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THE EQUALITY OF MIXED PARTIAL
DERIVATIVES UNDER WEAK

DIFFERENTIABILITY CONDITIONS

Abstract

We review and develop two little known results on the equality of
mixed partial derivatives, which can be considered the best results so
far available in their respective domains. The former, due to Mikusiński
and his school, deals with equality at a given point, while the latter,
due to Tolstov, concerns equality almost everywhere. Applications to
differential geometry and General Relativity are commented.

1 Introduction

As it is well known, under reasonable conditions the mixed partial derivatives
of a real function coincide. This result has a long history, and several dis-
tinguished scholars provided proofs, including Euler and Clairaut. However,
according to Lindelöf, none of those proofs was free of errors or tacit assump-
tions, so that historians give credit for the first correct proof to H. A. Schwarz;
see [1] for a nice historical account.

Actually, the first correct proof of the equality of mixed partial deriva-
tives was obtained by Cauchy, who improved and amended a previous proof
by Lagrange. However, they assumed the existence and continuity of the
derivatives ∂21f , ∂22f . Schwarz removed this assumption and showed also that
the continuity of ∂1∂2f could be obtained from the other hypothesis. Let
O = (a, b)× (c, d) ⊂ R2. He proved [2]:
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1. Let f ∈ C1(O,R) and suppose that ∂2∂1f exists and belongs to C(O,R).
Then ∂1∂2f exists and ∂1∂2f = ∂2∂1f .

It is natural to ask whether the assumptions can be weakened. Stronger
versions can be found in the first published studies of this problem. For in-
stance, Dini in his “Lezioni di Analisi Infinitesimale” [3, p. 164] does not as-
sume f ∈ C1(O,R), but demands just the existence of the partial derivatives
and the continuity of ∂2f in y.1

The strongest result in this direction seems to have been obtained by Peano
who removed the assumption on the continuity of ∂2f from Dini’s version [4].
Peano’s version can be found in Rudin [5].

2. Let f : O → R. Suppose that ∂1f , ∂2f and ∂2∂1f exist on O and that
the latter is continuous at (x0, y0). Then ∂1∂2f(x0, y0) = ∂2∂1f(x0, y0).

The continuity of f is not assumed, and there are indeed discontinuous func-
tions which admit everywhere partial derivatives at any order [6].

Many authors tried to weaken the conditions of Schwarz’s theorem in other
directions. Young proved the following result (see Apostol [7, Theor. 12.12]):

3. Let f : O → R. If both partial derivatives ∂1f and ∂2f exist in neigh-
borhood of (x0, y0) ∈ O and if both are differentiable at (x0, y0), then
∂2∂1f(x0, y0) = ∂1∂2f(x0, y0).

We observe that these assumptions imply that ∂1f and ∂2f , being contin-
uous at (x0, y0), are bounded in a neighborhood of this point. Thus f is
Lipschitz and hence continuous in such neighborhood. As with the Lagrange-
Cauchy version, Young’s result assumes the existence of both ∂21f(x0, y0) and
∂22f(x0, y0).

We are now going to prove a result which improves Peano’s. It is based
on the concept of strong differentiation, also introduced by himself in [8, 9].
It seems that he did not realize the usefulness of strong differentiation for the
problem of the equality of mixed derivatives, possibly because he investigated
the latter problem before the introduction of this derivative.

Remark 1. Recently the notion of strong differentiation has received renewed
attention since it has been proved that the exponential map of Lipschitz con-
nections or sprays over C2,1 manifolds is strongly differentiable at the origin
[10]. This fact implies that the exponential map is a Lipeomorphism near the

1In Dini’s book ∂2f/∂x∂y means ∂2∂1f . We stress that in the terminology of this article
a necessary condition for a limit, such as a partial derivative, to exist will be its finiteness.
That is, we do not tacitly use the extended real line, as some other authors do. This
convention allows us to write just “exists” in place of “exists and is finite”.
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origin. Thus this notion proves important to do differential geometry under
weak differentiability conditions.

Definition 2. A function f : B → Rc, B ⊂ Ra × Rb, (x, z) 7→ f(x, z), is said
to be partially strongly differentiable with respect to x at (x0, z0) ∈ B̄, with
differential ∂1f(x0, z0), if for every ε > 0, there is a δ > 0 such that for every
x1, x2, z such that ‖x1 − x0‖ < δ, ‖x2 − x0‖ < δ, ‖z − z0‖ < δ, (x1, z) ∈ B,
(x2, z) ∈ B,

‖f(x2, z)− f(x1, z)− ∂1f(x0, y0)(x2 − x1)‖ ≤ ε‖x2 − x1‖.

