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HAUSDORFF AND PACKING MEASURES
OF BALANCED CANTOR SETS

Abstract

We estimate the h-Hausdorff and h-packing measures of balanced
Cantor sets, and characterize the corresponding dimension partitions.
This generalizes results known for Cantor sets associated with positive
decreasing summable sequences and central Cantor sets.

1 Introduction

The size of a non-empty set E ⊂ R can be characterized by its Hausdorff di-
mension or packing dimension, although the corresponding Hausdorff or pack-
ing measure of the set can be zero or infinity. In such a case, it is desirable to
have a more refined description of the dimension. The more general notions
of h-Hausdorff measure and h-packing measure were already considered by
Hausdorff ([7], or see [8]) and Tricot ([9, 10]), with the power functions xα

replaced by more general dimension functions h. If there exists a function h
such that 0 < Hh(E) ≤ Ph(E) <∞, the set E is said to be h-regular, and h
provides a more precise description of the dimension of E.

If E is a central Cantor set with ratio of dissection rk at step k, then it is
easy to see that E is h-regular if and only if h(r1 · · · rk) ≡ 1

2k
. The set of all

dimension functions h which make a set h-regular was similarly characterized
for the Cantor sets associated with positive decreasing summable sequences in

Mathematical Reviews subject classification: Primary: 28A78, 28A80
Key words: Cantor sets, Hausdorff measures, packing measures, dimension functions,

gauge functions, cut-out sets
Received by the editors March 31, 2014
Communicated by: Ursula Molter

∗This research is supported in part by NSERC.

113



114 Kathryn Hare and Ka-Shing Ng

[4] (called decreasing Cantor sets here). In this paper, we extend these results
to a broader class of Cantor sets that we call balanced. In particular, we show
that the balanced Cantor sets attain the maximal Hausdorff dimension within
the collection of all cut-out sets associated with a given sequence.

2 Dimension functions and measures

A function h is said to be doubling if there exists τ > 0 such that h(2x) ≤ τh(x)
for all x. A function h : [0, A) → [0,∞) is called a dimension function (or a
gauge function) if h is continuous, increasing, doubling and h(0) = 0. Let D
be the set of dimension functions. The power functions h(x) = xα, α > 0, are
typical examples of dimension functions.

The diameter of any set A ⊂ R is denoted by |A|. Let h ∈ D. The
h-Hausdorff measure of a set E ⊂ R is defined to be

Hh(E) := lim
δ→0+

inf

{ ∞∑
i=1

h(|Ei|) : E ⊂
∞⋃
i=1

Ei, |Ei| ≤ δ

}
.

A δ-packing of a set E is a countable, disjoint family of open balls {Bi}i
centred at points in E with |Bi| ≤ δ. The h-packing pre-measure of E is

Ph0 (E) := lim
δ→0+

sup

{ ∞∑
i=1

h(|Bi|) : {Bi}∞i=1 is a δ-packing of E

}
,

and the h-packing measure of E is

Ph(E) := inf

{ ∞∑
i=1

Ph0 (Ei) : E =

∞⋃
i=1

Ei

}
.

If h(x) = hα(x) = xα for some α ≥ 0, this is the usual Hausdorff measure
Hα(E), packing pre-measure Pα0 (E) and packing measure Pα(E).

When h ∈ D, it is proved in [10] that

Hh(E) ≤ Ph(E) ≤ Ph0 (E)

for E ⊂ R. A set E is called h-regular if 0 < Hh(E) ≤ Ph(E) < ∞ and
α-regular if 0 < Hα(E) ≤ Pα(E) < ∞. In such cases we also call E an h-set
or an α-set, respectively. If E is an α-set, then α is the Hausdorff and packing
dimension of E.
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3 Balanced Cantor sets

By a Cantor set, C, we mean a subset of R of Lebesgue measure 0 that is
totally disconnected, compact and perfect. It will have the form

C = I \
∞⋃
i=1

Ai,

where I is a closed and bounded interval and {Ai} is a sequence of disjoint
open subintervals Ai ⊂ I with |I| =

∑∞
i=1 |Ai|.

