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RIEMANN AND RIEMANN-TYPE
INTEGRATION IN BANACH SPACES

Abstract

Riemann, Riemann-Dunford, Riemann-Pettis and Darboux integrable
functions with values in a Banach space and Riemann-Gelfand integrable
functions with values in the dual of a Banach space are studied in the
light of the work of Graves, Alexiewicz and Orlicz, and Gordon. Vari-
ous properties of these types of integrals and the interrelation between
them are established. The Fundamental Theorem of Integral Calculus
for these types of integrals is also studied.

1 Introduction.

Riemann integration of Banach space valued functions was first studied by L.
M. Graves [27]. In his survey article [26], R. A. Gordon compiled many results
of Graves and others, for example, Alexiewicz and Orlicz [2], and Gordon
also established the relation between Riemann integral, Darboux integral, and
weak forms of these integrals, most of which are works of Alexiewicz and
Orlicz, Rejouani, Nemirovski, Ochan, Rejouani and da Rocha. The aim of
this paper is to extend the study of the various properties of these integrals.

In this paper we study Riemann and Riemann-type integrable functions
such as Riemann-Dunford, Riemann-Pettis integrable functions with values
in a Banach space. A relationship between Riemann, Riemann-Lebesgue,
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Birkhoff, Strongly-Pettis, and Pettis integrable functions is established in
Lemma 2. We have studied Bochner integrable equivalent [31, p. 54, Def-
inition 3.1] of Riemann-Dunford and Riemann-Pettis integrable functions. It
is shown that a Riemann-Dunford integrable function with relatively weakly
compact range is Riemann-Pettis integrable and has a Bochner integrable
equivalent. We have shown that a function of bounded variation is Darboux
integrable. It is known that if f = 0 almost everywhere on [a, b] with respect
to Lebesgue measure then f may not be even Riemann integrable. However we
show that f is Darboux integrable if Lebesgue measure is replaced by Jordan
content. We study Riemann-Pettis and Darboux integrability of a function
when its range is a limited set and establish Fundamental Theorem of Inte-
gral Calculus for Riemann-Dunford, Riemann-Pettis, Riemann and Darboux
integrable functions. At the end of the paper Riemann-Gelfand integrable
functions with values in the dual of a Banach space will have been defined and
studied.

2 Notations and Preliminaries.

Throughout the paper, X stands, if not stated otherwise, for a real Banach
space with dual X∗. The closed unit ball of X and X∗ will be denoted by BX
and BX∗ respectively. Also, [a, b] stands for a closed bounded interval of R, Σ
stands for the sigma algebra of the Lebesgue measurable subsets of [a, b] and
λ the Lebesgue measure on Σ so that ([a, b],Σ, λ) becomes a finite measure
space. The Borel sigma algebra of [a, b] will be denoted by B so that B ⊂ Σ. A
partition of the interval [a, b] is a finite set of points {ti : 0 ≤ i ≤ n} in [a, b] that
satisfy a = t0 < t1 < t2 < · · · < tn−1 < tn = b. A tagged partition of [a, b] is a
partition {ti : 0 ≤ i ≤ n} of [a, b] together with a set of points {si : 1 ≤ i ≤ n}
that satisfy si ∈ [ti−1, ti] for each i. Let P = {(si, [ti−1, ti]) : 1 ≤ i ≤ n} be a
tagged partition of [a, b]. The points {ti : 0 ≤ i ≤ n} are called the points of
the partition, the intervals {[ti−1, ti] : 1 ≤ i ≤ n} are called the intervals of the
partition, the points {si : 1 ≤ i ≤ n} are called the tags of the partition, and
the norm |P| of the partition is defined by |P| = max{ti − ti−1 : 1 ≤ i ≤ n}.
If f ∈ X [a,b], then f(P) will denote the Riemann sum

∑n
i=1 f(si)(ti − ti−1).

Finally, the (tagged)partition P1 is a refinement of the (tagged)partition P2

if the points of P2 form a subset of the points of P1. In this case we say that
P1 refines P2.

Let us recall that if f is defined on [a, b] and P = {ti : 0 ≤ i ≤ N} is a
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partition of [a, b], then

ω(f,P) =

N∑
i=1

ω(f, [ti−1, ti])(ti − ti−1)

where ω(f, [ti−1, ti]) = sup{‖f(v) − f(u)‖ : u, v ∈ [ti−1, ti]} is the oscillation
of the function f on the interval [ti−1, ti].

Let (Ω,Σ1, µ) be a finite measure space. A function f ∈ XΩ is called
scalarly measurable if x∗f is measurable, for each x∗ ∈ X∗. A function f ∈
XΩ is called scalarly integrable or Dunford integrable if x∗f ∈ L1(µ), for
each x∗ ∈ X∗. In this case for each subset E ∈ Σ1, there exists an element
x∗∗E ∈ X∗∗ such that x∗∗E (x∗) =

∫
E
x∗fdµ for each x∗ ∈ X∗. The element x∗∗E

is called the Dunford integral of f over E and is denoted by Dunford-
∫
E
fdµ.

A function f ∈ XΩ is called Pettis integrable if f is scalarly integrable and for
each E ∈ Σ1 there exists an element xE ∈ X such that

x∗(xE) =

∫
E

x∗fdµ

for all x∗ ∈ X∗. The element xE is called the Pettis integral of f over E
and is denoted by Pettis-

∫
E
fdµ. In this case we obtain a countably additive,

µ−continuous vector measure mf ∈ XΣ1 defined by

mf (E) = Pettis-

∫
E

fdµ

for E ∈ Σ1 and it is called the induced vector measure of f . It is well known
that the range of the induced vector measure of a Pettis integrable function is
relatively weakly compact but not necessarily relatively compact in X. The
function f is said to be Strongly-Pettis integrable if f is Pettis integrable and
the range of the induced vector measure mf of f is relatively compact in X.

A function f ∈ (X∗)Ω is said to be weak* scalarly measurable if for each
x ∈ X the scalar function xf is measurable.

A function f ∈ (X∗)Ω is said to be weak* scalarly integrable or Gelfand
integrable , if xf ∈ L1(µ) for each x ∈ X. In this case for each E ∈ Σ1 there
is an element x∗E ∈ X∗ such that

x∗E(x) =

∫
E

xfdµ

for all x ∈ X. The element x∗E is called the Gelfand integral of f over E and
is denoted by G−

∫
E
fdµ for all E ∈ Σ1.
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For standard results and properties of Bochner, Dunford, Pettis and Gelfand
integrable functions we refer to [16]. Throughout the paper, measurability of
a function means that the function is measurable with respect to the Lebesgue
measure if not stated otherwise.

We say that a function g ∈ X [a,b] is a Bochner-integrable equivalent of a
Pettis integrable function f ∈ X [a,b] if g is Bochner-integrable and for any
measurable set A ⊂ [a, b], Pettis-

∫
A
fdλ = Bochner-

∫
A
gdλ. It can be easily

verified that g is a Bochner-integrable equivalent of f if and only if for each
x∗ ∈ X∗, x∗f = x∗g almost everywhere ( the exceptional set may depend on
x∗).