If f does not depend on z then ∂1f is called differential and is denoted df .

Clearly, if a function is strongly differentiable then it is differentiable, and
the strong differential coincides with the differential. Some interesting prop-
erties are [8, 11, 12]:

(i) If f is strongly differentiable at p, then its satisfies a Lipschitz condition
in a neighborhood of p.

(ii) If f is differentiable in a neighborhood of p and the differential is con-
tinuous at p, then it is strongly differentiable at p. Conversely, if f is
strongly differentiable at p and the differential exists in a neighborhood
of p, then the differential is continuous at p. A similar version for par-
tial strong differentiation holds (this point is an easy consequence of the
mean value theorem).

(iii) If f is strongly differentiable over a subset A ⊂ E, then the strong
differential is continuous over A with respect to the induced topology.

In particular, a function is strongly differentiable in an open set O if and only
if it is continuously differentiable on O.

The concept of strong differentiation has some advantages over that of ordi-
nary (Frechet) differentiation. In particular, it allows us to obtain simpler and
stronger results through shorter proofs. It serves better the intuition and at
the elementary level could possibly replace the usual differentiation in elemen-
tary textbooks on analysis. Indeed, it extends the the range of applicability
of some key results in analysis by removing some continuity assumptions on
derivatives. For instance:

(iv) A function which is partially strongly differentiable with respect to all
its variables at a point p is also totally strongly differentiable at that
point p [12].
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(v) If a function f : R→ R has positive strong derivative at a point, then it is
increasing in a neighborhood of that point. More generally, if a function
f : Rn → Rn has invertible strong differential at a point p, then it is
injective in a neighborhood of p and the inverse is strongly differentiable
at f(p) with df−1(f(p)) = (df(p))−1 (Leach’s inverse function theorem
[13]).

Let us observe that the usual assumptions that make the corresponding
results hold for ordinary differentiation imply that the differential is continuous
in a neighborhood of p. As observed above, these assumptions serve essentially
to assume strong differentiability in a neighborhood without naming it. The
point of using strong differentiability is that strong differentiability at a point
suffices.

Peano’s theorem on the equality of mixed partial derivatives at (x0, y0)
demands the existence of ∂2∂1f in a neighborhood of (x0, y0) and its continuity
there. By (ii) above, ∂1f is partially strongly differentiable with respect to y
at (x0, y0). Thus one can ask whether the previous conditions can be replaced
by partial strong differentiability. The answer is affirmative. The author
reobtained the next theorem unaware of a previous result by Mikusiński [14,
15, 16], subsequently generalized to Banach spaces by Skórnik [17]. Mikusiński
calls “full derivative” the Peano’s strong derivative and does not give references
so that it was quite hard to spot his important work [16].

He reobtains first results due to Peano and more advanced results such as
Leach’s inverse function theorem, but he also obtains new results on the role
of strong differentiation in integration theory. In [16, Ch. 12] he provides the
best and most complete introduction to strong derivatives to date. The fact
that he published those results in Polish [15], and in some sections in a book
devoted to quite different problems, did not help to spread knowledge of his
important contributions. For completeness, we include the next proof, as it is
different from Mikusiński’s and has weaker assumptions.

Theorem 3. Let f : O → R. Suppose that the partial derivative ∂1f exists on
O and that it is partially strongly differentiable with respect to y at (x0, y0).
Then, denoting with A ⊂ O the subset where ∂2f exists, provided (x0, y0) ∈ Ā,
∂2f(:= ∂2f |A) is partially strongly differentiable with respect to x at (x0, y0)
and ∂1∂2f(x0, y0) = ∂2∂1f(x0, y0).

We stress that while the assumptions are weaker than Peano’s, the conclu-
sion is stronger. For instance, the previous theorem implies that if ∂1∂2f(·, y0)
exists in a neighborhood of x0, then it is continuous at x0.

Esser and Shisha [11, 12] construct a simple function h(y) defined on an
open set of y = 0 which is not everywhere differentiable on any neighborhood



The Equality of Mixed Partial Derivatives 85

of 0, but which is strongly differentiable at 0. Then f(x, y) = xh(y) satisfies
the assumptions of our theorem, but not those of Peano’s.