Next, we introduce a symbol space W . For each integer k ≥ 1, let nk ≥ 2.
Let D0 := {e}, Dk := {w1 · · ·wk : 0 ≤ wl ≤ nl − 1 for 1 ≤ l ≤ k}. Let

W :=

∞⋃
k=0

Dk

be the set of all words with finite length. W is called a symbol space. If
w = w1 · · ·wk ∈W , its length is denoted as |w| = k.

If we fix a symbol space W , we can always obtain a representation of C
corresponding to W , by which we mean we can find closed intervals Iw for
w ∈ Dk such that

C =

∞⋂
k=1

⋃
w∈Dk

Iw. (1)

One way to do this is as follows. Let Ie := I. For each k ≥ 1 and w ∈ W
of length |w| = k − 1, we can find nk − 1 largest gaps, Gw,i, in each Iw \ C
by the total disconnectedness and perfectness of C. Since C is perfect, the
endpoints of the gaps will not touch one another and Iw \

⋃
iGw,i gives nk

closed subintervals Iwj of Iw. Inductively, we obtain a family of closed intervals
F := {Iw : w ∈ W} with property (1). Of course there can be many other
choices for the intervals Iw.

If |w| = k, Iw is called a Cantor interval of level k. Denote the number of
intervals at level k by Nk = |Dk| = n1 · · ·nk and the average length of Cantor
intervals at level k by

sk =
1

Nk

∑
w∈Dk

|Iw|.

Since w ∈ Dk can be mapped bijectively to 1 ≤ j ≤ Nk, we also label Iw as
Ikj , j = 1, · · · , Nk and with Ikj placed to the left of Ikj+1. We will use both
notations interchangeably. The Cantor set then also has the form

C =

∞⋂
k=1

Nk⋃
j=1

Ikj . (2)
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We identify a subcollection of the Cantor sets which satisfies a certain
balancing property in this representation. The collection of Cantor sets under
consideration will include all the central Cantor sets and the decreasing Cantor
sets. In the rest of the paper, we assume M := supk nk <∞.

Definition 1. Let W be a symbol space. A Cantor set C is said to be W -
balanced if C has a W -representation as in (2), with the associated Cantor
intervals satisfying the property that there exist some K ≥ 1 and L1, L2 ≥ 0
such that

sk+L1 ≤ |Ikj | ≤ sk−L2

for any k ≥ K and 1 ≤ j ≤ Nk. C will be called balanced if it is W -balanced
for some symbol space W . Let C denote the collection of all balanced Cantor
sets.

Example 1 (Central Cantor sets and homogeneous Cantor sets). Let nk = 2
and 0 < rk ≤ b < 1

2 for all k. For each interval Iw of level k − 1, let Iw0 and
Iw1 be the left and right intervals of level k obtained by removing a centred,
open interval from Iw so that |Iw0| = |Iw1| = |Iw|rk. Iw0 and Iw1 share,
respectively, the left and right endpoints with Iw. The Cantor set C formed
is called a central Cantor set and has a representation corresponding to
W =

⋃∞
k=0Dk, where Dk = {0, 1}k.

More generally, let nk ≥ 2, 0 < rk and nkrk ≤ b < 1 for all k. For each
interval Iw of level k − 1, let Iwj , 0 ≤ j ≤ nk − 1, be nk subintervals of equal
length in Iw so that |Iw0| = · · · = |Iw(nk−1)| = |Iw|rk. Iw0 and Iw(nk−1)
share, respectively, the left and right endpoints with Iw. Moreover, we require
the subintervals to be equally spaced; i.e., the gap lengths between adjacent
subintervals Iwj and Iw(j+1) are all the same. The Cantor set formed is called
a homogeneous Cantor set. An example is C + C where C is the middle
fourth Cantor set. Here I = [0, 2], nk = 3 and rk = 1

4 for all k.
In both cases, the average length of the intervals of level k is

sk = r1 · · · rk = |Iw|

for any w with |w| = k, so the Cantor set is balanced.

Example 2 (Decreasing Cantor sets). Let a = (ai)
∞
i=1 be a positive, decreas-

ing, summable sequence, and let I be a closed interval with |I| =
∑∞
i=1 ai.

