Kathryn Hare,* Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada. email: kehare@uwaterloo.edu
Ka-Shing Ng, Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada. email: michael.ng@uwaterloo.edu

HAUSDORFF AND PACKING MEASURES OF BALANCED CANTOR SETS

Abstract

We estimate the h-Hausdorff and h-packing measures of balanced Cantor sets, and characterize the corresponding dimension partitions. This generalizes results known for Cantor sets associated with positive decreasing summable sequences and central Cantor sets.

1 Introduction

The size of a non-empty set $E \subset \mathbb{R}$ can be characterized by its Hausdorff dimension or packing dimension, although the corresponding Hausdorff or packing measure of the set can be zero or infinity. In such a case, it is desirable to have a more refined description of the dimension. The more general notions of h-Hausdorff measure and h-packing measure were already considered by Hausdorff ([7], or see [8]) and Tricot ([9, 10]), with the power functions x^{α} replaced by more general dimension functions h. If there exists a function h such that $0<H^{h}(E) \leq P^{h}(E)<\infty$, the set E is said to be h-regular, and h provides a more precise description of the dimension of E.

If E is a central Cantor set with ratio of dissection r_{k} at step k, then it is easy to see that E is h-regular if and only if $h\left(r_{1} \cdots r_{k}\right) \equiv \frac{1}{2^{k}}$. The set of all dimension functions h which make a set h-regular was similarly characterized for the Cantor sets associated with positive decreasing summable sequences in

[^0][4] (called decreasing Cantor sets here). In this paper, we extend these results to a broader class of Cantor sets that we call balanced. In particular, we show that the balanced Cantor sets attain the maximal Hausdorff dimension within the collection of all cut-out sets associated with a given sequence.

2 Dimension functions and measures

A function h is said to be doubling if there exists $\tau>0$ such that $h(2 x) \leq \tau h(x)$ for all x. A function $h:[0, A) \rightarrow[0, \infty)$ is called a dimension function (or a gauge function) if h is continuous, increasing, doubling and $h(0)=0$. Let \mathbb{D} be the set of dimension functions. The power functions $h(x)=x^{\alpha}, \alpha>0$, are typical examples of dimension functions.

The diameter of any set $A \subset \mathbb{R}$ is denoted by $|A|$. Let $h \in \mathbb{D}$. The h-Hausdorff measure of a set $E \subset \mathbb{R}$ is defined to be

$$
H^{h}(E):=\lim _{\delta \rightarrow 0^{+}} \inf \left\{\sum_{i=1}^{\infty} h\left(\left|E_{i}\right|\right): E \subset \bigcup_{i=1}^{\infty} E_{i},\left|E_{i}\right| \leq \delta\right\}
$$

A δ-packing of a set E is a countable, disjoint family of open balls $\left\{B_{i}\right\}_{i}$ centred at points in E with $\left|B_{i}\right| \leq \delta$. The h-packing pre-measure of E is

$$
P_{0}^{h}(E):=\lim _{\delta \rightarrow 0^{+}} \sup \left\{\sum_{i=1}^{\infty} h\left(\left|B_{i}\right|\right):\left\{B_{i}\right\}_{i=1}^{\infty} \text { is a } \delta \text {-packing of } E\right\}
$$

and the h-packing measure of E is

$$
P^{h}(E):=\inf \left\{\sum_{i=1}^{\infty} P_{0}^{h}\left(E_{i}\right): E=\bigcup_{i=1}^{\infty} E_{i}\right\}
$$

If $h(x)=h_{\alpha}(x)=x^{\alpha}$ for some $\alpha \geq 0$, this is the usual Hausdorff measure $H^{\alpha}(E)$, packing pre-measure $P_{0}^{\alpha}(E)$ and packing measure $P^{\alpha}(E)$.

When $h \in \mathbb{D}$, it is proved in [10] that

$$
H^{h}(E) \leq P^{h}(E) \leq P_{0}^{h}(E)
$$

for $E \subset \mathbb{R}$. A set E is called h-regular if $0<H^{h}(E) \leq P^{h}(E)<\infty$ and α-regular if $0<H^{\alpha}(E) \leq P^{\alpha}(E)<\infty$. In such cases we also call E an h-set or an α-set, respectively. If E is an α-set, then α is the Hausdorff and packing dimension of E.

3 Balanced Cantor sets

By a Cantor set, C, we mean a subset of \mathbb{R} of Lebesgue measure 0 that is totally disconnected, compact and perfect. It will have the form

$$
C=I \backslash \bigcup_{i=1}^{\infty} A_{i}
$$

where I is a closed and bounded interval and $\left\{A_{i}\right\}$ is a sequence of disjoint open subintervals $A_{i} \subset I$ with $|I|=\sum_{i=1}^{\infty}\left|A_{i}\right|$.

Next, we introduce a symbol space W. For each integer $k \geq 1$, let $n_{k} \geq 2$. Let $D_{0}:=\{e\}, D_{k}:=\left\{w_{1} \cdots w_{k}: 0 \leq w_{l} \leq n_{l}-1\right.$ for $\left.1 \leq l \leq k\right\}$. Let

$$
W:=\bigcup_{k=0}^{\infty} D_{k}
$$

be the set of all words with finite length. W is called a symbol space. If $w=w_{1} \cdots w_{k} \in W$, its length is denoted as $|w|=k$.

If we fix a symbol space W, we can always obtain a representation of C corresponding to W, by which we mean we can find closed intervals I_{w} for $w \in D_{k}$ such that

$$
\begin{equation*}
C=\bigcap_{k=1}^{\infty} \bigcup_{w \in D_{k}} I_{w} \tag{1}
\end{equation*}
$$

One way to do this is as follows. Let $I_{e}:=I$. For each $k \geq 1$ and $w \in W$ of length $|w|=k-1$, we can find $n_{k}-1$ largest gaps, $G_{w, i}$, in each $I_{w} \backslash C$ by the total disconnectedness and perfectness of C. Since C is perfect, the endpoints of the gaps will not touch one another and $I_{w} \backslash \bigcup_{i} G_{w, i}$ gives n_{k} closed subintervals $I_{w j}$ of I_{w}. Inductively, we obtain a family of closed intervals $\mathcal{F}:=\left\{I_{w}: w \in W\right\}$ with property (1). Of course there can be many other choices for the intervals I_{w}.