A function f ∈ X [a,b] is said to be differentiable at t ∈ [a, b] if there exists
an element x ∈ X such that

lim
δ→0

∥∥∥∥f(t+ δ)− f(t)

δ
− x
∥∥∥∥ = 0.

In this case x is called the derivative of f at t and is denoted by f ′(t). If f
is differentiable at each point t ∈ [a, b], then f is called differentiable on [a, b].
Thus the derivative of a differentiable function f ∈ X [a,b] is again belongs to
X [a,b] which is denoted by f ′.

Let f ∈ X [a,b] and t ∈ [a, b]. A vector z ∈ X is the approximate derivative
of f at t if there exists a measurable set E ⊂ [a, b] that has t as point of density
such that

lim
s→t,s∈E

f(s)− f(t)

s− t
= z.

In this case z is called approximate derivative of f at t and is denoted by
f ′ap(t) = z.

A function f ∈ X [a,b] is said to be scalarly differentiable at t ∈ [a, b], if for
each x∗ ∈ X∗, x∗f is differentiable there as a scalar function.

A function f ∈ X [a,b] is said to be weakly differentiable at a point t ∈ [a, b] if
f is scalarly differentiable at t ∈ [a, b] and if there exists an x ∈ X such that for
each x∗ ∈ X∗, (x∗f)′(t) = x∗(x). In this case x is called the weak derivative of
f at t and is denoted by f ′w(t). Thus, for each x∗ ∈ X∗, (x∗f)′(t) = x∗(f ′w(t)).
If f is weakly differentiable at each point t ∈ [a, b], then f is called weakly
differentiable on [a, b]. The weak derivative f ′w of a differentiable function
f ∈ X [a,b] again belongs to X [a,b]. It can be easily verified that if a function
f ∈ X [a,b] is differentiable at a point t ∈ [a, b], then it is weakly differentiable
there and f ′(t) = f ′w(t).

A function f ∈ (X∗)[a,b] is said to be weak* scalarly differentiable at t ∈
[a, b], if for each x ∈ X, xf is differentiable there as a scalar function; f is said
to be weak* differentiable at t ∈ [a, b], if f is weak* scalarly differentiable at t
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and if there exists an x∗ ∈ X∗ such that for each x ∈ X, (xf)′(t) = x∗(x). In
this case, x∗ is called the weak* derivative of f at t and is denoted by f ′w∗(t).

A function f ∈ X [a,b] is said to satisfy Lipschitz condition if there exists a
real number M > 0 such that ‖f(x) − f(y)‖ ≤ M |x − y| for all x, y ∈ [a, b].
It is easy to verify that a function f ∈ X [a,b] satisfying Lipschitz condition is
absolutely continuous on [a, b].

3 Main Results.

Definition 1. A function f ∈ X [a,b] is said to be Riemann integrable on [a, b]
if there exists a vector z in X with the following property : for each ε > 0
there exists δ > 0 such that ‖f(P)− z‖ < ε whenever P is a tagged partition
of [a, b] that satisfies |P| < δ.

In this case, the vector z is called the Riemann integral of f over [a, b] and

is denoted by R−
∫ b
a
f(t)dt or simply by R−

∫ b
a
fdt. If f is Riemann integrable

on [a, b], then it is so on any subinterval [c, d] of [a, b] [26, p. 927, Theorem 7].
The collection of all Riemann integrable functions of X [a,b] will be denoted

by R([a, b], X).
If X = R, then R([a, b], X) is denoted by R[a, b].
A Riemann integrable function is Pettis integrable and hence scalarly mea-

surable but not necessarily measurable [26, p. 930, Example 12] and hence
not necessarily Borel measurable. However, it is well known that every Rie-
mann integrable function with values in a finite dimensional vector space is
measurable but not necessarily Borel measurable.

For definition of Riemann-Lebesgue and Birkhoff integrable functions with
values in a Banach space we refer to [30, p. 51, Definition 1.1] and [13, p.
260, Definition 1] respectively. The interrelation between Riemann, Riemann-
Lebesgue, Birkhoff, Strongly-Pettis and Pettis integrable functions are re-
vealed in the following Lemma:

Lemma 2. Let f ∈ X [a,b]. Let us consider the following statements:

(a) f ∈ R([a, b], X).

(b) f is Riemann-Lebesgue integrable.

(c) f is Birkhoff integrable.

(d) f is Strongly-Pettis integrable.

(e) f is Pettis integrable.
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Then (a)⇒ (b)⇒ (c)⇒ (d)⇒ (e).

Proof. (a)⇒ (b) Follows from [31, p. 53, Theorem 2.4].

(b)⇒ (c) Follows from [30, p. 51] and [13, p. 268, Proposition 2.6].

(c) ⇒ (d) It is well known that a Birkhoff integrable function is Pettis
integrable. From [13, p. 274, Corollary 3.6] it follows that indefinite integral
of a Birkhoff integrable function is relatively norm compact and hence the
function is Strongly-Pettis integrable.

(d)⇒ (e) Trivial.

Definition 3. A function f ∈ X [a,b] is said to be scalarly Riemann integrable
on [a, b] if x∗f is Riemann integrable on [a, b] for each x∗ ∈ X∗.

From definition, it follows that a function f ∈ X [a,b] is scalarly Riemann
integrable on [a, b] if and only if for each x∗ ∈ X∗, x∗f is bounded and con-
tinuous almost everywhere on [a, b].

It is clear that a function is scalarly Riemann integrable on [a, b] if and
only if it is so on every subinterval [c, d] of [a, b].

An application of the Uniform Boundedness Principle shows that every
scalarly Riemann integrable function is bounded. Also, it is clear that every
scalarly Riemann integrable function is Dunford integrable, and hence, it is
also said to be Riemann-Dunford integrable. Thus, if f ∈ X [a,b] is scalarly
Riemann integrable on [a, b], then for each E ∈

∑
, there exists an element

x∗∗E in X∗∗ such that x∗∗E (x∗) =
∫
E
x∗fdλ for all x∗ ∈ X∗. The element

x∗∗E is called the Riemann-Dunford integral of f over E and is denoted by
RD−

∫
E
fdλ. Thus RD−

∫
E
fdλ ∈ X∗∗ and (RD−

∫
E
fdλ)(x∗) =

∫
E
x∗fdλ

for all x∗ ∈ X∗. The induced vector measure of f has clearly bounded average
range, and hence it is absolutely continuous and countably additive.

The Riemann-Dunford integral of f over any subinterval [c, d] of [a, b]

is denoted by RD −
∫ d
c
f(t)dt or simply by RD −

∫ d
c
fdt. Now we define

F (t) = RD −
∫ t
a
f(t)dt for all t ∈ [a, b]. Then clearly F ∈ (X∗∗)[a,b] and

x∗F (t) =
∫ t
a
x∗f(t)dt for all t ∈ [a, b]. The function F is said to be the indefi-

nite Riemann-Dunford integral of f over [a, b].

The collection of all scalarly Riemann integrable functions of X [a,b] will be
denoted by RD([a, b], X).