Remove an open interval A1 of length a1 from I, leaving two closed non-trivial
intervals I11 on the left and I12 on the right with lengths

|I11 | =
∞∑
l=1

2l−1−1∑
p=0

a2l+p and |I12 | =
∞∑
l=1

2l−1∑
p=2l−1

a2l+p.
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Recursively, suppose we have constructed {Ikj }1≤j≤2k at level k, ordered from

left to right. Remove from each interval, Ikj , an open interval of length a2k+j−1
and obtain two closed intervals Ik+1

2j−1, I
k+1
2j of step k + 1, where

|Ik+1
2j−1| =

∞∑
l=0

(2j−1)2l−1∑
p=(2j−2)2l

a2l+k+1+p and |Ik+1
2j | =

∞∑
l=0

(2j)2l−1∑
p=(2j−1)2l

a2l+k+1+p.

The positions of the gaps Ai removed and the intervals Ikj are uniquely deter-
mined. We call the Cantor set

Ca :=

∞⋂
k=1

2k⋃
j=1

Ikj

a decreasing Cantor set. It also corresponds to the symbol space W =⋃∞
k=0{0, 1}k.

Since a = (ai) is decreasing, {|Ikj |}(k,j) is lexicographically decreasing. In
consequence,

sk+1 ≤ |Ik+1
1 | ≤ |Ikj | ≤ |Ik−12k−1 | ≤ sk−1

for all j, and this C is balanced.

Example 3. Let a = (ai)
∞
i=1, let I be defined as in Example 2 and let W =⋃∞

k=0Dk be an arbitrary symbol space. Recall that Nk = |Dk| = n1 · · ·nk.
Let σ : N → N be a permutation of natural numbers such that for all k ≥ 1,
if Nk ≤ i ≤ Nk+1 − 1, then Nk ≤ σ(i) ≤ Nk+1 − 1. Define a sequence b = (bi)
by bi := aσ(i). At the first step, we remove n1 − 1 open intervals Bi with
length bi, 1 ≤ i ≤ n1−1, from I and obtain n1 closed intervals I1j , 1 ≤ j ≤ n1.
Repeat as above and define

CWb :=

∞⋂
k=1

Nk⋃
j=1

Ikj .

We can check that sk+1 ≤ |Ikj | ≤ sk−1 for all j, so CWb is balanced as well. If

σ is the identity map, then b = a; i.e., bi = ai for all i ≥ 1. We call CWa a
general decreasing Cantor set.

4 Hausdorff and packing measure of a balanced Cantor
set

First, we estimate the Hausdorff and packing pre-measure of a balanced Cantor
set. This generalizes the results in [1] and [3].
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Theorem 1. Let C be a balanced Cantor set with the number of Cantor inter-
vals Nk = n1 · · ·nk and the average length sk at level k. There exist positive
constants A,B such that for any h ∈ D, we have:

1. A lim infk→∞Nkh(sk) ≤ Hh(C) ≤ B lim infk→∞Nkh(sk),

2. A lim supk→∞Nkh(sk) ≤ Ph0 (C) ≤ B lim supk→∞Nkh(sk).

Proof. (1) The proof is based on the idea in [1, Lemma 4].
(1) (a) With the balanced property, we have

Nk∑
j=1

h(|Ikj |) ≤ Nkh(sk−L2
) ≤ML2Nk−L2

h(sk−L2
)

when k is large enough. The upper bound is obtained by taking the liminf
and putting B := ML2 .

(1) (b) Let λ = lim infk→∞Nkh(sk). If λ = 0, then the lower bound is
trivial, so assume λ > 0. For any ε > 0, there exists K0 such that for any
k ≥ K0, we have (1 − ε)λ < Nkh(sk) and also sk+L1

≤ |Ikj | by the balanced
property.

Let 0 < δ < minj |IK0
j |. Let {Bi}i be a δ-covering of C by open intervals

and let R =
⋃
iBi. As C is compact, we can assume the covering consists of

finitely many intervals, say {Bi}Mi=1. There exists K > 1 such that
⋃NK

j=1 I
K
j ⊂

R, by the finite intersection property of a compact set.
We can also assume the intervals Bi in the covering are disjoint. Otherwise,

the intersection of two intervals will be open and must contain some gap of
the Cantor set. We can then shrink down the intervals to make them disjoint
and get a lower estimate of Hh(C).