If $|w|=k, I_{w}$ is called a Cantor interval of level k. Denote the number of intervals at level k by $N_{k}=\left|D_{k}\right|=n_{1} \cdots n_{k}$ and the average length of Cantor intervals at level k by

$$
s_{k}=\frac{1}{N_{k}} \sum_{w \in D_{k}}\left|I_{w}\right| .
$$

Since $w \in D_{k}$ can be mapped bijectively to $1 \leq j \leq N_{k}$, we also label I_{w} as $I_{j}^{k}, j=1, \cdots, N_{k}$ and with I_{j}^{k} placed to the left of I_{j+1}^{k}. We will use both notations interchangeably. The Cantor set then also has the form

$$
\begin{equation*}
C=\bigcap_{k=1}^{\infty} \bigcup_{j=1}^{N_{k}} I_{j}^{k} \tag{2}
\end{equation*}
$$

We identify a subcollection of the Cantor sets which satisfies a certain balancing property in this representation. The collection of Cantor sets under consideration will include all the central Cantor sets and the decreasing Cantor sets. In the rest of the paper, we assume $M:=\sup _{k} n_{k}<\infty$.

Definition 1. Let W be a symbol space. A Cantor set C is said to be W balanced if C has a W-representation as in (2), with the associated Cantor intervals satisfying the property that there exist some $K \geq 1$ and $L_{1}, L_{2} \geq 0$ such that

$$
s_{k+L_{1}} \leq\left|I_{j}^{k}\right| \leq s_{k-L_{2}}
$$

for any $k \geq K$ and $1 \leq j \leq N_{k}$. C will be called balanced if it is W-balanced for some symbol space W. Let \mathscr{C} denote the collection of all balanced Cantor sets.

Example 1 (Central Cantor sets and homogeneous Cantor sets). Let $n_{k}=2$ and $0<r_{k} \leq b<\frac{1}{2}$ for all k. For each interval I_{w} of level $k-1$, let $I_{w 0}$ and $I_{w 1}$ be the left and right intervals of level k obtained by removing a centred, open interval from I_{w} so that $\left|I_{w 0}\right|=\left|I_{w 1}\right|=\left|I_{w}\right| r_{k} . \quad I_{w 0}$ and $I_{w 1}$ share, respectively, the left and right endpoints with I_{w}. The Cantor set C formed is called a central Cantor set and has a representation corresponding to $W=\bigcup_{k=0}^{\infty} D_{k}$, where $D_{k}=\{0,1\}^{k}$.

More generally, let $n_{k} \geq 2,0<r_{k}$ and $n_{k} r_{k} \leq b<1$ for all k. For each interval I_{w} of level $k-1$, let $I_{w j}, 0 \leq j \leq n_{k}-1$, be n_{k} subintervals of equal length in I_{w} so that $\left|I_{w 0}\right|=\cdots=\left|I_{w\left(n_{k}-1\right)}\right|=\left|I_{w}\right| r_{k} . \quad I_{w 0}$ and $I_{w\left(n_{k}-1\right)}$ share, respectively, the left and right endpoints with I_{w}. Moreover, we require the subintervals to be equally spaced; i.e., the gap lengths between adjacent subintervals $I_{w j}$ and $I_{w(j+1)}$ are all the same. The Cantor set formed is called a homogeneous Cantor set. An example is $C+C$ where C is the middle fourth Cantor set. Here $I=[0,2], n_{k}=3$ and $r_{k}=\frac{1}{4}$ for all k.

In both cases, the average length of the intervals of level k is

$$
s_{k}=r_{1} \cdots r_{k}=\left|I_{w}\right|
$$

for any w with $|w|=k$, so the Cantor set is balanced.
Example 2 (Decreasing Cantor sets). Let $a=\left(a_{i}\right)_{i=1}^{\infty}$ be a positive, decreasing, summable sequence, and let I be a closed interval with $|I|=\sum_{i=1}^{\infty} a_{i}$. Remove an open interval A_{1} of length a_{1} from I, leaving two closed non-trivial intervals I_{1}^{1} on the left and I_{2}^{1} on the right with lengths

$$
\left|I_{1}^{1}\right|=\sum_{l=1}^{\infty} \sum_{p=0}^{2^{l-1}-1} a_{2^{l}+p} \text { and }\left|I_{2}^{1}\right|=\sum_{l=1}^{\infty} \sum_{p=2^{l-1}}^{2^{l}-1} a_{2^{l}+p}
$$

Recursively, suppose we have constructed $\left\{I_{j}^{k}\right\}_{1 \leq j \leq 2^{k}}$ at level k, ordered from left to right. Remove from each interval, I_{j}^{k}, an open interval of length $a_{2^{k}+j-1}$ and obtain two closed intervals $I_{2 j-1}^{k+1}, I_{2 j}^{k+1}$ of step $k+1$, where

$$
\left|I_{2 j-1}^{k+1}\right|=\sum_{l=0}^{\infty} \sum_{p=(2 j-2) 2^{l}}^{(2 j-1) 2^{l}-1} a_{2^{l+k+1}+p} \text { and }\left|I_{2 j}^{k+1}\right|=\sum_{l=0}^{\infty} \sum_{p=(2 j-1) 2^{l}}^{(2 j) 2^{l}-1} a_{2^{l+k+1}+p}
$$

The positions of the gaps A_{i} removed and the intervals I_{j}^{k} are uniquely determined. We call the Cantor set

$$
C_{a}:=\bigcap_{k=1}^{\infty} \bigcup_{j=1}^{2^{k}} I_{j}^{k}
$$

a decreasing Cantor set. It also corresponds to the symbol space $W=$ $\bigcup_{k=0}^{\infty}\{0,1\}^{k}$.