Proof. Let ε > 0. Since ∂1f is partially strongly differentiable with respect
to y at (x0, y0), there is δ(ε) > 0 such that for every x̃ ∈ (a, b), ỹ1, ỹ2 ∈ (c, d),
|x̃− x0| < δ, |ỹ1 − y0| < δ, |ỹ2 − y0| < δ, we have

|∂1f(x̃, ỹ2)− ∂1f(x̃, ỹ1)− ∂2∂1f(x0, y0)(ỹ2 − ỹ1)| ≤ ε|ỹ2 − ỹ1|. (1)

Given ε > 0, let δ(ε) > 0 be as above. Let x1, x2 ∈ (a, b) be such that
|x1 − x0| < δ, |x2 − x0| < δ, and let y ∈ (c, d) be such that |y − y0| < δ.
Furthermore, let them be such that (x1, y) ∈ A, (x2, y) ∈ A.

Let y1, y2 ∈ (c, d), y1 6= y2, be arbitrary and such that |y1 − y0| < δ,
|y2 − y0| < δ. Let u(t) := f(t, y2)− f(t, y1), then by the existence of ∂1f and
by the mean value theorem there is x ∈ (a, b), |x− x0| < δ, such that

∂1u(x)(x2 − x1) = u(x2)− u(x1).

Equation (1) holds for these values for x, y1, y2. Thus

|f(x2, y2)− f(x2, y1)− f(x1, y2) + f(x1, y1)− ∂2∂1f(x0, y0)(y2 − y1)(x2 − x1)|
≤ ε|x2 − x1| |y2 − y1|.

Dividing by |y2 − y1|, setting y1 = y and taking the limit y2 → y, we obtain

|∂2f(x2, y)− ∂2f(x1, y)− ∂2∂1f(x0, y0)(x2 − x1)| ≤ ε|x2 − x1|,

which means that ∂2f has partial strong differential with respect to x at
(x0, y0) given by ∂2∂1f(x0, y0); that is ∂1∂2f(x0, y0) = ∂2∂1f(x0, y0).

The concept of strong differentiation lead us to a satisfactory result, which
we can summarize as follows:

(vi) If the strong derivative ∂2∂1f(x0, y0) exists and it makes sense to consider
the strong derivative ∂1∂2f(x0, y0) (that is, ∂2f exists in a set which
accumulates at (x0, y0)), then the latter exists and they coincide.

2 Equality almost everywhere

We might also ask to what extent the equality of mixed partial derivatives
holds for functions which admit those second derivatives almost everywhere.
Some important results have been obtained for convex functions. A well known
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result by Alexandrov establishes that convex functions admit a generalized
Peano derivative of order 2 in the sense that for almost every x

f(x+ h) = f(x) + L(h) +A(h, h) + ox(|h|2),

where L is a linear map and A is a quadratic form. Less clear is whether
A can be obtained from the differentiation of the generalized differential of
f and whether such double differentiation gives a symmetric Hessian. The
affirmative answer to this question has been established by Rockafellar [18].

The Russian mathematician G. P. Tolstov clarified several questions re-
lated to the equality of mixed derivatives in two papers published in 1949.
Unfortunately, only one of those articles was translated into English [19], so
that the interesting results contained in the other paper [20] have been largely
overlooked by the mathematical community. Most space in those papers is
devoted to the construction of counterexamples. In fact, he proved [20]:

4. There exists a function f ∈ C1(O,R), the mixed second derivatives of
which exist at every point of O, but such that ∂2∂1f 6= ∂1∂2f on a set
P ⊂ O of positive measure.

5. There exists a function f ∈ C1(O,R), the mixed second derivatives of
which exist almost everywhere in O, and such that ∂2∂1f 6= ∂1∂2f almost
everywhere in O.

On the positive direction, he improved Young’s theorem as follows [19]:

6. If the function f has all second derivatives everywhere in O, then the
equality of mixed derivatives holds in O.

This theorem with existence replaced by existence almost everywhere in both
the hypothesis and thesis had been already proved by Currier [21].

These type of results have still an undesirable feature, for they place condi-
tions on the existence of the double derivatives ∂21f and ∂22f . Actually, Tolstov
obtained some results which do not place conditions on the homogeneous sec-
ond derivatives. In the remainder of this work, we shall review and develop
them. In particular, we shall stress the importance for applications of the
Lipschitz conditions on the first derivatives.

We start with an important lemma from Tolstov’s paper. Since there are
no published English translations, we provide the proof.