In order to obtain a further lower bound, we replace each Bi by the smallest
possible (single) closed interval, Vi, containing Bi∩

⋃NK

j=1 I
K
j . Then

∑
h(|Vi|) ≤∑

h(|Bi|). If Vi = ∅, then we simply discard it.
Let τi be the number of intervals of level K contained in Vi. Then τi ≥ 1

and
∑
i τi = NK = n1 · · ·nK . For each i, let pi be the non-negative integer

such that
NK

NK−pi
≤ τi <

NK
NK−pi−1

. (3)

For any integer j, let Q(j) = NK

Nj
.

If pi = 0, then 1 ≤ τi < nk and Vi contains some IKj . In this case,

|IKj | ≤ |Vi| ≤ |Bi| < δ, and hence K > K0. Thus,

1

NK−pi+L1+1
(1− ε)λ < 1

NK+L1

(1− ε)λ < h(sK+L1
) ≤ h(|IKj |) ≤ h(|Vi|).
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If pi ≥ 1, then 2 ≤ Q(K − pi) ≤ τi < Q(K − pi− 1). Note that Vi contains
at least Q(K − pi) consecutive intervals of level K and

Q(K − pi) ≥ 2Q(K − pi + 1).

Consider the level K − pi + 1. Each interval IK−pi+1
j contains Q(K − pi + 1)

subintervals of level K. It follows that Vi must contain an interval IK−pi+1
j

for some j, and the length of Vi must be at least |IK−pi+1
j |. So we have

|IK−pi+1
j | ≤ |Vi| < δ.

In particular, this forces K − pi + 1 > K0, and hence,

1

NK−pi+L1+1
(1− ε)λ < h(sK−pi+L1+1) ≤ h(|IK−pi+1

j |) ≤ h(|Vi|) (4)

by the balanced property.
Using (3) and (4) we obtain

1

ML1+2
(1− ε)λ =

(1− ε)λ
ML1+2

∑
i

τi
Nk

< (1− ε)λ
∑
i

1

NK−pi−1M
L1+2

≤ (1− ε)λ
∑
i

1

NK−pi+L1+1
<

∑
i

h(|Vi|) ≤
∑
i

h(|Bi|).

Since {Bi}i is any δ-covering of C and ε > 0 is arbitrary, we get

1

ML1+2
lim inf
k→∞

Nkh(sk) ≤ Hh(C).

(2) We modify the proof of [3, Theorem 4.2].
(2) (a) Let d < lim supk→∞Nkh(sk). There exists a subsequence {kp}p≥1

such that d < Nkph(skp) ≤ Nkph(|Ikp−L1

j |), where the second inequality fol-
lows from the balanced property.

For any δ > 0, take kp large enough that |Ikp−L1

j | < δ for all j. Let us

take the family of intervals {Bi := B(xi, r)}
Nkp−L1−1

i=1 , where r = skp/2 and xi

is the left endpoint of I
kp−L1

in , n = nkp−L1
. The balls are centred in C. Since

|Ikp−L1

j | ≥ skp > r for any j, we have the inclusion Bi ⊂ I
kp−L1−1
i and the

balls are pairwise disjoint.
As |Bi| = skp < δ, this is a δ-packing and

∑
i

h(|Bi|) =

Nkp−L1−1∑
i=1

h(skp) = Nkp−L1−1h(skp) >
d

ML1+1
.
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Thus,
1

ML1+1
lim sup
k→∞

Nkh(sk) ≤ Ph0 (C).

(2) (b) Let ε > 0. There exists k0 such that

sup
k≥k0

Nkh(sk) ≤ lim sup
k→∞

Nkh(sk) + ε.

Choose δ small enough that 2δ < |Ik0+L2+2
j | for all j.

Let {Bi}i be a δ-packing of C and take

ki := min{k : Ikj ⊂ Bi for some 1 ≤ j ≤ Nk}.