Since $a=\left(a_{i}\right)$ is decreasing, $\left\{\left|I_{j}^{k}\right|\right\}_{(k, j)}$ is lexicographically decreasing. In consequence,

$$
s_{k+1} \leq\left|I_{1}^{k+1}\right| \leq\left|I_{j}^{k}\right| \leq\left|I_{2^{k-1}}^{k-1}\right| \leq s_{k-1}
$$

for all j, and this C is balanced.
Example 3. Let $a=\left(a_{i}\right)_{i=1}^{\infty}$, let I be defined as in Example 2 and let $W=$ $\bigcup_{k=0}^{\infty} D_{k}$ be an arbitrary symbol space. Recall that $N_{k}=\left|D_{k}\right|=n_{1} \cdots n_{k}$. Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be a permutation of natural numbers such that for all $k \geq 1$, if $N_{k} \leq i \leq N_{k+1}-1$, then $N_{k} \leq \sigma(i) \leq N_{k+1}-1$. Define a sequence $b=\left(b_{i}\right)$ by $b_{i}:=a_{\sigma(i)}$. At the first step, we remove $n_{1}-1$ open intervals B_{i} with length $b_{i}, 1 \leq i \leq n_{1}-1$, from I and obtain n_{1} closed intervals $I_{j}^{1}, 1 \leq j \leq n_{1}$. Repeat as above and define

$$
C_{b}^{W}:=\bigcap_{k=1}^{\infty} \bigcup_{j=1}^{N_{k}} I_{j}^{k}
$$

We can check that $s_{k+1} \leq\left|I_{j}^{k}\right| \leq s_{k-1}$ for all j, so C_{b}^{W} is balanced as well. If σ is the identity map, then $b=a$; i.e., $b_{i}=a_{i}$ for all $i \geq 1$. We call C_{a}^{W} a general decreasing Cantor set.

4 Hausdorff and packing measure of a balanced Cantor set

First, we estimate the Hausdorff and packing pre-measure of a balanced Cantor set. This generalizes the results in [1] and [3].

Theorem 1. Let C be a balanced Cantor set with the number of Cantor intervals $N_{k}=n_{1} \cdots n_{k}$ and the average length s_{k} at level k. There exist positive constants A, B such that for any $h \in \mathbb{D}$, we have:

1. $A \lim \inf _{k \rightarrow \infty} N_{k} h\left(s_{k}\right) \leq H^{h}(C) \leq B \liminf _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)$,
2. $A \lim \sup _{k \rightarrow \infty} N_{k} h\left(s_{k}\right) \leq P_{0}^{h}(C) \leq B \lim \sup _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)$.

Proof. (1) The proof is based on the idea in [1, Lemma 4].
(1) (a) With the balanced property, we have

$$
\sum_{j=1}^{N_{k}} h\left(\left|I_{j}^{k}\right|\right) \leq N_{k} h\left(s_{k-L_{2}}\right) \leq M^{L_{2}} N_{k-L_{2}} h\left(s_{k-L_{2}}\right)
$$

when k is large enough. The upper bound is obtained by taking the liminf and putting $B:=M^{L_{2}}$.
(1) (b) Let $\lambda=\liminf _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)$. If $\lambda=0$, then the lower bound is trivial, so assume $\lambda>0$. For any $\varepsilon>0$, there exists K_{0} such that for any $k \geq K_{0}$, we have $(1-\varepsilon) \lambda<N_{k} h\left(s_{k}\right)$ and also $s_{k+L_{1}} \leq\left|I_{j}^{k}\right|$ by the balanced property.

Let $0<\delta<\min _{j}\left|I_{j}^{K_{0}}\right|$. Let $\left\{B_{i}\right\}_{i}$ be a δ-covering of C by open intervals and let $R=\bigcup_{i} B_{i}$. As C is compact, we can assume the covering consists of finitely many intervals, say $\left\{B_{i}\right\}_{i=1}^{M}$. There exists $K>1$ such that $\bigcup_{j=1}^{N_{K}} I_{j}^{K} \subset$ R, by the finite intersection property of a compact set.

We can also assume the intervals B_{i} in the covering are disjoint. Otherwise, the intersection of two intervals will be open and must contain some gap of the Cantor set. We can then shrink down the intervals to make them disjoint and get a lower estimate of $H^{h}(C)$.

In order to obtain a further lower bound, we replace each B_{i} by the smallest possible (single) closed interval, V_{i}, containing $B_{i} \cap \bigcup_{j=1}^{N_{K}} I_{j}^{K}$. Then $\sum h\left(\left|V_{i}\right|\right) \leq$ $\sum h\left(\left|B_{i}\right|\right)$. If $V_{i}=\emptyset$, then we simply discard it.

Let τ_{i} be the number of intervals of level K contained in V_{i}. Then $\tau_{i} \geq 1$ and $\sum_{i} \tau_{i}=N_{K}=n_{1} \cdots n_{K}$. For each i, let p_{i} be the non-negative integer such that

$$
\begin{equation*}
\frac{N_{K}}{N_{K-p_{i}}} \leq \tau_{i}<\frac{N_{K}}{N_{K-p_{i}-1}} . \tag{3}
\end{equation*}
$$

For any integer j, let $Q(j)=\frac{N_{K}}{N_{j}}$.
If $p_{i}=0$, then $1 \leq \tau_{i}<n_{k}$ and V_{i} contains some I_{j}^{K}. In this case, $\left|I_{j}^{K}\right| \leq\left|V_{i}\right| \leq\left|B_{i}\right|<\delta$, and hence $K>K_{0}$. Thus,

$$
\frac{1}{N_{K-p_{i}+L_{1}+1}}(1-\varepsilon) \lambda<\frac{1}{N_{K+L_{1}}}(1-\varepsilon) \lambda<h\left(s_{K+L_{1}}\right) \leq h\left(\left|I_{j}^{K}\right|\right) \leq h\left(\left|V_{i}\right|\right) .
$$