Lemma 4. A function f ∈ RD([a, b], X) if and only if there exists a vector
z′′ in X∗∗ with the following property: for each ε > 0 and for each x∗ in X∗

there exists δ > 0 such that |x∗(f(P)) − z′′(x∗)| < ε whenever P is a tagged
partition of [a, b] that satisfies |P| < δ.
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Theorem 5. Let f ∈ RD([a, b], X) and let F be the indefinite Riemann-
Dunford integral of f over [a, b]. Then the following results hold:

(a) F satisfies Lipschitz condition and hence is absolutely continuous on
[a, b].

(b) If for some x∗ ∈ X∗, x∗f is continuous at a point t ∈ [a, b], then x∗F is
differentiable at that point and (x∗F )′(t) = x∗f(t).

(c) For each x∗ ∈ X∗, x∗F is differentiable almost everywhere on [a, b] and
(x∗F )′ = x∗f almost everywhere on [a, b] (the exceptional set may depend
on x∗).

(d) At each point t of weak continuity of f , the function F is weakly differ-
entiable and F ′w(t) = f(t).

(e) At each point t of continuity of f , the function F is differentiable and
F ′(t) = f(t).

(f) If F is approximately differentiable at t ∈ [a, b], then F is differentiable
thereat.

Proof. (a) We have, for t1, t2 ∈ [a, b] with t1 < t2,

‖F (t2)− F (t1)‖ =

∥∥∥∥RD − ∫ t2

t1

fdt

∥∥∥∥
= sup
x∗∈BX∗

∣∣∣∣x∗(∫ t2

t1

fdt

)∣∣∣∣
≤ sup
x∗∈BX∗

∫ t2

t1

|x∗f |dt

≤M(t2 − t1)

where M is an upper bound of f on [a, b]. This shows that F satisfies Lipschitz
condition and hence is absolutely continuous.

(b) Let x∗ ∈ X∗. Since F (t) =
∫ t
a
f(t)dt, x∗F (t) =

∫ t
a
x∗f(t)dt. So if x∗f

is continuous at the point t ∈ [a, b], then x∗F must be differentiable at that
point and (x∗F )′(t) = x∗f(t).

(c) Since x∗f ∈ R[a, b], x∗f is continuous almost everywhere for each
x∗ ∈ X∗ and hence by part (b), x∗F is differentiable almost everywhere on
[a, b] and (x∗F )′ = x∗f almost everywhere on [a, b].

(d) If t is a point of weak continuity of f , then x∗f is continuous at t for
all x∗ ∈ X∗. Hence, the result follows from (b).
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(e) Let f be continuous at a point t0 ∈ [a, b]. Then, x∗f is continuous at
the point t0 for all x∗ ∈ X∗. Therefore, by part (b), (x∗F )′(t0) = x∗f(t0) for
all x∗ ∈ X∗. Since f is continuous at t0, {x∗f : x∗ ∈ BX∗} is equi-continuous
at t0. Therefore, for ε > 0 there is a δ > 0 such that for all x∗ ∈ X∗,
|x∗f(t)− x∗f(t0)| < ε whenever |t− t0| < δ.

Now∥∥∥∥F (t0 + h)− F (t0)

h
− f(t0)

∥∥∥∥ =

∥∥∥∥∥ 1

h

∫ t0+h

t0

(f(t)− f(t0))dt

∥∥∥∥∥
=

1

|h|
sup

x∗∈BX∗

∣∣∣∣∣x∗
(∫ t0+h

t0

(f(t)− f(t0))dt

)∣∣∣∣∣
≤ 1

|h|
sup

x∗∈BX∗

∫ t0+h

t0

|x∗f(t)− x∗f(t0)|dt

<
1

|h|
ε|h| = ε whenever |h| < δ

Hence,
∥∥∥F (t0+h)−F (t0)

h − f(t0)
∥∥∥ < ε whenever |h| < δ. This shows that

F is differentiable at t0 and F ′(t0) = f(t0). This is true for every point of
continuity of f and the result follows.

(f) Follows from (a) and [25, p. 80, Theorem 27].

Note: It is well known that approximate differentiability of a function
F ∈ X [a,b] at a point t ∈ [a, b] need not imply differentiability at that point.
However, in the above theorem, we have shown that this is true if F is the
indefinite Riemann-Dunford integral of a function f ∈ RD([a, b], X).

Definition 6. A function f ∈ X [a,b] is said to be Riemann-Pettis integrable
on [a, b] if it is scalarly Riemann integrable and Pettis integrable.

If f is Riemann-Pettis integrable, then Pettis-
∫ b
a
f(t)dt is defined to be the

Riemann-Pettis integral of f over [a, b] and is denoted by RP−
∫ b
a
f(t)dt or sim-

ply byRP−
∫ b
a
fdt. It is clear that every Riemann integrable function over [a, b]

is Riemann-Pettis integrable over [a, b] and R −
∫ b
a
f(t)dt = RP −

∫ b
a
f(t)dt.

Also, a Riemann-Pettis integrable function over [a, b] is Riemann-Dunford in-

tegrable over [a, b] and RD −
∫ d
c
fdt = RP −

∫ d
c
fdt for all subintervals [c, d]

of [a, b].
The collection of all Riemann-Pettis integrable functions of X [a,b] will be

denoted by RP ([a, b], X).



Riemann-type Integration in Banach Spaces 411

Lemma 7. A function f ∈ RP ([a, b], X) if and only if there exists a vector z
in X with the following property: for each ε > 0 and for each x∗ in X∗ there
exists δ > 0 such that |x∗(f(P))− x∗(z)| < ε whenever P is a tagged partition
of [a, b] that satisfies |P| < δ.

From the very definition, we have the following result:

Theorem 8. If X has Lebesgue PIP, then RD([a, b], X) = RP ([a, b], X) .

Since Mazur property implies Lebesgue PIP, the following result follows
from the above theorem:

Corollary 9. If X has Mazur property, then RD([a, b], X) = RP ([a, b], X).

Theorem 10. Let f ∈ RP ([a, b], X). If RP−
∫ b
a
f is a point of sequential con-

tinuity of the set consisting of all the Riemann sums of f , then f ∈ R([a, b], X).

Proof. Let us assume that f /∈ R([a, b], X). Then there exists a positive
real number η such that for each positive real number δ there exists a tagged

partition Pδ of [a, b] such that |Pδ| < δ and ‖f(Pδ)− (RP −
∫ b
a
fdt)‖ > η. So

for each positive integer n, we choose a tagged partition Pn of [a, b] such that

|Pn| < 1
n and ‖f(Pn) − (RP −

∫ b
a
fdt)‖ > η. This implies that the sequence

{f(Pn)} of Riemann sums of f can not converge in norm to RP −
∫ b
a
fdt. Let

x∗ ∈ X∗. Since f ∈ RP ([a, b], X), for each ε > 0 there exists δ > 0 such that∣∣∣∣∣x∗f(P )−
∫ b

a

x∗fdt

∣∣∣∣∣ < ε whenever |P | < δ.

Let n0 be a positive integer > 1
δ . Then, for n > n0, we have 1

n <
1
n0
< δ which

implies that |Pn| < δ. Hence∣∣∣∣∣x∗f(Pn)− x∗
(
RP −

∫ b

a

fdt

)∣∣∣∣∣ < ε for all n > n0.