Lemma 4 (Tolstov [20]). Let O = (a, b)× (c, d) ⊂ R2 and let

f(x, y) =

∫ x

a

du

∫ y

c

h(u, v)dv,
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where h ∈ L1(Ō,R). Then there is a measurable set e1 ⊂ (a, b) with |e1| = b−a
such that for every x ∈ e1 and for every y ∈ (c, d)

∂1f(x, y) =

∫ y

c

h(x, v)dv. (2)

Clearly, by Fubini’s theorem, the integrals in the definition of f(x, y) can
be exchanged, and hence a similar statement holds for the derivative with
respect to y. Fubini’s theorem will play a very important role in the proof of
this lemma and in the proofs of the next theorems. The reader is referred to
Aksoy and Martelli [22] for a discussion of the relationship between Fubini’s
and Schwarz’s theorems.

Proof. Differentiating f(x, y) with respect to x, we obtain for x ∈ Xy ⊂ [a, b]
with |Xy| = b− a, (Fundamental Theorem of Calculus e.g. [23, Theor. 8.17])

∂1f(x, y) =

∫ y

c

h(x, v) dv. (3)

Let Λ = ∪y(Xy × {y}), so that |Λ| = (b − a)(d − c). Equation (3) holds
for (x, y) ∈ Λ. Let Yx ⊂ (c, d) be the coordinate slices defined by {x} × Yx =
({x} × (c, d)) ∩ Λ, or equivalently, Yx = π2(π−11 (x) ∩ Λ). Fubini’s theorem
applied to the characteristic function of Λ gives that there is some e1 ⊂ (a, b),
|e1| = b− a, such that for every x ∈ e1, |Yx| = c− d. Let x ∈ e1. For y ∈ Yx
Eq. (3) is true. We wish to show that it holds for any y ∈ (c, d). Let y ∈ (c, d)
and let hn be any sequence converging to zero. Let

ϕ±n (y) :=
1

hn

∫ x+hn

x

du

∫ y

c

h±(u, v)dv.

where h+ and h− are the positive and negative parts of h, respectively. Since
the functions ϕ+

n (y) are monotone and continuous and converge in a dense
subset (for n → ∞) to the continuous function

∫ y

c
h+(x, v) dv, they do the

same everywhere on (c, d), and analogously for ϕ−n (y). By the arbitrariness of
hn, Eq. (3) is true for every y ∈ (c, d), provided x ∈ e1.

Remark 5. Notice that the Fundamental Theorem of Calculus (e.g. [23, Theor.
8.17]) states that Eq. (2) is true for x ∈ e1(y), where |e1(y)| = b−a, but e1(y)
might depend on y. The previous lemma states that e1 does not depend on y.

A corollary is:

Theorem 6 (Tolstov [20]). Let h, f and O be as in Lemma 4 above. There
are measurable sets e1 and e2 with |e1| = b− a, |e2| = d− c, such that
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(a1) Anywhere in {x} × (c, d) with x ∈ e1, we have

∂1f(x, y) =

∫ y

c

h(x, v)dv. (4)

(a2) Anywhere in (a, b)× {y} with y ∈ e2, we have

∂2f(x, y) =

∫ x

a

h(u, y)du. (5)

(b) There exists a measurable set E ⊂ e1× e2 with |E| = (b−a)(d− c), such
that for every (x, y) ∈ E, the mixed derivatives exist, and

∂2∂1f(x, y) = h(x, y) = ∂1∂2f(x, y). (6)

Moreover, for every x ∈ e1, |π−11 (x) ∩ E| = d− c, and for every y ∈ e2,
|π−12 (y) ∩ E| = b− a.

With respect to Tolstov’s paper, we have included the last statement of
point (b). Although this inclusion lengthens the proof, we give this version in
order to be as complete as possible. A similar statement could be included at
the end of the next theorems.

Proof. Let e1 and e2 be as in Lemma 4. Then (a1) and (a2) are a rephrasing
of that lemma. Differentiating Eq. (4) with x ∈ e1 with respect to y, we
obtain that there is e2(x) ⊂ (c, d), |e2(x)| = d− c such that for y ∈ e2(x), the
derivative ∂2∂1f(x, y) exists and

∂2∂1f(x, y) = h(x, y). (7)

By taking the intersection of e2(x) with e2, if necessary, we can assume that
e2(x) ⊂ e2.

Let E1 = ∪x∈e1{x} × e2(x), so that |E1| = (b − a)(d − c) and on E1 Eq.
(7) holds true. Observe that π1(E1) ⊂ e1 and π2(E1) ⊂ e2. By Fubini’s
theorem, there is c2 ⊂ e2, |c2| = d − c, such that for every y ∈ c2, d1(y) :=
π1(π−12 (y) ∩ E1) ⊂ e1, is such that |d1(y)| = b− a.