If $p_{i} \geq 1$, then $2 \leq Q\left(K-p_{i}\right) \leq \tau_{i}<Q\left(K-p_{i}-1\right)$. Note that V_{i} contains at least $Q\left(K-p_{i}\right)$ consecutive intervals of level K and

$$
Q\left(K-p_{i}\right) \geq 2 Q\left(K-p_{i}+1\right)
$$

Consider the level $K-p_{i}+1$. Each interval $I_{j}^{K-p_{i}+1}$ contains $Q\left(K-p_{i}+1\right)$ subintervals of level K. It follows that V_{i} must contain an interval $I_{j}^{K-p_{i}+1}$ for some j, and the length of V_{i} must be at least $\left|I_{j}^{K-p_{i}+1}\right|$. So we have

$$
\left|I_{j}^{K-p_{i}+1}\right| \leq\left|V_{i}\right|<\delta
$$

In particular, this forces $K-p_{i}+1>K_{0}$, and hence,

$$
\begin{equation*}
\frac{1}{N_{K-p_{i}+L_{1}+1}}(1-\varepsilon) \lambda<h\left(s_{K-p_{i}+L_{1}+1}\right) \leq h\left(\left|I_{j}^{K-p_{i}+1}\right|\right) \leq h\left(\left|V_{i}\right|\right) \tag{4}
\end{equation*}
$$

by the balanced property.
Using (3) and (4) we obtain

$$
\begin{aligned}
\frac{1}{M^{L_{1}+2}}(1-\varepsilon) \lambda & =\frac{(1-\varepsilon) \lambda}{M^{L_{1}+2}} \sum_{i} \frac{\tau_{i}}{N_{k}}<(1-\varepsilon) \lambda \sum_{i} \frac{1}{N_{K-p_{i}-1} M^{L_{1}+2}} \\
& \leq(1-\varepsilon) \lambda \sum_{i} \frac{1}{N_{K-p_{i}+L_{1}+1}}<\sum_{i} h\left(\left|V_{i}\right|\right) \leq \sum_{i} h\left(\left|B_{i}\right|\right)
\end{aligned}
$$

Since $\left\{B_{i}\right\}_{i}$ is any δ-covering of C and $\varepsilon>0$ is arbitrary, we get

$$
\frac{1}{M^{L_{1}+2}} \liminf _{k \rightarrow \infty} N_{k} h\left(s_{k}\right) \leq H^{h}(C)
$$

(2) We modify the proof of [3, Theorem 4.2].
(2) (a) Let $d<\lim \sup _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)$. There exists a subsequence $\left\{k_{p}\right\}_{p \geq 1}$ such that $d<N_{k_{p}} h\left(s_{k_{p}}\right) \leq N_{k_{p}} h\left(\left|I_{j}^{k_{p}-L_{1}}\right|\right)$, where the second inequality follows from the balanced property.

For any $\delta>0$, take k_{p} large enough that $\left|I_{j}^{k_{p}-L_{1}}\right|<\delta$ for all j. Let us take the family of intervals $\left\{B_{i}:=B\left(x_{i}, r\right)\right\}_{i=1}^{N_{k_{p}-L_{1}-1}}$, where $r=s_{k_{p}} / 2$ and x_{i} is the left endpoint of $I_{i n}^{k_{p}-L_{1}}, n=n_{k_{p}-L_{1}}$. The balls are centred in C. Since $\left|I_{j}^{k_{p}-L_{1}}\right| \geq s_{k_{p}}>r$ for any j, we have the inclusion $B_{i} \subset I_{i}^{k_{p}-L_{1}-1}$ and the balls are pairwise disjoint.

As $\left|B_{i}\right|=s_{k_{p}}<\delta$, this is a δ-packing and

$$
\sum_{i} h\left(\left|B_{i}\right|\right)=\sum_{i=1}^{N_{k_{p}-L_{1}-1}} h\left(s_{k_{p}}\right)=N_{k_{p}-L_{1}-1} h\left(s_{k_{p}}\right)>\frac{d}{M^{L_{1}+1}} .
$$

Thus,

$$
\frac{1}{M^{L_{1}+1}} \limsup _{k \rightarrow \infty} N_{k} h\left(s_{k}\right) \leq P_{0}^{h}(C) .
$$

(2) (b) Let $\varepsilon>0$. There exists k_{0} such that

$$
\sup _{k \geq k_{0}} N_{k} h\left(s_{k}\right) \leq \limsup _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)+\varepsilon .
$$

Choose δ small enough that $2 \delta<\left|I_{j}^{k_{0}+L_{2}+2}\right|$ for all j.
Let $\left\{B_{i}\right\}_{i}$ be a δ-packing of C and take

$$
k_{i}:=\min \left\{k: I_{j}^{k} \subset B_{i} \text { for some } 1 \leq j \leq N_{k}\right\} .
$$

Then $k_{i} \geq k_{0}+L_{2}+2$ and B_{i} is centred at a point of an interval of level $k_{i}-1$, but does not contain the interval. Therefore, $\left|B_{i}\right| / 2<\left|I_{j_{i}}^{k_{i}-1}\right|$, where $I_{j_{i}}^{k_{i}-1}$ is the interval of level $k_{i}-1$ containing the center of B_{i}. As $n_{k} \geq 2$,

$$
\left|B_{i}\right|<2\left|I_{j_{i}}^{k_{i}-1}\right| \leq n_{k_{i}-L_{2}-1} s_{k_{i}-L_{2}-1} \leq s_{k_{i}-L_{2}-2}
$$

from the balanced property, and therefore,

$$
\sum_{i} h\left(\left|B_{i}\right|\right) \leq \sum_{i} h\left(s_{k_{i}-L_{2}-2}\right) .
$$

Let $l_{1}<\cdots<l_{m}$ be the distinct k_{i} 's, and let θ_{p} be the number of repetitions of l_{p}; i.e., θ_{p} is the number of B_{i} 's containing an interval of level l_{p}, but none of those at level $l_{p}-1$. Each ball B_{i} of the packing associated to l_{p} contains at least $\frac{N_{l_{m}}}{N_{l_{p}}}$ intervals of step l_{m}. Since $\left\{B_{i}\right\}_{i}$ is a disjoint family, $\sum_{p=1}^{m-1} \theta_{p} \frac{N_{l_{m}}}{N_{l_{p}}}$ intervals of level l_{m} are already covered by the B_{i} 's corresponding to l_{1}, \cdots, l_{m-1}. θ_{m} can only be at most the number of the remaining intervals at level l_{m} :

$$
\theta_{m} \leq N_{l_{m}}-\sum_{p=1}^{m-1} \theta_{p} \frac{N_{l_{m}}}{N_{l_{p}}}=N_{l_{m}}\left(1-\sum_{p=1}^{m-1} \frac{\theta_{p}}{N_{l_{p}}}\right)
$$