This shows that f(Pn)→ RP −
∫ b
a
fdt weakly. Since RP −

∫ b
a
f is a point of

sequential continuity of the set of all Riemann sums, it follows that f(Pn)→
RP −

∫ b
a
fdt in norm - a contradiction. Hence, we must have f ∈ R([a, b], X).

Let us recall the following definition from [24, p. 540, Definition 3.1]:
Let f ∈ X [a,b], let B ∈ Σ and π be a finite partition of B into Lebesgue mea-

surable sets. Let Sf (π,B) denote the closure of the convex set
∑
E∈π

cof(E)λ(E).
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If π be a finite partition of B into Jordan measurable sets, then we use the
notation Jf (π,B) instead of Sf (π,B).

For any f ∈ RD([a, b], X) and E ∈ Σ, we define Jf (E) = {x ∈ X : x∗(x) =∫
E
x∗fdλ, for all x∗ ∈ X∗}.

Lemma 11. Let f ∈ RD([a, b], X). Then, for any subinterval [c, d] of [a, b],⋂
π∈Π

Sf (π, [c, d]) ⊂
⋂
π∈Π′

Jf (π, [c, d]) ⊂ Jf ([c, d]), where Π and Π′ are the col-

lection of all finite partitions of [c, d] into Lebesgue and Jordan measurable
subsets respectively of [c, d] .

Proof. Let [c, d] be any subinterval of [a, b]. The first inclusion trivially
follows from the fact that each Jordan measurable subset of any subinterval
[c, d] of [a, b] is a Lebesgue measurable subset of [c, d].

If
⋂
π∈Π′

Jf (π, [c, d]) is a null set, then the second inclusion is trivial. So we

assume that
⋂
π∈Π′

Jf (π, [c, d]) is not a null set.

Let z be an arbitrary element of
⋂
π∈Π′

Jf (π, [c, d]) so that z ∈ Jf (π, [c, d])

for all π ∈ Π′. Let x∗ ∈ X∗ be fixed and ε > 0. Since f ∈ RD([a, b], X), we
must have f ∈ RD([c, d], X). So x∗f ∈ R[c, d] and hence it is the uniform

limit of a sequence of functions of the form

n∑
i=1

αiχAi
where Ai is a Jordan

measurable subset of [c, d] for i = 1, 2, ..., n [42, p. 628, Theorem 2](vide [5, p.
395, Theorem]). So we have a finite partition π ∈ Π′ of [c, d] such that if E is
in π and if u, v are points in E, then |x∗f(u)−x∗f(v)| < ε. Now proceeding as

in the proof of [24, p. 541, Theorem 3.2], we must have x∗(z) =
∫ d
c
x∗f(t)dt.

This implies that z ∈ {x ∈ X : x∗(x) =
∫ d
c
x∗f(t)dt}. This is true for each

x∗ ∈ X∗. Hence, z ∈ Jf ([c, d]) and the result follows.

Theorem 12. Let f ∈ RD([a, b], X). Then the following statements are
equivalent:

(a) f ∈ RP ([a, b], X).

(b) Jf (E) 6= φ for all E ∈ Σ.

(c) Jf (E) 6= φ for all E ∈ B.

(d) Jf (E) 6= φ for all Jordan measurable subsets E of [a, b].

(e) Jf ([c, d]) 6= φ for any subinterval [c, d] of [a, b].
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(f) For any subinterval [c, d] of [a, b], the set
⋂
π∈Π

Sf (π, [c, d]) is non-empty

where Π is the collection of all finite partitions of [c, d] into Lebesgue
measurable subsets of [c, d].

(g) For any subinterval, [c, d] of [a, b], the set
⋂
π∈Π′

Jf (π, [c, d]) is non-empty

where Π′ is the collection of all finite partitions of [c, d] into Jordan
measurable subsets of [c, d].

(h) Jf (E) is a singleton set for all E ∈ Σ.

(i) Jf (E) is a singleton set for all E ∈ B.

(j) Jf (E) is a singleton set for all Jordan measurable subsets E of [a, b].

(k) Jf ([c, d]) is a singleton set for any subinterval [c, d] of [a, b].

(l) For any subinterval [c, d] of [a, b],
⋂
π∈Π

Sf (π, [c, d]) is a singleton set where

Π is the collection of all finite partitions of [c, d] into Lebesgue measurable
subsets of [c, d].

(m) For any subinterval [c, d] of [a, b],
⋂
π∈Π′

Jf (π, [c, d]) is a singleton set

where Π′ is the collection of all finite partitions of [c, d] into Jordan
measurable subsets of [c, d].

(n) For any subinterval [c, d] of [a, b], f ∈ RP ([c, d], X).

Proof. (a)⇒ (b) Let f ∈ RP ([a, b], X). Then for each E ∈ Σ there exists an
element xE ∈ X such that x∗(xE) =

∫
E
x∗fdλ for each x∗ ∈ X∗. This shows

that xE ∈ Jf (E), and hence, Jf (E) 6= φ for any E ∈ Σ. Therefore, (b) follows.
(b)⇒ (c) and (h)⇒ (i) Follow from the fact that B ⊂ Σ.
(c)⇒ (e) and (i)⇒ (k) Follow from the fact that any subinterval [c, d] of

[a, b] is contained in B.
(e)⇒ (n) From hypothesis, we have Jf ([s, t]) 6= φ for any subinterval [s, t]

of [c, d]. Hence, the result follows from [39, p. 133, Theorem A.4.15] and the
fact that the induced vector measure of f is countably additive.

(n)⇒ (a) Trivial, as [a, b] itself is a subinterval of [a, b].
(b)⇒ (d) and (h)⇒ (j) Follow from the fact that every Jordan measurable

subset of [a, b] is contained in Σ
(d)⇒ (e) and (j)⇒ (k) Follow from the fact that any subinterval [c, d] of

[a, b] is Jordan measurable.
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(a) ⇒ (h) Let E ∈ Σ. Then, Jf (E) 6= φ by (b). If possible, let x1, x2 ∈
Jf (E). Then,

x∗(x1) =

∫
E

x∗f = x∗(x2), for all x∗ ∈ X∗

i.e. x∗(x1) = x∗(x2), for all x∗ ∈ X∗.

Therefore x1 = x2 and hence (h) follows.
(k)⇒ (e) Trivial.
(a)⇒ (f) Follows from [24, p. 541, Theorem 3.2].
(f)⇒ (g)⇒ (e) Follow from Lemma 11.

(f)⇒ (l) Let [c, d] be any subinterval of [a, b] and let the set
⋂
π∈Π

Sf (π, [c, d])

be non-empty. Since (f) and (k) are equivalent, the set Jf ([c, d]) is a singleton

set. Thus
⋂
π∈Π

Sf (π, [c, d]) is a non-empty subset of the singleton set Jf ([c, d]),

by Lemma 11. Hence
⋂
π∈Π

Sf (π, [c, d]) must be a singleton set.

(l)⇒ (f) Trivial.
(g)⇒ (m) Similar to the proof of (f)⇒ (l).
(m)⇒ (g) Trivial.