By taking the intersection of e2(x) with c2, if necessary, we can assume
that e2(x) ⊂ c2. This redefinition does not change the properties of E1, which
gets replaced as follows: E1 → E1 ∩ (e1 × c2), but now π2(E1) ⊂ c2, and for
every y ∈ c2, d1(y) = π1(π−12 (y) ∩ E1) ⊂ e1 is such that |d1(y)| = b− a.

Analogously, starting from Eq. (5) and working with the roles of x and y
exchanged, we obtain that there is c1 ⊂ e1, |c1| = b − a, such that for every
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y ∈ e2, there is e1(y) ⊂ c1, |e1(y)| = b−a, such that on E2 = ∪y∈e2e1(y)×{y}
the derivative ∂1∂2f(x, y) exists and

∂1∂2f(x, y) = h(x, y). (8)

Moreover, π1(E2) ⊂ c1 and for every x ∈ c1, d2(x) := π2(π−11 (x)∩E2) ⊂ e2 is
such that |d2(x)| = d− c.

Let us define E = E1 ∩ E2. Then E ⊂ c1 × c2, and for every x ∈ c1,

π2(π−11 (x) ∩ E) = π2(π−11 (x) ∩ E1) ∩ π2(π−11 (x) ∩ E2) = e2(x) ∩ d2(x),

where both sets on the righthand side have full measure; thus

|π2(π−11 (x) ∩ E)| = d− c

(and analogously for the analogous statement with x and y exchanged). Fi-
nally, (7) and (8) are true on E, which proves (b), keeping (a1) and (a2) once
we redefine c1 → e1, c2 → e2.

We can also obtain a related theorem which adds information on the dif-
ferentiability properties of f :

Theorem 7. Let f : [a, b] × [c, d] → R be such that f(x, ·) : [c, d] → R and
f(·, y) : [a, b]→ R are absolutely continuous for every x ∈ [a, b] and y ∈ [c, d],
respectively. The following properties are equivalent:

(i) There is e1 ⊂ (a, b), |e1| = b−a, such that for x ∈ e1, ∂1f(x, ·) exists for
every y. Moreover, it is absolutely continuous over [c, d], and ∂2∂1f ∈
L1([a, b]× [c, d]).

(ii) There is e2 ⊂ (c, d), |e2| = d− c, such that for y ∈ e2, ∂2f(·, y) exists for
every x. Moreover, it is absolutely continuous over [a, b], and ∂1∂2f ∈
L1([a, b]× [c, d]).

Suppose they hold true. Then there is a subset E ⊂ e1×e2, |E| = (b−a)(d−c),
such that on E the function f is differentiable, ∂2∂1f(x, y), ∂1∂2f(x, y) exist,
and

∂2∂1f = ∂1∂2f.

Proof. Assume (i). For x ∈ e1, the function ∂1f(x, ·) is absolutely continu-
ous. Thus, for every y,

∂1f(x, y)− ∂1f(x, c) =

∫ y

c

∂2∂1f(x, v)dv. (9)
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Since f(·, y) is absolutely continuous, we obtain upon integration

f(x, y)− f(a, y)− f(x, c) + f(a, c) =

∫ x

a

du

∫ y

c

∂2∂1f(u, v)dv.

By Theorem 6 applied to the righthand side, there is a subset ẽ1 ⊂ (a, b),
|ẽ1| = b − a, such that Eq. (9) holds. This is already known to be true with
ẽ1 = e1. The same theorem establishes the existence of e2 ⊂ (c, d), |e2| = d−c,
such that for y ∈ e2 and for every x ∈ (a, b),

∂2f(x, y)− ∂2f(a, y) =

∫ x

a

∂2∂1f(u, y)du.

This last equation shows that for y ∈ e2, the function ∂2f(·, y) is absolutely
continuous. Thus for every y ∈ e2, |e2| = d − c, there is e1(y) ⊂ (a, b),
|e1(y)| = b − a, such that for x ∈ e1(y), and hence for almost every pair
(x, y) ∈ (a, b) × (c, d), we have ∂1∂2f(x, y) = ∂2∂1f(x, y). This implies that
∂1∂2f ∈ L1([a, b]× [c, d]); that is, (ii) is true. The proof that (ii) implies (i) is
analogous.