This implies $\sum_{p=1}^{m} \frac{\theta_{p}}{N_{l_{p}}} \leq 1$.
As a result,

$$
\begin{aligned}
\sum_{i} h\left(\left|B_{i}\right|\right) & \leq \sum_{i} h\left(s_{k_{i}-L_{2}-2}\right)=\sum_{p=1}^{m} \theta_{p} h\left(s_{l_{p}-L_{2}-2}\right) \\
& \leq M^{L_{2}+2} \sum_{p=1}^{m} \frac{\theta_{p}}{N_{l_{p}}} N_{l_{p}-L_{2}-2} h\left(s_{l_{p}-L_{2}-2}\right) \\
& \leq M^{L_{2}+2}\left(\underset{k \rightarrow \infty}{\limsup } N_{k} h\left(s_{k}\right)+\varepsilon\right)
\end{aligned}
$$

since $l_{p}-L_{2}-2 \geq k_{0}$. Hence,

$$
P_{0}^{h}(C) \leq M^{L_{2}+2} \limsup _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)
$$

In Theorem 1, only the packing pre-measure is estimated, but not the packing measure. In general, we only know that $P^{h}(E) \leq P_{0}^{h}(E)$ for $E \subset \mathbb{R}$, and the strict inequality can happen. However, the packing measure $P^{h}(C)$ and the packing pre-measure $P_{0}^{h}(C)$ are finite and positive simultaneously for a balanced Cantor set C. To prove this, we will make use of the following version of the mass distribution principle.

Lemma $2([10,4])$. Let $E \subset \mathbb{R}$. Let μ be a finite regular Borel measure, and let $h \in \mathbb{D}$ be a dimension function. If

$$
\begin{equation*}
\liminf _{r \rightarrow 0} \frac{\mu\left(B\left(x_{0}, r\right)\right)}{h(r)}<c \tag{5}
\end{equation*}
$$

for all $x_{0} \in E$, then

$$
P^{h}(E) \geq \frac{\mu(E)}{c}
$$

Theorem 3. Let C be a balanced Cantor set and $h \in \mathbb{D}$. If $P_{0}^{h}(C)=\infty$, then $P^{h}(C)=\infty$. If $P_{0}^{h}(C)>0$, then $P^{h}(C)>0$.

Proof. Let μ be the uniform Cantor measure defined by $\mu\left(I_{j}^{k}\right)=\frac{1}{N_{k}}$. Let $x_{0} \in C$ and $r>0$. The balanced property tells us that there exist L_{1}, L_{2} such that $s_{k+L_{1}} \leq\left|I_{j}^{k}\right| \leq s_{k-L_{2}}$ for large enough k.

Suppose k is the minimal integer such that $B\left(x_{0}, r\right)$ contains an interval of level k. The minimality of k ensures that $B\left(x_{0}, r\right)$ can intersect at most $2 n_{k}$ intervals of level k, which implies $\mu\left(B\left(x_{0}, r\right)\right) \leq 2 n_{k} \frac{1}{N_{k}}=\frac{2}{N_{k-1}}$. Let I_{j}^{k} be a level k interval contained in $B\left(x_{0}, r\right)$, so $\left|I_{j}^{k}\right| \leq 2 r$. Since h is doubling, there exists some $\tau>0$ such that

$$
h\left(s_{k+L_{1}}\right) \leq h\left(\left|I_{j}^{k}\right|\right) \leq h(2 r) \leq \tau h(r)
$$

Then

$$
\frac{\mu\left(B\left(x_{0}, r\right)\right)}{h(r)} \leq \frac{2 \tau}{N_{k-1} h\left(s_{k+L_{1}}\right)}=\frac{2 \tau M^{L_{1}+1}}{N_{k+L_{1}} h\left(s_{k+L_{1}}\right)}
$$

so that

$$
c_{0}:=\liminf _{r \rightarrow 0} \frac{\mu\left(B\left(x_{0}, r\right)\right)}{h(r)} \leq \frac{2 \tau M^{L_{1}+1}}{\lim \sup _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)}
$$

By the inequalities in Theorem $1, P_{0}^{h}(C)>0$ implies $\limsup N_{k} h\left(s_{k}\right)>0$, while $P_{0}^{h}(C)=\infty$ implies $\lim \sup N_{k} h\left(s_{k}\right)=\infty$. If $P_{0}^{h}(C)>0$, then $c_{0}<\infty$ and $P^{h}(C) \geq \frac{\mu(C)}{c_{0}}>0$ by the lemma. Correspondingly, if $P_{0}^{h}(C)=\infty$, then $c_{0}=0$. Hence $P^{h}(C) \geq \frac{\mu(C)}{c}>0$ for every $c>0$ and $P^{h}(C)=\infty$.

Corollary 4. Let C be a balanced Cantor set and $h \in \mathbb{D}$. Then

1. $P_{0}^{h}(C)=0$ if and only if $P^{h}(C)=0$,
2. $P_{0}^{h}(C)=\infty$ if and only if $P^{h}(C)=\infty$, and
3. $0<P_{0}^{h}(C)<\infty$ if and only if $0<P^{h}(C)<\infty$.

5 Dimension partition of a balanced Cantor set

The dimension partition of a set $E \subset \mathbb{R}$ (as defined in [4]) is a partition of the set \mathbb{D} of dimension functions into six sets, $\mathbb{H}_{\beta}^{E} \cap \mathbb{P}_{\gamma}^{E}$, for $\beta \leq \gamma \in\{0,1, \infty\}$, where

$$
\mathbb{H}_{1}^{E}=\left\{h \in \mathbb{D}: 0<H^{h}(E)<\infty\right\}, \mathbb{P}_{1}^{E}=\left\{h \in \mathbb{D}: 0<P^{h}(E)<\infty\right\}
$$

and for $\eta=0, \infty$,

$$
\mathbb{H}_{\eta}^{E}=\left\{h \in \mathbb{D}: H^{h}(E)=\eta\right\}, \mathbb{P}_{\eta}^{E}=\left\{h \in \mathbb{D}: P^{h}(E)=\eta\right\}
$$

Assume C is a balanced Cantor set with the number of Cantor intervals $N_{k}=n_{1} \cdots n_{k}$ and the average length s_{k} at level k. Define $h_{C}\left(s_{k}\right)=$ $\frac{1}{N_{k}}$ and extend h_{C} to a piecewise linear function on $[0, \infty)$ with $h_{C}(0):=$ $\lim _{x \rightarrow 0^{+}} h_{C}(x)=0$. Then h_{C} can be shown to be a dimension function, and C is h_{C}-regular by Theorem 1 and Corollary 4. We call h_{C} an associated dimension function of C.