Note. In view of the above theorem ((a) ⇔ (n)) and [26, p. 944 and p.
927, Theorem 7(d)], it follows that R([a, b], X) ⊂ RP ([a, b], X) and for any

f ∈ R([a, b], X), R −
∫ d
c
f(t)dt = RP −

∫ d
c
f(t)dt for any subinterval [c, d] of

[a, b].

Corollary 13. Let f ∈ RD([a, b], X). Then, the following statements are
equivalent:

(a) f ∈ RP ([a, b], X).

(b) For t ∈ [a, b],
⋂
π∈Π

Sf (π, [a, t]) 6= φ, where Π is the collection of all finite

partitions of [a, t] into Lebesgue measurable subsets of [a, t].

(c) For t ∈ [a, b],
⋂
π∈Π′

Jf (π, [a, t]) 6= φ, where Π′ is the collection of all finite

partitions of [a, t] into Jordan measurable subsets of [a, t].

(d) The indefinite Riemann-Dunford integral F of f over [a, b] takes its values
in X.
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Proof. (a)⇒ (b) Follows from the above theorem.
(b)⇒ (c) Follows from Lemma 11.

(c)⇒ (d) For t ∈ [a, b], let
⋂
π∈Π′

Jf (π, [a, t]) 6= φ. Then, there is an element

z ∈ X such that z ∈
⋂
π∈Π′

Jf (π, [a, t]). Hence, by Lemma 11, z ∈ Jf ([a, t]). So

x∗(z) =
∫ t
a
x∗f(t)dt = x∗F (t) for all x∗ ∈ X∗ which implies that F (t) = z ∈ X

and the result follows.
(d) ⇒ (a) For any subinterval [c, d] of [a, b], F (c), F (d) ∈ X. Let x =

F (d)− F (c) so that x ∈ X and for any x∗ ∈ X∗,

x∗(x) = x∗(F (d)− F (c))

= x∗(F (d))− x∗(F (c))

= x∗(

∫ d

a

f(t)dt)− x∗(
∫ c

a

f(t)dt)

=

∫ d

a

x∗f(t)dt−
∫ c

a

x∗f(t)dt

=

∫ d

c

x∗f(t)dt,

which implies that x ∈ Jf ([c, d]). Thus, for each subinterval [c, d] of [a, b],
Jf ([c, d]) 6= φ, and the result follows from the above theorem ((e)⇒ (a)).

Corollary 14. If f ∈ RP ([a, b], X), then for any subinterval [c, d] of [a, b],⋂
π∈Π

Sf (π, [c, d]) =
⋂
π∈Π′

Jf (π, [c, d]) = Jf ([c, d]).

Proof. If f ∈ RP ([a, b], X), then by Theorem 12, for any subinterval [c, d] of

[a, b], the set
⋂
π∈Π

Sf (π, [c, d]) is non-empty and the set Jf ([c, d]) is singleton.

Thus, from Lemma 11, the set
⋂
π∈Π

Sf (π, [c, d]) is a non-empty subset of the

singleton set Jf ([c, d]). Hence by the same lemma, we have

Jf ([c, d]) =
⋂
π∈Π

Sf (π, [c, d]) and the result follows.

Following [24, p. 543, Definition 4.2], let us define for any bounded function
f ∈ X [a,b] and for any Borel measurable set E of [a, b],

Hf (E) =
⋂
A⊂E

co[f(E \A)λ(E) + 3Mλ(A)BX ],
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where the intersections are taken over all Borel measurable proper subsets of
E and M is the supremum of ‖f(t)‖ in [a, b] which may be assumed to be
positive; otherwise f(t) = 0 for all t ∈ [a, b] which is a trivial case.

Theorem 15. Let f ∈ RD([a, b], X) be such that x∗f is Borel measurable for
each x∗ ∈ X∗. Then

(a) for each Borel measurable subset E of [a, b], Hf (E) is compact.

(b) f ∈ RP ([a, b], X) if and only if Hf (E) 6= φ for every Borel measurable
subset E of [a, b] of positive measure.

Proof. (a) Let g(t) = 1
M f(t) for all t ∈ [a, b]. Then g ∈ RD([a, b], X) and

g takes its values in the unit ball BX of X. Also x∗f is Borel measurable
for each x∗ ∈ X∗. It is easy to verify that Hf (E) = MHg(E), for each Borel
measurable subset E of [a, b]. Since Lebesgue measure on the Borel measurable
subsets of [a, b] is perfect, it follows from [24, p. 544, Theorem 4.4] that Hg(E)
is compact. Then Hf (E) is clearly compact.

(b) If g is as in (a) above, then clearly g ∈ RP ([a, b], X) if and only if
f ∈ RP ([a, b], X), and Hf (E) 6= φ if and only if Hg(E) 6= φ for every Borel
measurable subset E of [a, b]. According to [24, p. 545, Theorem 4.6],
g ∈ RP ([a, b], X) if and only if Hg(E) 6= φ for every Borel measurable set
E ⊂ [a, b] of positive measure. Hence, the result follows immediately.

Let f ∈ RP ([a, b], X) and let us define the function F by

F (t) = RP −
∫ t

a

f(t)dt for all t ∈ [a, b].

Then, from the above theorem, it follows that F ∈ X [a,b]. The function F is
said to be the indefinite Riemann-Pettis integral of f over [a, b].

Let us recall that a Banach space X is called a Gelfand space if each
absolutely continuous function f ∈ X [a,b] is differentiable almost everywhere
on [a, b].

Theorem 16. Let X be a Gelfand space and let f ∈ RP ([a, b], X). If F be
the indefinite Riemann-Pettis integral of f over [a, b], then F is differentiable
almost everywhere on [a, b] and at each point of weak continuity of f , F ′(t) =
f(t).

Proof. From Theorem 5, F is absolutely continuous. Hence, from the defini-
tion of the Gelfand space it follows that F is differentiable almost everywhere
on [a, b]. The next part follows from Theorem 5(d).
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Theorem 17. Let X be separable and f ∈ X [a,b]. Let us consider the following
statements:

(a) f ∈ RD([a, b], X).

(b) f ∈ RP ([a, b], X).

(c) f is bounded and measurable and hence Bochner integrable.

Then (a)⇔ (b)⇒ (c).

Proof. (a)⇒ (b) Follows from [2, p. 130, Theorem 3(a)].

(b)⇒ (a) Trivial.

(a) ⇒ (c) Since f ∈ RD([a, b], X), f is bounded. Again, since X is sepa-
rable, f is measurable. Therefore, f is Bochner integrable.

Theorem 18. Let BX∗ be separable and f ∈ X [a,b]. Let us consider the
following statements:

(a) f ∈ RD([a, b], X).

(b) f ∈ RP ([a, b], X).

(c) f is bounded and weakly continuous almost everywhere.

(d) f is bounded and measurable and hence Bochner integrable.

Then (a)⇔ (b)⇔ (c)⇒ (d).