It remains only to prove the differentiability of f on E, the remaining part
of the last statement being an immediate consequence of Theorem 6.

Let us prove the differentiability of f at (x0, y0) ∈ E. The partial derivative
∂2f(x, y0) exists for every x and is absolutely continuous in x. Analogously,
∂1f(x0, y) exists for every y and is absolutely continuous in y. We have

f(x0 + ∆x, y0 + ∆y)− f(x0, y0)

= [f(x0 + ∆x, y0 + ∆y)− f(x0 + ∆x, y0)] + [f(x0 + ∆x, y0)− f(x0, y0)]

= ∂2f(x0 + ∆x, y0)∆y + o2(∆y) + ∂1f(x0, y0)∆x+ o1(∆x)

= [∂2f(x0, y0) + ∂1∂2f(x0, y0)∆x+ o3(∆x)]∆y + o2(∆y)

+ ∂1f(x0, y0)∆x+ o1(∆x)

= ∂2f(x0, y0)∆y + ∂1f(x0, y0)∆x+R(∆x,∆y),

where R(∆x,∆y)/(∆x2 +∆y2)1/2 → 0 for the denominator going to zero.

Remark 8. It is well known that in the theory of distributions, the equality of
mixed derivatives holds at any order of differentiation [24]. In order to convert
this fact into a claim for ordinary differentiation it is necessary that the second
derivatives ∂2∂1f and ∂1∂2f be regular distributions, namely representable as
the integral of the test function ϕ with L1(Ō,R) functions. Tolstov’s Lemma
allows us to remove this double condition on the second mixed derivatives, for
it is sufficient to place that condition on just ∂2∂1f .
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3 Lipschitz conditions on the partial derivatives

Let us recall that a function g : U → Rk defined on an open set U ⊂ Rn is
Lipschitz if for every p, q ∈ U ,

‖g(p)− g(q)‖ < K‖p− q‖

for some K > 0. It is locally Lipschitz if this inequality holds over every
compact subset of U , with K dependent on the compact subset.

A function f : U → R, U ⊂ R2, (x, y) 7→ f(x, y), is differentiable with
Lipschitz differential, or C1,1 for short, if df : U → R2 is Lipschitz. Clearly,
if f ∈ C1,1 with Lipschitz constant K, then the partial derivative ∂1f(x, ·)
regarded as a function of y is K-Lipschitz. In particular, the Lipschitz constant
does not change if we change x. In this case, we say that ∂1f(x, y) is Lipschitz
in y uniformly in x. Analogously, ∂2f(x, y) is Lipschitz in x uniformly in y,
and two other similar combinations hold.

For functions admitting Lipschitz partial derivatives, the L1 condition on
the mixed derivative which we met in Theorem 7 is satisfied.

Theorem 9. Let f : [a, b] × [c, d] → R, be such that f(x, ·) : [c, d] → R and
f(·, y) : [a, b]→ R are absolutely continuous for every x ∈ [a, b] and y ∈ [c, d],
respectively. The following properties are equivalent:

(i) There is e1 ⊂ (a, b), |e1| = b−a, such that for x ∈ e1, ∂1f(x, ·) exists for
every y, and moreover, it is Lipschitz over [c, d] uniformly for x ∈ e1.

(ii) There is e2 ⊂ (c, d), |e2| = d− c, such that for y ∈ e2, ∂2f(·, y) exists for
every x, and moreover, it is Lipschitz over [a, b] uniformly for y ∈ e2.

Suppose they hold true. Then there is a subset E ⊂ e1×e2, |E| = (b−a)(d−c),
such that on E the function f is differentiable, ∂2∂1f(x, y), ∂1∂2f(x, y) exist
and are bounded and

∂2∂1f = ∂1∂2f.

Proof. Suppose (i) is true and let x ∈ e1 so that ∂1f(x, ·) exists and is K-
Lipschitz over [c, d]. Then |∂2∂1f(x, ·)| ≤ K a.e. in (c, d), and by the assump-
tion of Lipschitz uniformity, this bound holds for every x ∈ e1. In particular,
|∂2∂1f | ≤ K holds almost everywhere on O. Thus ∂2∂1f ∈ L∞(Ō,R) ⊂
L1(Ō,R) and condition (i) of Theorem 7 is satisfied. In particular, the last
statement of that theorem implies that “|∂2∂1f | ≤ K, f is differentiable and
∂2∂1f , ∂1∂2f exist and coincide” almost everywhere on a subset W ⊂ O,
|W | = (b− a)(d− c).
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By Theorem 7, there is also a set e2 such that if y ∈ e2, then ∂2f(·, y)
exists for every x, and moreover, it is absolutely continuous; thus

∂2f(x, y)− ∂2f(a, y) =

∫ x

a

∂1∂2f(u, y)du.