This means that $\mathbb{H}_{1}^{C} \cap \mathbb{P}_{1}^{C}$ is always non-empty for the balanced Cantor sets. Indeed, we get immediately from Theorem 1 and Corollary 4 the following description of the dimension partition for the balanced Cantor sets, which was previously shown for the decreasing Cantor sets in [4].

Corollary 5. Let C be a balanced Cantor set with the number of Cantor intervals $N_{k}=n_{1} \cdots n_{k}$ and the average length s_{k} at level k. Then
$\mathbb{H}_{1}^{C}=\left\{h \in \mathbb{D}: 0<\liminf _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)<\infty\right\}, \mathbb{H}_{\beta}^{C}=\left\{h \in \mathbb{D}: \liminf _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)=\beta\right\}$, $\mathbb{P}_{1}^{C}=\left\{h \in \mathbb{D}: 0<\limsup _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)<\infty\right\}, \mathbb{P}_{\beta}^{C}=\left\{h \in \mathbb{D}: \limsup _{k \rightarrow \infty} N_{k} h\left(s_{k}\right)=\beta\right\}$,
where $\beta=0, \infty$.

Corollary 6. Let C be a balanced Cantor set with the number of Cantor intervals $N_{k}=n_{1} \cdots n_{k}$ and the average length s_{k} at level k. Then

$$
\operatorname{dim}_{H} C=\liminf _{k \rightarrow \infty} \frac{-\log N_{k}}{\log s_{k}} \text { and } \operatorname{dim}_{P} C=\limsup _{k \rightarrow \infty} \frac{-\log N_{k}}{\log s_{k}}
$$

In fact, we can further describe the dimension partition of a balanced Cantor set in terms of its associated dimension function h_{C}.

Proposition 7. Let C be a balanced Cantor set with an associated dimension function h_{C} and $g \in \mathbb{D}$.

1. If $\liminf _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}>0$ (or finite), then $H^{g}(C)>0$ (or $H^{g}(C)<$ ∞). In particular, if $\liminf _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}=\infty$ (or 0), then $H^{g}(C)=\infty$ (respectively $H^{g}(C)=0$).
2. If $\lim \sup _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}>0$ (or finite), then $P_{0}^{g}(C)>0$ (or $P_{0}^{g}(C)<$
∞). In particular, if $\lim \sup _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}=\infty($ or 0$)$, then $P_{0}^{g}(C)=\infty$ (respectively $P_{0}^{g}(C)=0$).

Proof. (1) Let $\lambda_{*}:=\liminf _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}>0$. For any $0<\alpha<\lambda_{*}$, there is a $\delta>0$ such that $g(x) \geq \alpha h_{C}(x)$ for all $0<x<\delta$. Then $H^{g}(C) \geq \alpha H^{h_{C}}(C)>$ 0 by the definition of Hausdorff measure. If $\lambda_{*}=\infty$, then α can be arbitrarily large, and hence, $H^{g}(C)=\infty$.

Suppose $\lambda_{*}<\infty$. For any $\alpha>\lambda_{*}$, there exists a positive decreasing sequence $\left\{\delta_{m}\right\}_{m}$ such that $\lim _{m \rightarrow \infty} \delta_{m}=0$ and $g\left(\delta_{m}\right) \leq \alpha h_{C}\left(\delta_{m}\right)$. Let $k=$ $k(m)$ be the integer such that $s_{k} \leq \delta_{m}<s_{k-1}$. Then $\left|I_{j}^{k+L_{2}}\right| \leq s_{k} \leq \delta_{m}$, and $\left\{I_{j}^{k+L_{2}}\right\}_{j}$ is a δ_{m}-covering of C. Therefore,

$$
\begin{aligned}
H_{\delta_{m}}^{g}(C) & \leq \sum_{j=1}^{N_{k+L_{2}}} g\left(\left|I_{j}^{k+L_{2}}\right|\right) \leq N_{k+L_{2}} g\left(\delta_{m}\right) \\
& <N_{k+L_{2}} \alpha h_{C}\left(\delta_{m}\right) \leq \alpha M^{L_{2}+1} N_{k-1} h_{C}\left(s_{k-1}\right)=\alpha M^{L_{2}+1}
\end{aligned}
$$

Taking limits gives

$$
H^{g}(C) \leq \lambda_{*} M^{L_{2}+1}<\infty
$$

(2) Let $\lambda^{*}:=\lim \sup _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}>0$. For any $0<\alpha<\lambda^{*}$, there exists a positive decreasing sequence $\left\{\delta_{m}\right\}_{m}$ such that $\lim _{m \rightarrow \infty} \delta_{m}=0$ and $g\left(\delta_{m}\right) \geq$ $\alpha h_{C}\left(\delta_{m}\right)$. Let k be the integer such that $s_{k} \leq \delta_{m}<s_{k-1}$. For $1 \leq j \leq$
$N_{k-L_{1}-2}$, take as x_{j} the left endpoint of the interval $I_{j n}^{k-L_{1}-1}$, where $n=$ $n_{k-L_{1}-1}$. The collection $\left\{B\left(x_{j}, \delta_{m} / 2\right)\right\}_{j}$ will be disjoint. Thus,

$$
P_{\delta_{m}}^{g}(C) \geq \sum_{j=1}^{N_{k-L_{1}-2}} g\left(\delta_{m}\right) \geq \alpha N_{k-L_{1}-2} h_{C}\left(s_{k}\right) \geq \frac{\alpha}{M^{L_{1}+2}} N_{k} h_{C}\left(s_{k}\right)
$$

and therefore $P_{0}^{g}(C)>0$.
The proof that $P_{0}^{g}(C)<\infty$ if $\lim \sup _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}<\infty$ is similar to the first part of (1).

The following corollary can be compared with the result for the self-similar sets with the open set condition in [11].