Proof. (a) ⇒ (c) Since BX∗ is separable, there exists a countable subset
{x∗n} which is dense in BX∗ . Then, for each n, x∗nf ∈ R[a, b] and hence x∗nf
is continuous almost everywhere on [a, b]. So there exists a Lebesgue null set
En ⊂ [a, b] such that x∗nf is continuous on [a, b] \En. Let E = ∪∞n=1En. Then
E is Lebesgue null and each x∗nf is continuous on [a, b] \E. Let x∗ ∈ X∗. Let
ε > 0. Then, x∗

2‖x∗‖ ∈ BX∗ . So there exists an x∗k ∈ {x∗n} such that∥∥∥∥x∗k − x∗

2‖x∗‖

∥∥∥∥ < ε

8M‖x∗‖
where M = sup

t∈[a,b]

‖f(t)‖.

Let t0 ∈ [a, b] \ E. Since x∗kf is continuous on [a, b] \ E, there exists a δ > 0
such that

|x∗kf(t)− x∗kf(t0)| < ε

4‖x∗‖
whenever |t− t0| < δ.
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Now,

|x∗f(t)− x∗f(t0)| = 2‖x∗‖
∣∣∣∣ x∗

2‖x∗‖
f(t)− x∗

2‖x∗‖
f(t0)

∣∣∣∣
= 2‖x∗‖

∣∣∣∣ x∗

2‖x∗‖
f(t)− x∗kf(t) + x∗kf(t)− x∗kf(t0) + x∗kf(t0)− x∗

2‖x∗‖
f(t0)

∣∣∣∣
≤ 2‖x∗‖

[∣∣∣∣ x∗

2‖x∗‖
f(t)− x∗kf(t)

∣∣∣∣+ |x∗kf(t)− x∗kf(t0)|

+

∣∣∣∣x∗kf(t0)− x∗

2‖x∗‖
f(t0)

∣∣∣∣]
≤ 2‖x∗‖

[∥∥∥∥ x∗

2‖x∗‖
− x∗k

∥∥∥∥ ‖f(t)‖+ |x∗kf(t)− x∗kf(t0)|+
∥∥∥∥x∗k − x∗

2‖x∗‖

∥∥∥∥ ‖f(t0)‖
]

≤ 2‖x∗‖
[∥∥∥∥ x∗

2‖x∗‖
− x∗k

∥∥∥∥M + |x∗kf(t)− x∗kf(t0)|+
∥∥∥∥x∗k − x∗

2‖x∗‖

∥∥∥∥M]
= 2‖x∗‖

[∥∥∥∥ x∗

2‖x∗‖
− x∗k

∥∥∥∥ 2M + |x∗kf(t)− x∗kf(t0)|
]

< 2‖x∗‖
[
2

εM

8M‖x∗‖
+

ε

4‖x∗‖

]
whenever |t− t0| < δ

= ε.

This shows that x∗f(t) is continuous at t0 and since t0 ∈ [a, b]\E is arbitrary,
x∗f is continuous on [a, b] \ E. Thus, x∗f is continuous on [a, b] \ E for each
x∗ ∈ X∗ and E is Lebesgue null. This shows that f is weakly continuous
almost everywhere on [a, b]. Hence, (c) follows.

(c)⇒ (b) Follows from [26, p. 944, Corollary 30].
(b)⇒ (a) Trivial.
(c)⇒ (d) Follows from [10, p. 246, Remark 2.8].

From the above theorem, the following result follows which is a generaliza-
tion of [45, p. 153, Corollary 7].

Corollary 19. Let X have a separable dual and f ∈ X [a,b]. Let us consider
the following statements:

(a) f ∈ RD([a, b], X).

(b) f ∈ RP ([a, b], X).

(c) f is bounded and weakly continuous almost everywhere.

(d) f is bounded and measurable and hence Bochner integrable.
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Then (a)⇔ (b)⇔ (c)⇒ (d).

Theorem 20. Let f ∈ X [a,b] be bounded and weakly continuous almost every-
where on [a, b]. Then

(a) f ∈ RP ([a, b], X) and measurable and hence Bochner integrable.

(b) The indefinite Riemann-Pettis integral F of f is differentiable almost
everywhere on [a, b] and F ′ = f almost everywhere on [a, b].

(c) The indefinite Riemann-Pettis integral F of f is constant on [a, b] if and
only if f = 0 almost everywhere on [a, b].

Proof. (a) Follows from [26, p. 944, Corollary 30] and [10, p. 246, Remark
2.8].

(b) Since f is Bochner integrable, the result follows from [28, p. 88, After
Corollary 2].

(c) From (b), F is differentiable almost everywhere on [a, b] and F ′ = f
almost everywhere on [a, b]. If F is constant on [a, b] then F ′ = 0 on [a, b] and
hence f = 0 almost everywhere on [a, b]. The converse part is obvious.

Corollary 21. Let f ∈ X [a,b] be weakly continuous on [a, b]. Then

(a) f ∈ RP ([a, b], X) and measurable and hence Bochner integrable.

(b) The indefinite Riemann-Pettis integral F of f is differentiable almost
everywhere on [a, b] and F ′ = f almost everywhere on [a, b]. Also F is
weakly differentiable on [a, b] and F ′w = f on [a, b].

(c) The indefinite Riemann-Pettis integral F of f vanishes on [a, b] if and
only if f vanishes on [a, b].

Proof. (a) Follows from Theorem 20.
(b) First part follows from Theorem 20 and the second part follows from

Theorem 5(d).
(c) If F vanishes on [a, b], it is differentiable on [a, b] and F ′ = 0 everywhere

on [a, b]. So F is weakly differentiable on [a, b] and F ′w = 0 on [a, b]. Hence by
(b), f vanishes on [a, b]. The converse part is obvious.

Corollary 22. If f ∈ X [a,b] is a function such that x∗f is convex for each x∗ ∈
X∗, then f ∈ RP ([a, b], X) and is measurable and hence Bochner integrable.

Proof. From hypothesis, it follows that for each x∗ ∈ X∗, x∗f is bounded
on [a, b] [44, p. 18] and is continuous on (a, b) [44, p. 18, Theorem 2.5]. This
implies that f is bounded and weakly continuous almost everywhere on [a, b].
Hence, the result follows from Theorem 20.
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Theorem 23. Let f ∈ X [a,b] be bounded and x∗f = 0 almost everywhere on
[a, b] with respect to Jordan content for all x∗ ∈ X∗ such that the exceptional

set depends upon x∗ ∈ X∗. Then, f ∈ RP ([a, b], X) and RP −
∫ d
c
fdt = 0 for

all subintervals [c, d] of [a, b].

Proof. Since x∗f = 0 almost everywhere on [a, b] with respect to Jordan
content for all x∗ ∈ X∗, x∗f ∈ D[a, b] for all x∗ ∈ X∗. Therefore, f ∈
RD([a, b], X) and

∫ d
c
x∗fdt = 0 for all subsets [c, d] of [a, b] and for all x∗ ∈ X∗.

So x∗(RD−
∫ d
c
fdt) = 0 for all x∗ ∈ X∗. Therefore RD−

∫ d
c
fdt = 0 ∈ X which

implies that RD −
∫ d
c
fdt ∈ Jf ([c, d]). So Jf ([c, d]) 6= φ and the result follows

from Theorem 12((a) ⇔ (e)) and the fact that RD −
∫ d
c
fdt = RP −

∫ d
c
fdt

for all subintervals [c, d] of [a, b].