However, by Fubini’s theorem, there is b2 ⊂ (c, d), |b2| = d − c, such that for
every y ∈ b2, |π−1(y) ∩W | = b − a. Thus for almost every y, namely for y ∈
e2∩b2, we have that ∂2f(·, y) exists for every x and it is absolutely continuous,
and for almost every x, we have “∂1∂2f = ∂2∂1f and |∂2∂1f | ≤ K.” Thus for
y ∈ e2 ∩ b2, ∂2f(·, y) is K Lipschitz over (a, b), where K does not depend on
y. Thus (ii) is proved once we rename e2 ∩ b2 as e2.

The last statement follows from the previous paragraph or from the last
one in Theorem 7.

For C1 functions we have:

Theorem 10. Let Ω be an open subset of R2 and let f ∈ C1(Ω,R). Then the
following conditions are equivalent:

(i) For every x, the partial derivative ∂1f(x, ·) is locally Lipschitz, locally
uniformly with respect to x.

(ii) For every y, the partial derivative ∂2f(·, y) is locally Lipschitz, locally
uniformly with respect to y.

If they hold true, for instance f ∈ C1,1
loc (Ω,R), then on a set E ⊂ Ω, |Ω\E| = 0,

∂2∂1f and ∂1∂2f exist, f is differentiable and ∂2∂1f = ∂1∂2f . In particular,
∂2∂1f and ∂1∂2f belong to L∞loc(Ω,R).

Proof. Let p ∈ Ω and let us consider an open neighborhood (a, b) × (c, d)
of p such that Ō ⊂ Ω. Let us assume (i). By Theorem 9, we need only to
show that ∂2f(·, y) is K-Lipschitz in (a, b) for every chosen value of y ∈ (c, d),
provided it is so for almost every y ∈ (c, d). Let y ∈ (c, d) and let ε > 0.
The function ∂2f is continuous, thus uniformly continuous over the compact
set [a, b] × [c, d]. We can find a δ > 0 such that whenever |y2 − y1| < δ with
y1, y2 ∈ [c, d], we have |∂2f(x, y2)−∂2f(x, y1)| < ε for every x ∈ [a, b]. We can
find some ȳ ∈ (y − δ, y + δ) ∩ [c, d] such that ∂2f(·, ȳ) is K-Lipschitz. Thus

|∂2f(x2, y)− ∂2f(x1, y)| ≤ |∂2f(x2, ȳ)− ∂2f(x1, ȳ)|+ |∂2f(x2, ȳ)− ∂2f(x2, y)|
+ |∂2f(x1, ȳ)− ∂2f(x1, y)| ≤ K‖x2 − x1‖+ 2ε.

From the arbitrariness of ε, x1 and x2, we obtain that ∂2f(·, y) is K-Lipschitz
for every chosen value of y. The remaining claims follow trivially from Theo-
rem 9.
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We stress that if f ∈ C1, then the fact that ∂1f(x, y) is Lipschitz in y
uniformly in x, and that ∂2f(x, y) is Lipschitz in x uniformly in y, does not
guarantee that f ∈ C1,1; it is sufficient to consider the function f(x, y) =
|x|3/2. As a consequence, the assumptions of this theorem are weaker than
f ∈ C1,1

loc (Ω,R).

For the C1,1
loc (Ω,R) case, the equality of mixed derivatives can also be ob-

tained as a consequence of Young’s (point 3 above) and Rademacher’s theo-
rems. We recall that the latter states that every Lipschitz function is almost
everywhere differentiable [25]. Indeed:

Theorem 11. Let f : Ω→ R, f ∈ C1,1
loc . Then f is twice differentiable almost

everywhere and in such differentiability set ∂2∂1f = ∂1∂2f .

Proof. The differential df : Ω → R2 is Lipschitz, thus differentiable almost
everywhere (Rademacher’s theorem). If p belongs to the differentiability set,
then ∂1f and ∂2f , being components of the differential, are there differentiable.
Thus by Young’s theorem 3., we have ∂2∂1f = ∂1∂2f at p.

4 Some applications

In this section we explore some applications that motivated our study. They
are in the area of differential geometry, but it is likely that many other appli-
cations can be found.