Then ki ≥ k0 +L2 +2 and Bi is centred at a point of an interval of level ki−1,
but does not contain the interval. Therefore, |Bi|/2 < |Iki−1ji

|, where Iki−1ji
is

the interval of level ki − 1 containing the center of Bi. As nk ≥ 2,

|Bi| < 2|Iki−1ji
| ≤ nki−L2−1ski−L2−1 ≤ ski−L2−2

from the balanced property, and therefore,∑
i

h(|Bi|) ≤
∑
i

h(ski−L2−2).

Let l1 < · · · < lm be the distinct ki’s, and let θp be the number of repe-
titions of lp; i.e., θp is the number of Bi’s containing an interval of level lp,
but none of those at level lp − 1. Each ball Bi of the packing associated to

lp contains at least
Nlm

Nlp
intervals of step lm. Since {Bi}i is a disjoint family,∑m−1

p=1 θp
Nlm

Nlp
intervals of level lm are already covered by the Bi’s correspond-

ing to l1, · · · , lm−1. θm can only be at most the number of the remaining
intervals at level lm:

θm ≤ Nlm −
m−1∑
p=1

θp
Nlm
Nlp

= Nlm(1−
m−1∑
p=1

θp
Nlp

).

This implies
∑m
p=1

θp
Nlp
≤ 1.

As a result,∑
i

h(|Bi|) ≤
∑
i

h(ski−L2−2) =

m∑
p=1

θph(slp−L2−2)

≤ML2+2
m∑
p=1

θp
Nlp

Nlp−L2−2h(slp−L2−2)

≤ML2+2(lim sup
k→∞

Nkh(sk) + ε),
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since lp − L2 − 2 ≥ k0. Hence,

Ph0 (C) ≤ML2+2 lim sup
k→∞

Nkh(sk).

In Theorem 1, only the packing pre-measure is estimated, but not the
packing measure. In general, we only know that Ph(E) ≤ Ph0 (E) for E ⊂ R,
and the strict inequality can happen. However, the packing measure Ph(C)
and the packing pre-measure Ph0 (C) are finite and positive simultaneously for
a balanced Cantor set C. To prove this, we will make use of the following
version of the mass distribution principle.

Lemma 2 ([10, 4]). Let E ⊂ R. Let µ be a finite regular Borel measure, and
let h ∈ D be a dimension function. If

lim inf
r→0

µ(B(x0, r))

h(r)
< c (5)

for all x0 ∈ E, then

Ph(E) ≥ µ(E)

c
.

Theorem 3. Let C be a balanced Cantor set and h ∈ D. If Ph0 (C) =∞, then
Ph(C) =∞. If Ph0 (C) > 0, then Ph(C) > 0.

Proof. Let µ be the uniform Cantor measure defined by µ(Ikj ) = 1
Nk

. Let
x0 ∈ C and r > 0. The balanced property tells us that there exist L1, L2 such
that sk+L1

≤ |Ikj | ≤ sk−L2
for large enough k.

Suppose k is the minimal integer such that B(x0, r) contains an interval of
level k. The minimality of k ensures that B(x0, r) can intersect at most 2nk
intervals of level k, which implies µ(B(x0, r)) ≤ 2nk

1
Nk

= 2
Nk−1

. Let Ikj be a

level k interval contained in B(x0, r), so |Ikj | ≤ 2r. Since h is doubling, there
exists some τ > 0 such that

h(sk+L1) ≤ h(|Ikj |) ≤ h(2r) ≤ τh(r).

Then
µ(B(x0, r))

h(r)
≤ 2τ

Nk−1h(sk+L1)
=

2τML1+1

Nk+L1h(sk+L1)
,

so that

c0 := lim inf
r→0

µ(B(x0, r))

h(r)
≤ 2τML1+1

lim supk→∞Nkh(sk)
.



122 Kathryn Hare and Ka-Shing Ng

By the inequalities in Theorem 1, Ph0 (C) > 0 implies lim supNkh(sk) > 0,
while Ph0 (C) = ∞ implies lim supNkh(sk) = ∞. If Ph0 (C) > 0, then c0 < ∞
and Ph(C) ≥ µ(C)

c0
> 0 by the lemma. Correspondingly, if Ph0 (C) = ∞, then

c0 = 0. Hence Ph(C) ≥ µ(C)
c > 0 for every c > 0 and Ph(C) =∞.