Theorem 24. Let f ∈ RD([a, b], X). Then, the following statements are
equivalent:

(a) f ∈ RP ([a, b], X).

(b) There exists a function F ∈ X [a,b] which satisfies Lipschitz condition
such that for each x∗ ∈ X∗, x∗F is derivable and (x∗F )′ = x∗f almost
everywhere on [a, b].

(c) There exists an absolutely continuous function F ∈ X [a,b] such that for
each x∗ ∈ X∗, x∗F is derivable and (x∗F )′ = x∗f almost everywhere on
[a, b].

Proof. (a) ⇒ (b) Let f ∈ RP ([a, b], X) and let F be the indefinite integral
of f over [a, b]. Then the result follows from Theorem 5(a) and (c).

(b)⇒ (c) Follows from the fact that if a function satisfies Lipschitz condi-
tion, then it must be absolutely continuous.

(c)⇒ (a) Follows from [35, p. 746, Theorem 5.1].

We know that a Riemann integrable function with values in a Banach
space may not be Bochner integrable. The following example shows that a
Riemann integrable function with values in a Banach space may not even
have a Bochner-integrable equivalent.

Example 25. Let us consider the function f : [0, 1] → L∞[0, 1] defined by
f(t) = χ[t,1], for t ∈ [0, 1]. Then, f is Riemann integrable but does not have a
Bochner-integrable equivalent [31, p. 55–57, Example].

Theorem 26. If X has the Radon-Nikodym property, then any
f ∈ RP ([a, b], X) has a Bochner-integrable equivalent.
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Proof. Since f ∈ RP ([a, b], X), f is bounded. Hence, the induced vector
measure mf of f has bounded average range, and hence is countably additive
and λ−continuous. Since X has the Radon-Nikodym property, there exists a
Bochner integrable function g ∈ X [a,b] such that mf (E) = Bochner-

∫
E
gdλ,

for all E ∈ Σ. Thus, RP −
∫
E
fdλ = Bochner-

∫
E
gdλ. Hence, by definition g

is a Bochner integrable equivalent of f .

Corollary 27. Let X have an unconditional basis and contains no copy of c0.
If f ∈ RD([a, b], X), then f ∈ RP ([a, b], X) and f has a Bochner-integrable
equivalent.

Proof. It follows from [34, p. 22, Theorem 1.c.10] that X is weakly sequen-
tially complete and the basis of X is boundedly complete which implies that
X has Radon-Nikodym property [16, p. 64, Theorem III.1.6]. Hence, from
[26, p. 944, Theorem 31] it follows that f ∈ RP ([a, b], X). The second part
follows from Theorem 26.

The following result is analogous to [31, p. 58, Theorem 3.6] whose proof
is same as that of the said result and so we omit it.

Theorem 28. Let X be a Banach space such that every f ∈ RP ([a, b], X) has
a Bochner-integrable equivalent. Let there exist a countable set of bounded lin-
ear functionals on X separating the points of X. Then every f ∈ RP ([a, b], X)
is Bochner integrable.

We have already noted that a bounded function that is weakly continu-
ous almost everywhere on [a, b] is Riemann-Pettis integrable, measurable, and
hence Bochner integrable. However we have the following result:

Theorem 29. If f ∈ X [a,b] is such that x∗f is continuous almost everywhere
on [a, b] for each x∗ ∈ X∗ and f has a relatively weakly compact range, then
f ∈ RP ([a, b], X) and has a Bochner-integrable equivalent.

Proof. Since f has a relatively weakly compact range, f is bounded and
hence x∗f is bounded for each x∗ ∈ X∗. Since x∗f is continuous almost
everywhere, x∗f is Riemann integrable for each x∗ ∈ X∗. Hence, f is scalarly
measurable. Therefore, it follows from [14, p. 259, Corollary 19] that f is
Pettis integrable, and hence, f ∈ RP ([a, b], X) and f has a Bochner integrable
equivalent.

The following result is analogous to [2, p. 130, Theorem 4](vide [26, p.
945, Theorem 32]), which follows from Theorem 29.
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Corollary 30. If f ∈ RD([a, b], X) and has a relatively weakly compact
range, then f ∈ RP ([a, b], X) and has a Bochner-integrable equivalent.

Corollary 31. If f ∈ X [a,b] is such that x∗f is continuous almost everywhere
for each x∗ ∈ X∗ and weak∗-closure of f([a, b]) is contained in X (when
considered as a subset of X∗∗), then f ∈ RP ([a, b], X) and has a Bochner-
integrable equivalent.

Proof. The result follows from [12, p. 147, Exercise 3] and Theorem 29.

Corollary 32. Let X be weakly sequentially complete and contain no sub-
space isomorphic to l1. Then f ∈ RD([a, b], X) if and only if f ∈ RP ([a, b], X)
and has a Bochner-integrable equivalent.

Proof. Follows from [29, p. 351, Theorem ((b)⇔ (d))] and Corollary 31.

Recall that a subset A of a Banach space X is said to be limited if
lim
n→∞

sup
x∈A
|x∗n(x)| = 0, for every weak∗ null sequence {x∗n} in X∗.

Corollary 33. Let f ∈ X [a,b] be such that x∗f is continuous almost every-
where on [a, b] and f([a, b]) is a limited set in X. If X contains no copy of l1,
then f ∈ RP ([a, b], X) and has a Bochner-integrable equivalent.

Proof. Since X contains no copy of l1 and f([a, b]) is a limited set in X,
f([a, b]) is relatively weakly compact [9, p. 55, Proposition (7)]. Hence, the
result follows from Theorem 29.

Since every bounded subset of a reflexive Banach space is relatively weakly
compact, we have the following result which follows from Corollary 30 and [1,
p. 193].

Corollary 34. Let X be a reflexive Banach space. Then, f ∈ RD([a, b], X)
if and only if f ∈ RP ([a, b], X) and has a Bochner-integrable equivalent. In
this case, the indefinite integral of f is differentiable a.e. on [a, b].

Corollary 35. Let X be a Hilbert space and let f ∈ X [a,b]. Then the following
statements are equivalent:

(a) f ∈ RD([a, b], X).

(b) < x, f >∈ R[a, b] for each x ∈ X.

(c) f ∈ RP ([a, b], X) and has a Bochner-integrable equivalent.
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Proof. (a)⇔ (b) Follows from the fact that a Hilbert space is self-dual.
(a)⇔ (c) Since a Hilbert space is reflexive, the result follows from Corollary

34.

Let us recall that a Banach spaceX has the BD-property if every limited set
in X is relatively weakly compact [22, p. 494, Definition 4(j)]. The following
result follows from the very definition of BD-property and Theorem 29.

Corollary 36. Let f ∈ X [a,b] be such that for each x∗ ∈ X∗, x∗f is continuous
almost everywhere and f([a, b]) is a limited set in X. If X has the BD-property,
then f ∈ RP ([a, b], X) and f has a Bochner integrable equivalent.

Since Mazur’s property implies BD-property [8, p. 386, Proposition 3.1],
the following result follows from the above Corollary.