Corollary 8. Let C be a balanced Cantor set with an associated dimension function h_{C}. Then for $\beta=0, \infty$,

$$
\begin{aligned}
& \mathbb{H}_{1}^{C}=\left\{g \in \mathbb{D}: 0<\liminf _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}<\infty\right\}, \mathbb{H}_{\beta}^{C}=\left\{g \in \mathbb{D}: \liminf _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}=\beta\right\} \\
& \mathbb{P}_{1}^{C}=\left\{g \in \mathbb{D}: 0<\limsup _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}<\infty\right\}, \mathbb{P}_{\beta}^{C}=\left\{g \in \mathbb{D}: \limsup _{x \rightarrow 0^{+}} \frac{g(x)}{h_{C}(x)}=\beta\right\}
\end{aligned}
$$

Corollary 9. Let C_{1} and C_{2} be balanced Cantor sets with $h_{C_{1}}$ and $h_{C_{2}}$ as their respective associated dimension functions. Then the following are equivalent.
(a) $h_{C_{1}} \equiv h_{C_{2}}$; i.e., there are $A, B>0$ such that $A h_{C_{2}}(x) \leq h_{C_{1}}(x) \leq$ $B h_{C_{2}}(x)$ for all small $x>0$.
(b) $\mathbb{H}_{\beta}^{C_{1}} \cap \mathbb{P}_{\gamma}^{C_{1}}=\mathbb{H}_{\beta}^{C_{2}} \cap \mathbb{P}_{\gamma}^{C_{2}}$ for all $\beta \leq \gamma \in\{0,1, \infty\}$.
(c) $\mathbb{H}_{1}^{C_{1}} \cap \mathbb{P}_{1}^{C_{1}}=\mathbb{H}_{1}^{C_{2}} \cap \mathbb{P}_{1}^{C_{2}}$.

Note that C_{1} and C_{2} can be balanced with respect to different symbol spaces.

Remark 1. Similar arguments to those given in [6] can be used to show that if C_{1} and C_{2} are both W-balanced, then $h_{C_{1}} \equiv h_{C_{2}}$ if and only if there exists an integer L such that $s_{k+L}^{C_{2}} \leq s_{k}^{C_{1}} \leq s_{k-L}^{C_{2}}$ for all $k>L$. Here $\left\{s_{k}^{C_{i}}\right\}_{k}$ are the average interval lengths of C_{i}.

6 Balanced Cantor sets within the collection of cut-out sets

Let $a=\left(a_{i}\right)$ be a positive, decreasing, summable sequence, $|I|=\sum_{i=1}^{\infty} a_{i}$, and let $A_{i} \subset I$ be a sequence of disjoint open subintervals with $\left|A_{i}\right|=a_{i}$. Then $E:=I \backslash \bigcup_{i=1}^{\infty} A_{i}$ is called a cut-out set associated with the sequence $a=\left(a_{i}\right)$. The collection of all these cut-out sets E is denoted by \mathscr{C}_{a}.

It is known that among all the sets in \mathscr{C}_{a}, the decreasing Cantor set C_{a} associated with the sequence a has the maximal Hausdorff dimension and maximal Hausdorff measure up to a constant $[1,5]$. On the other hand, the prepacking dimensions of all the sets in \mathscr{C}_{a} are the same and equal to the upper box dimension [2]. Since the packing and prepacking dimensions of C_{a} coincide [4], it follows that $\operatorname{dim}_{P} E \leq \operatorname{dim}_{P_{0}} E=\operatorname{dim}_{P_{0}} C_{a}=\operatorname{dim}_{P} C_{a}$ for any $E \in \mathscr{C}_{a}$. However, it is shown in [5] that C_{a} has the least packing premeasure up to a constant among the sets in \mathscr{C}_{a}. In the following we will prove similar results for the balanced Cantor sets in \mathscr{C}_{a}.

For any $E \subset \mathbb{R}$ and $r>0$, let

$$
N(E, r)=\min \left\{k: E \subset \bigcup_{i=1}^{k} B\left(x_{i}, r\right)\right\}
$$

and

$$
P(E, r)=\max \left\{k:\left\{B\left(x_{i}, r\right)\right\}_{1 \leq i \leq k} \text { is a } 2 r \text {-packing of } E\right\} .
$$

They can be compared by following lemma.
Lemma 10 ([5]). For any $E_{1}, E_{2} \in \mathscr{C}_{a}$ and $r>0$,

$$
P\left(E_{2}, r\right) \leq 2 N\left(E_{1}, r\right) \leq 2 P\left(E_{1}, r / 2\right) \leq 4 N\left(E_{2}, r / 2\right) .
$$

Theorem 11. Let C be a balanced Cantor set in \mathscr{C}_{a} for some $a=\left(a_{i}\right)$. If $h \in \mathbb{D}$ and E is any set in \mathscr{C}_{a}, then $H^{h}(E) \leq A H^{h}(C)$ and $P_{0}^{h}(C) \leq B P_{0}^{h}(E)$ for some constants A and B, which depend only on h and C.

Proof. Recall that $h \in \mathbb{D}$ is doubling; i.e., $h(2 x) \leq \tau h(x)$ for some τ. The previous lemma implies that for any cut-out set $E \in \mathscr{C}_{a}$, we have

$$
H^{h}(E) \leq \liminf _{r \rightarrow 0} N(E, r) h(2 r) \leq 2 \tau^{2} \liminf _{r \rightarrow 0} N(C, r) h(r) .
$$

If $r>0$ is small, then there exists $k \in \mathbb{N}$ such that $s_{k} \leq r \leq s_{k-1}$. Consider the Cantor intervals $\left\{I_{j}^{k+L_{2}}\right\}_{j=1}^{N_{k+L_{2}}}$ at level $k+L_{2}$. Take their left endpoints as centres and form $N_{k+L_{2}}$ balls with radius r (which is at least the length of
any Cantor interval of level $k+L_{2}$). This is an r-covering of C. So $N(C, r) \leq$ $N_{k+L_{2}}$.