Corollary 4. Let C be a balanced Cantor set and h ∈ D. Then

1. Ph0 (C) = 0 if and only if Ph(C) = 0,

2. Ph0 (C) =∞ if and only if Ph(C) =∞, and

3. 0 < Ph0 (C) <∞ if and only if 0 < Ph(C) <∞.

5 Dimension partition of a balanced Cantor set

The dimension partition of a set E ⊂ R (as defined in [4]) is a partition of the
set D of dimension functions into six sets, HEβ ∩ PEγ , for β ≤ γ ∈ {0, 1,∞},
where

HE1 = {h ∈ D : 0 < Hh(E) <∞}, PE1 = {h ∈ D : 0 < Ph(E) <∞},

and for η = 0,∞,

HEη = {h ∈ D : Hh(E) = η}, PEη = {h ∈ D : Ph(E) = η}.

Assume C is a balanced Cantor set with the number of Cantor inter-
vals Nk = n1 · · ·nk and the average length sk at level k. Define hC(sk) =
1
Nk

and extend hC to a piecewise linear function on [0,∞) with hC(0) :=

limx→0+ hC(x) = 0. Then hC can be shown to be a dimension function, and
C is hC-regular by Theorem 1 and Corollary 4. We call hC an associated
dimension function of C.

This means that HC1 ∩ PC1 is always non-empty for the balanced Cantor
sets. Indeed, we get immediately from Theorem 1 and Corollary 4 the following
description of the dimension partition for the balanced Cantor sets, which was
previously shown for the decreasing Cantor sets in [4].

Corollary 5. Let C be a balanced Cantor set with the number of Cantor
intervals Nk = n1 · · ·nk and the average length sk at level k. Then

HC1 = {h ∈ D : 0 < lim inf
k→∞

Nkh(sk) <∞}, HCβ = {h ∈ D : lim inf
k→∞

Nkh(sk) = β},

PC1 = {h ∈ D : 0 < lim sup
k→∞

Nkh(sk) <∞}, PCβ = {h ∈ D : lim sup
k→∞

Nkh(sk) = β},

where β = 0,∞.
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Corollary 6. Let C be a balanced Cantor set with the number of Cantor
intervals Nk = n1 · · ·nk and the average length sk at level k. Then

dimH C = lim inf
k→∞

− logNk
log sk

and dimP C = lim sup
k→∞

− logNk
log sk

.

In fact, we can further describe the dimension partition of a balanced
Cantor set in terms of its associated dimension function hC .

Proposition 7. Let C be a balanced Cantor set with an associated dimension
function hC and g ∈ D.

1. If lim infx→0+
g(x)
hC(x) > 0 (or finite), then Hg(C) > 0 (or Hg(C) <

∞). In particular, if lim infx→0+
g(x)
hC(x) = ∞ (or 0), then Hg(C) = ∞

(respectively Hg(C) = 0).

2. If lim supx→0+
g(x)
hC(x) > 0 (or finite), then P g0 (C) > 0 (or P g0 (C) <

∞). In particular, if lim supx→0+
g(x)
hC(x) = ∞ (or 0), then P g0 (C) = ∞

(respectively P g0 (C) = 0).

Proof. (1) Let λ∗ := lim infx→0+
g(x)
hC(x) > 0. For any 0 < α < λ∗, there is a

δ > 0 such that g(x) ≥ αhC(x) for all 0 < x < δ. Then Hg(C) ≥ αHhC (C) >
0 by the definition of Hausdorff measure. If λ∗ =∞, then α can be arbitrarily
large, and hence, Hg(C) =∞.

Suppose λ∗ < ∞. For any α > λ∗, there exists a positive decreasing
sequence {δm}m such that limm→∞ δm = 0 and g(δm) ≤ αhC(δm). Let k =
k(m) be the integer such that sk ≤ δm < sk−1. Then |Ik+L2

j | ≤ sk ≤ δm, and

{Ik+L2
j }j is a δm-covering of C. Therefore,

Hg
δm

(C) ≤
Nk+L2∑
j=1

g(|Ik+L2
j |) ≤ Nk+L2g(δm)

< Nk+L2
αhC(δm) ≤ αML2+1Nk−1hC(sk−1) = αML2+1.