4.1 Usefulness of Lipschitz one-forms

A rather natural application of these results is in the study of Lipschitz 1-
forms, namely 1-forms with Lipschitz coefficients, over differentiable manifolds
(at least C1,1). Indeed, some related results have been already developed
following paths independent of the above considerations.

If f ∈ C1,1
loc , then by Theorem 11, d2f = 0 almost everywhere in the

Lebesgue 2-dimensional measure of any 2-dimensional C1,1 embedded man-
ifold. Thus the exterior differential satisfies d2 = 0 in a well defined sense
whenever 0-forms and 1-forms are taken with the correct degree of differentia-
bility. In particular, if ω is a Lipschitz 1-form, then Stokes theorem∫

S

dω =

∫
∂S

ω

still holds true [26].
One also expects that Lipschitz distributions of hyperplanes should be

integrable according to the usual rule for C1 distributions. Namely, let ω be
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a Lipschitz 1-form. Then the distribution Kerω should be integrable if and
only if ω ∧ dω = 0. This result has indeed been proved [26, 27].

The nice behavior of locally Lipschitz 1-forms suggests to study (pseudo-)
Riemannian C2,1 manifolds endowed with Lipschitz connections ∇ and C1,1

metrics. Indeed, in Cartan’s approach, the connection is regarded as a Lie
algebra-valued 1-form in the bundle of reference frames. In such framework,
the Riemannian tensor would be a locally bounded element of L∞loc(M) and
hence would be defined only almost everywhere in the Lebesgue 2-dimensional
measure. In particular, it could be discontinuous though locally bounded.
This feature would be quite appreciated in the theory of Einstein’s general
relativity. There the Ricci tensor is proportional to the stress-energy tensor,
and so it is necessarily discontinuous for the typical mass distribution of a
planet; the reader may consider the discontinuity in density which takes place
at the planet’s boundary.

4.2 An application to mathematical relativity

As mentioned, the assumptions of Theorem 10 are weaker than the condition
f ∈ C1,1

loc . We wish to describe shortly an example of application where those
weaker conditions turn out to be important.

In Einstein’s General Relativity, the spacetime continuum is represented
with a Lorentzian manifold [28], namely a differentiable manifold endowed with
a metric of signature (−,+,+,+). Observers or massive particles are repre-
sented by C1 curves x(s) which are timelike, namely such that g(x′, x′) < 0.
Unfortunately, for various mathematical arguments it is necessary to consider
limits of such curves, and those limits are rarely C1, but are necessarily Lip-
schitz. Lipschitz mathematical objects arise quite naturally in General Rel-
ativity, ultimately because the light cones on spacetime (at p ∈ M the light
cone is given by the subset of TpM where g vanishes) place a bound on the
local speed of massive objects.

A typical problem which is met in the discussion of the clock effect (or
twin paradox) deals with curve variations x(t, s) of timelike geodesics x(·, s)
parametrized by s, where the transverse curves x(t, ·) are just Lipschitz. In
this situation, the properties of the exponential map allow one to prove that
the tangent ∂tx(t, s) is Lipschitz in s uniformly in t, exactly the assumptions
of Theorem 10 (the function need not be differentiable in s). It turns out that
in order to prove formulas such as the first variation formula for the energy
functional of differential geometry,

E[x] =
1

2

∫ 1

0

g(ẋ, ẋ)dt,
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one needs to switch ∂s∂tx for ∂t∂sx, an operation which is indeed allowed
thanks to Theorem 10. Thus, this theorem can be used to operate with Lip-
schitz curves in Lorentzian (or Riemannian) geometry much in the same way
as it is usually done with C1 curves [10].

5 Conclusions

We have reviewed the notion of strong differentiation and Mikusiński’s result
on the equality of mixed partial derivatives. The assumptions do not demand
the existence and continuity of any second derivative in a neighborhood of the
point. Rather, the theorem assumes the weaker notion of strong differentia-
bility of one first derivative at the point. This possibility was suggested by
previous applications of the concept of strong differentiation where it proved
to be particularly advantageous; e.g. the inverse function theorem.

We then considered results which prove the existence and equality of mixed
partial derivatives almost everywhere. We have presented and elaborated pre-
vious results by Tolstov stressing the importance of the Lipschitz condition
on first partial derivatives for applications. The advantage of this approach
over alternative distributional approaches becomes clear whenever one cannot
conclude that both mixed second partial derivatives are summable. We have
ended this work giving a specific example of application where this classical
approach is more effective and justified.
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