F ′ on Q. Thus, the condition f(x) = F ′(x), µ-almost
everywhere on Q, implies the HK-integrability of f on Q.
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[12] J. Jarńık, J. Kurzweil, S̆. Schwabik, On Mawhin’s approach to multiple
nonabsolutely convergent integral, C̆asopis pĕst. mat., 108 (1983), 356–
380.

[13] P. Y. Lee, Lanzhou lectures on Henstock integration, Series in Real Anal-
ysis, vol. 2. World Scientific Publishing Co. Inc., Teaneck, NJ, 1989.

[14] P. Y. Lee and N. W. Leng, The Radon-Nikodým theorem for the Henstock
integral in Euclidean space, Real Anal. Exchange, 22 (1996/1997), no. 2,
677–687.

[15] N. W. Leng, The Radon-Nikodým theorem for a nonabsolute integral on
measure spaces, Bull. Korean Math. Soc., 41 (2004), no. 1, 153–166.

[16] N. W. Leng and L. P. Yee, Nonabsolute integral on measure spaces, Bull.
London Math. Soc., 32 (2000), no. 1, 34–38.

[17] J. Lu and P. Y. Lee, The primitives of Henstock integrable functions in
Euclidean space, Bull. London Math. Soc., 31 (1999), no. 2, 173–180.

[18] P. Mattila, Geometry of sets and measures in Euclidean Spaces. Cam-
bridge University Press, 1995.

[19] J. Mawhin, Generalized multiple Perron integrals and the Green-Goursat
theorem for differentiable vector fields, Czechoslovak Math. J., 31 (1981),
no. 4, 614–632.

[20] W. F. Pfeffer, The divergence theorem, Trans. Amer. Math. Soc., 295
(1986), no. 2, 665–685.



178 D. Bongiorno and G. Corrao

[21] W. F. Pfeffer, The Riemann approach to integration, Cambridge Tracts
in Mathematics, 109, Cambridge University Press, Cambridge, 1993.

[22] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co.,
New York, 1987.

[23] S. Saks, Theory of the integral. Dover Publications Inc., New York, 1964.

[24] L. Tuo-Yeong, A full descriptive definition of the Henstock-Kurzweil in-
tegral in the Euclidean space, Proc. London Math. Soc., 87 (2003), no. 3,
677–700.

[25] L. Tuo-Yeong, Some full descriptive characterizations of the Henstock-
Kurzweil integral in the euclidean space, Czechoslovak Math. J., 55
(2005), no. 3, 625–637.

[26] L. Tuo-Yeong, A measure-theoretic characterization of the Henstock-
Kurzweil integral revisited, Czechoslovak Math. J., 58 (2008), no. 4, 1221–
1231.

[27] L. Tuo-Yeong, Henstock-Kurzweil integration on Euclidean spaces. Word
Scientific, Singapore, 2011.