Taking limits gives

Hg(C) ≤ λ∗ML2+1 <∞.

(2) Let λ∗ := lim supx→0+
g(x)
hC(x) > 0. For any 0 < α < λ∗, there exists a

positive decreasing sequence {δm}m such that limm→∞ δm = 0 and g(δm) ≥
αhC(δm). Let k be the integer such that sk ≤ δm < sk−1. For 1 ≤ j ≤
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Nk−L1−2, take as xj the left endpoint of the interval Ik−L1−1
jn , where n =

nk−L1−1. The collection {B(xj , δm/2)}j will be disjoint. Thus,

P gδm(C) ≥
Nk−L1−2∑
j=1

g(δm) ≥ αNk−L1−2hC(sk) ≥ α

ML1+2
NkhC(sk),

and therefore P g0 (C) > 0.

The proof that P g0 (C) <∞ if lim supx→0+
g(x)
hC(x) <∞ is similar to the first

part of (1).

The following corollary can be compared with the result for the self-similar
sets with the open set condition in [11].

Corollary 8. Let C be a balanced Cantor set with an associated dimension
function hC . Then for β = 0,∞,

HC1 = {g ∈ D : 0 < lim inf
x→0+

g(x)

hC(x)
<∞}, HCβ = {g ∈ D : lim inf

x→0+

g(x)

hC(x)
= β},

PC1 = {g ∈ D : 0 < lim sup
x→0+

g(x)

hC(x)
<∞}, PCβ = {g ∈ D : lim sup

x→0+

g(x)

hC(x)
= β}.

Corollary 9. Let C1 and C2 be balanced Cantor sets with hC1
and hC2

as their
respective associated dimension functions. Then the following are equivalent.

(a) hC1
≡ hC2

; i.e., there are A,B > 0 such that AhC2
(x) ≤ hC1

(x) ≤
BhC2

(x) for all small x > 0.

(b) HC1

β ∩ PC1
γ = HC2

β ∩ PC2
γ for all β ≤ γ ∈ {0, 1,∞}.

(c) HC1
1 ∩ PC1

1 = HC2
1 ∩ PC2

1 .

Note that C1 and C2 can be balanced with respect to different symbol
spaces.

Remark 1. Similar arguments to those given in [6] can be used to show that
if C1 and C2 are both W -balanced, then hC1 ≡ hC2 if and only if there exists
an integer L such that sC2

k+L ≤ s
C1

k ≤ s
C2

k−L for all k > L. Here {sCi

k }k are the
average interval lengths of Ci.



Balanced Cantor Sets 125

6 Balanced Cantor sets within the collection of cut-out
sets

Let a = (ai) be a positive, decreasing, summable sequence, |I| =
∑∞
i=1 ai, and

let Ai ⊂ I be a sequence of disjoint open subintervals with |Ai| = ai. Then
E := I \

⋃∞
i=1Ai is called a cut-out set associated with the sequence a = (ai).

The collection of all these cut-out sets E is denoted by Ca.
It is known that among all the sets in Ca, the decreasing Cantor set Ca

associated with the sequence a has the maximal Hausdorff dimension and
maximal Hausdorff measure up to a constant [1, 5]. On the other hand, the
prepacking dimensions of all the sets in Ca are the same and equal to the
upper box dimension [2]. Since the packing and prepacking dimensions of Ca
coincide [4], it follows that dimP E ≤ dimP0 E = dimP0 Ca = dimP Ca for any
E ∈ Ca. However, it is shown in [5] that Ca has the least packing premeasure
up to a constant among the sets in Ca. In the following we will prove similar
results for the balanced Cantor sets in Ca.

For any E ⊂ R and r > 0, let

N(E, r) = min{k : E ⊂
k⋃
i=1

B(xi, r)}

and
P (E, r) = max{k : {B(xi, r)}1≤i≤k is a 2r-packing of E}.

They can be compared by following lemma.