Taking into account Theorem 1, we obtain that for a suitable constant A,

$$
\begin{aligned}
H^{h}(E) & \leq 2 \tau^{2} \liminf _{r \rightarrow 0} N(C, r) h(r) \\
& \leq 2 \tau^{2} M^{L_{2}+1} \liminf _{k \rightarrow \infty} N_{k} h\left(s_{k}\right) \leq A H^{h}(C)
\end{aligned}
$$

For the pre-packing measure, the previous lemma also gives that for any $E \in \mathscr{C}_{a}$,

$$
\frac{1}{2} P(C, r) h(r) \leq P(E, r / 2) h(r) \leq P_{r}^{h}(E)
$$

As above, let $r>0$ be small and take $k \in \mathbb{N}$ such that $s_{k+1} \leq r \leq s_{k}$. Take the subset of Cantor intervals $\left\{I_{j n}^{k-L_{1}}\right\}_{j=1}^{N_{k-L}-1}$ at level $k-L_{1}$, where $n=n_{k-L_{1}}$. Take their left endpoints as centres and form $N_{k-L_{1}-1}$ balls with radii r. Then $N_{k-L_{1}-1} \leq P(C, r)$ and again, applying Theorem 1, we deduce that there are constants B_{1}, B_{2}, B such that

$$
P_{0}^{h}(C) \leq B_{1} \limsup _{k \rightarrow \infty} N_{k} h\left(s_{k}\right) \leq B_{2} \limsup _{r \rightarrow 0} P(C, r) h(r) \leq B P_{0}^{h}(E)
$$

Corollary 12. Let C be a balanced Cantor set in \mathscr{C}_{a} for some $a=\left(a_{i}\right)$. If $h \in \mathbb{D}$ and E is any set in \mathscr{C}_{a}, then $\operatorname{dim}_{H} E \leq \operatorname{dim}_{H} C$.
Proof. This is because $H^{\alpha}(E) \leq A H^{\alpha}(C)$ for any $\alpha \geq 0$.
Corollary 13. If $C_{1}, C_{2} \in \mathscr{C}_{a}$ are both balanced Cantor sets, then there exist positive constants A, B such that for all $h \in \mathbb{D}$,

1. $A H^{h}\left(C_{2}\right) \leq H^{h}\left(C_{1}\right) \leq B H^{h}\left(C_{2}\right)$,
2. $A P_{0}^{h}\left(C_{2}\right) \leq P_{0}^{h}\left(C_{1}\right) \leq B P_{0}^{h}\left(C_{2}\right)$.

Hence, $\mathbb{H}_{\beta}^{C_{1}}=\mathbb{H}_{\beta}^{C_{2}}$ and $\mathbb{P}_{\beta}^{C_{1}}=\mathbb{P}_{\beta}^{C_{2}}$ for $\beta=0,1$ and ∞. In particular, $\operatorname{dim}_{H} C_{1}=\operatorname{dim}_{H} C_{2}$ and $\operatorname{dim}_{P} C_{1}=\operatorname{dim}_{P} C_{2}$.

It follows that for any balanced Cantor set C in \mathscr{C}_{a}, C and C_{a} have the same dimension partition. Note that once the sequence $a=\left(a_{i}\right)$ is fixed, we can construct many general decreasing Cantor sets C_{a}^{W} as in Example 3, with respect to different symbol spaces W. Since they are balanced Cantor sets, they all have the maximal Hausdorff dimension within the collection \mathscr{C}_{a}, namely $\operatorname{dim}_{H} C_{a}$.

Notice, also, that if $E \in \mathscr{C}_{a}$ and $\operatorname{dim}_{H} E<\operatorname{dim}_{H} C_{a}$, then E is not W balanced for any symbol space W.

Remark 2. The self-similar Cantor sets with the open set condition are known to be α-regular and have the same dimension partition as the α-regular balanced Cantor sets ([11]). But we do not know whether they are balanced. Moreover, note that the criterion in the last paragraph of not being balanced does not apply in this case. In fact, let $\underline{\operatorname{dim}}_{B}$ denote the lower box dimension and let E be a self-similar Cantor set. It is well known that $\operatorname{dim}_{H} E=\operatorname{dim}_{B} E$ ([2]). On the other hand, if a is the sequence of gap lengths of E arranged decreasingly, then $\underline{\operatorname{dim}}_{B} E=\underline{\operatorname{dim}}_{B} C_{a}$, since the lower box dimensions of any pair of sets in \mathscr{C}_{a} coincide ([2]), and also $\underline{\operatorname{dim}}_{B} C_{a}=\operatorname{dim}_{H} C_{a}([3])$. Therefore, E attains the maximal Hausdorff dimension of the sets in \mathscr{C}_{a}.

References

[1] A. S. Besicovitch and S. J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc., 29 (1954), 449-459.
[2] K. Falconer, Techniques in Fractal Geometry, John Wiley \& Sons Ltd., Chichester, 1997.
[3] I. Garcia, U. Molter and R. Scotto, Dimension functions of Cantor sets, Proc. Amer. Math. Soc., 135 (2007), 3151-3161.
[4] C. A. Cabrelli, K. E. Hare and U. M. Molter, Classifying Cantor sets by their fractal dimensions, Proc. Amer. Math. Soc., 138 (2010), 3965-3974.
[5] K. E. Hare, F. Mendivil and L. Zuberman, The sizes of rearrangements of Cantor sets, Canad. Math. Bull., 56 (2013), 354-365.
[6] K. E. Hare and L. Zuberman, Classifying Cantor sets by their multifractal spectrum, Nonlinearity, 23 (2010), 2919-2933.
[7] F. Hausdorff, Dimension und äußeres Maß, Math. Ann., 79 (1918), 157179.
[8] C. A. Rogers, Hausdorff Measures, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998.
[9] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91 (1982), 57-74.
[10] X. Saint Raymond and C. Tricot, Packing regularity of sets in n-space, Math. Proc. Cambridge Philos. Soc., 103 (1988), 133-145.
[11] S. Y. Wen, Z. X. Wen and Z. Y. Wen, Gauges for the self-similar sets, Math. Nachr., 281 (2008), 1205-1214.

[^0]: Mathematical Reviews subject classification: Primary: 28A78, 28A80
 Key words: Cantor sets, Hausdorff measures, packing measures, dimension functions, gauge functions, cut-out sets

 Received by the editors March 31, 2014
 Communicated by: Ursula Molter
 ${ }^{*}$ This research is supported in part by NSERC.