Lemma 10 ([5]). For any E1, E2 ∈ Ca and r > 0,

P (E2, r) ≤ 2N(E1, r) ≤ 2P (E1, r/2) ≤ 4N(E2, r/2).

Theorem 11. Let C be a balanced Cantor set in Ca for some a = (ai). If
h ∈ D and E is any set in Ca, then Hh(E) ≤ AHh(C) and Ph0 (C) ≤ B Ph0 (E)
for some constants A and B, which depend only on h and C.

Proof. Recall that h ∈ D is doubling; i.e., h(2x) ≤ τh(x) for some τ . The
previous lemma implies that for any cut-out set E ∈ Ca, we have

Hh(E) ≤ lim inf
r→0

N(E, r)h(2r) ≤ 2τ2 lim inf
r→0

N(C, r)h(r).

If r > 0 is small, then there exists k ∈ N such that sk ≤ r ≤ sk−1. Consider

the Cantor intervals {Ik+L2
j }Nk+L2

j=1 at level k + L2. Take their left endpoints
as centres and form Nk+L2

balls with radius r (which is at least the length of
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any Cantor interval of level k+L2). This is an r-covering of C. So N(C, r) ≤
Nk+L2 .

Taking into account Theorem 1, we obtain that for a suitable constant A,

Hh(E) ≤ 2τ2 lim inf
r→0

N(C, r)h(r)

≤ 2τ2ML2+1 lim inf
k→∞

Nkh(sk) ≤ AHh(C).

For the pre-packing measure, the previous lemma also gives that for any
E ∈ Ca,

1

2
P (C, r)h(r) ≤ P (E, r/2)h(r) ≤ Phr (E).

As above, let r > 0 be small and take k ∈ N such that sk+1 ≤ r ≤ sk. Take the

subset of Cantor intervals {Ik−L1
jn }Nk−L1−1

j=1 at level k − L1, where n = nk−L1
.

Take their left endpoints as centres and form Nk−L1−1 balls with radii r. Then
Nk−L1−1 ≤ P (C, r) and again, applying Theorem 1, we deduce that there are
constants B1, B2, B such that

Ph0 (C) ≤ B1 lim sup
k→∞

Nkh(sk) ≤ B2 lim sup
r→0

P (C, r)h(r) ≤ BPh0 (E).

Corollary 12. Let C be a balanced Cantor set in Ca for some a = (ai). If
h ∈ D and E is any set in Ca, then dimH E ≤ dimH C.

Proof. This is because Hα(E) ≤ AHα(C) for any α ≥ 0.

Corollary 13. If C1, C2 ∈ Ca are both balanced Cantor sets, then there exist
positive constants A,B such that for all h ∈ D,

1. AHh(C2) ≤ Hh(C1) ≤ BHh(C2),

2. APh0 (C2) ≤ Ph0 (C1) ≤ BPh0 (C2).

Hence, HC1

β = HC2

β and PC1

β = PC2

β for β = 0, 1 and ∞. In particular,
dimH C1 = dimH C2 and dimP C1 = dimP C2.

It follows that for any balanced Cantor set C in Ca, C and Ca have the
same dimension partition. Note that once the sequence a = (ai) is fixed,
we can construct many general decreasing Cantor sets CWa as in Example 3,
with respect to different symbol spaces W . Since they are balanced Cantor
sets, they all have the maximal Hausdorff dimension within the collection Ca,
namely dimH Ca.

Notice, also, that if E ∈ Ca and dimH E < dimH Ca, then E is not W -
balanced for any symbol space W .
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Remark 2. The self-similar Cantor sets with the open set condition are known
to be α-regular and have the same dimension partition as the α-regular bal-
anced Cantor sets ([11]). But we do not know whether they are balanced.
Moreover, note that the criterion in the last paragraph of not being balanced
does not apply in this case. In fact, let dimB denote the lower box dimension
and let E be a self-similar Cantor set. It is well known that dimH E = dimBE
([2]). On the other hand, if a is the sequence of gap lengths of E arranged
decreasingly, then dimBE = dimBCa, since the lower box dimensions of any
pair of sets in Ca coincide ([2]), and also dimBCa = dimH Ca ([3]). Therefore,
E attains the maximal Hausdorff dimension of the sets in Ca.
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