Corollary 37. Let f ∈ X [a,b] be such that for each x∗ ∈ X∗, x∗f is continuous
almost everywhere and f([a, b]) is a limited set in X. If X has Mazur’s-
property, then f ∈ RP ([a, b], X) and f has a Bochner integrable equivalent.

Theorem 38. If X is a Gelfand space, then every f ∈ RP ([0, 1], X) has a
Bochner-integrable equivalent g which is Borel measurable.

Proof. Follows from [16, p. 107, Theorem IV.3.2] and Theorem 26.

From an unpublished work of D. R. Lewis [16, p. 88], we have the following
result:

Theorem 39. Let X be weakly compactly generated. Then RD([a, b], X) =
RP ([a, b], X) and every f ∈ RP ([a, b], X) has a bounded Bochner-integrable
equivalent.

Recall that a bounded subset K in X∗ is a V-set if lim
n

sup
x∗∈K

|x∗(xn)| = 0

for every weakly unconditionally Cauchy series

∞∑
n=1

xn in X [15, Definition 3].

A Banach space X has the property (V) of Pelczynski if every unconditionally
converging operator defined on it with values in a Banach space Y is weakly
compact [15, Definition 2].

Theorem 40. Let X be a Banach space with property(V) of Pelczynski. Let
f ∈ (X∗)[a,b] be such that for each x∗∗ ∈ X∗∗, x∗∗f is continuous almost
everywhere on [a, b]. If f([a, b]) is a V-set, then f ∈ RP ([a, b], X∗) and has a
Bochner integrable equivalent.

Proof. Follows from [15, p. 3, Proposition 4] and Theorem 29.
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Definition 41. A function f ∈ X [a,b] is said to be Darboux integrable on
[a, b] if for each ε > 0 there exists δ > 0 such that ω(f,P) < ε whenever P is
a partition of [a, b] that satisfies |P| < δ.

The collection of all Darboux integrable functions of X [a,b] will be denoted
by D([a, b], X).

If X = R, then D([a, b], X) is denoted by D[a, b].

From definition, it can be verified that

D([a, b], X) ⊂ R([a, b], X) ⊂ RP ([a, b], X) ⊂ RD([a, b], X) ⊂ l∞([a, b], X).

In a finite-dimensional space X,

D([a, b], X) = R([a, b], X) = RP ([a, b], X) = RD([a, b], X) ⊂ l∞([a, b], X).

From above considerations, the Darboux integral of an f ∈ D([a, b], X)

is denoted as D −
∫ b
a
f(t)dt or simply as D −

∫ b
a
fdt and is defined as D −∫ b

a
f(t)dt = R−

∫ b
a
f(t)dt = RP −

∫ b
a
f(t)dt.

It can be shown that if f ∈ D([a, b], X), then f ∈ D([c, d], X) for any
[c, d] ⊂ [a, b].

Note. From above, it is noted that a real valued function is Riemann inte-
grable if and only if it is Riemann-Dunford integrable. It is known that the
Dirichlet’s function is bounded and Lebesgue integrable but not Riemann inte-
grable. Hence we arrive at the conclusion that a bounded Bochner integrable
function may not be Riemann-Dunford integrable even in a finite dimensional
space.

Theorem 42. If f ∈ X [a,b] is of bounded variation, then f ∈ D([a, b], X).

Proof. Let ε be an arbitrary positive real number. Since f is of bounded
variation, f is bounded and there exists a positive real number M such that
n∑
i=1

‖f(ci)− f(di)‖ ≤M for all finite collections {[ci, di]} of non-overlapping

intervals in [a, b]. Let δ = ε
2M and let P = {ti : 0 ≤ i ≤ n} be a partition of

[a, b] with |P| < δ. Let

Mi = ω(f, [ti−1, ti]) = sup{‖f(v)− f(u)‖ : u, v ∈ [ti−1, ti]}.

Then, for each i = 1, 2, · · ·n, there exists ci, di ∈ [ti−1, ti] such that Mi <
‖f(ci)− f(di)‖+ ε

2(b−a) .
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Now,

ω(f,P) =

n∑
i=1

ω(f, [ti−1, ti])(ti − ti−1)

=

n∑
i=1

Mi(ti − ti−1)

<

n∑
i=1

{
‖f(ci)− f(di)‖+

ε

2(b− a)

}
(ti − ti−1)

=

n∑
i=1

‖f(ci)− f(di)‖(ti − ti−1) +

n∑
i=1

ε

2(b− a)
(ti − ti−1)

≤
n∑
i=1

‖f(ci)− f(di)‖|P|+
ε

2(b− a)
(b− a)

<

n∑
i=1

‖f(ci)− f(di)‖δ +
ε

2

≤Mδ +
ε

2

= M
ε

2M
+
ε

2

=
ε

2
+
ε

2
= ε.

Hence, f ∈ D([a, b], X).

Note. The converse of the above theorem is not necessarily true even in R,
as a continuous function is Darboux integrable but may not be of bounded
variation.

Note. It is well known that a function of bounded variation on [a, b] is not
necessarily continuous on [a, b]. However we have the following result which
follows from the above theorem and [26, p. 933, Theorem 18]:

Corollary 43. A function f ∈ X [a,b] of bounded variation on [a, b] is contin-
uous almost everywhere on [a, b].

Theorem 44. Let C0([a, b], X) be the space of all functions f ∈ X [a,b] such
that for any ε > 0 the set {t ∈ [a, b] : ‖f(t)‖ > ε} is finite. Then C0([a, b], X) ⊂
D([a, b], X).
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Proof. Let f ∈ C0([a, b], X). Let ε > 0 be arbitrary. Let ε′ = ε
4(b−a) . So

there are finite number of points t1, t2, · · · , tk in [a, b] such ‖f(t)‖ ≤ ε′ for all
t 6= ti, i = 1, 2, · · · , k. Let T = {t1, t2, · · · , tk}. It is clear that f is bounded.
Let M > 0 be such that ‖f(t)‖ ≤ M for all t ∈ [a, b]. Let δ = min

{
ε′, ε

4kM

}
.

Let P = {s1, s2, · · · , sn} be a partition of [a, b] with |P| < δ.
Now it is noted that
ω(f, [si−1, si]) ≤ 2ε′ if [si−1, si] ∩ T = φ and ω(f, [si−1, si]) ≤ 2M if

[si−1, si] ∩ T 6= φ.
Therefore,

ω(f,P)

=
∑

[si−1,si]∩T=φ

ω(f, [si−1, si])(si − si−1)

+
∑

[si−1,si]∩T 6=φ

ω(f, [si−1, si])(si − si−1)

≤ 2ε′
∑

[si−1,si]∩T=φ

(si − si−1) + 2M
∑

[si−1,si]∩T 6=φ

(si − si−1)

< 2ε′(b− a) + 2Mkδ

≤ 2
ε

4(b− a)
(b− a) + 2Mk

ε

4kM

=
ε

2
+
ε

2
= ε.

Hence, f ∈ D([a, b], X) and the result follows.

Theorem 45. Let f ∈ X [a,b]. Let us consider the following statements:

(a) f ∈ X [a,b] is bounded and f = 0 almost everywhere on [a, b] with respect
to Jordan content.

(b) f ∈ X [a,b] is bounded and f = 0 weakly almost everywhere on [a, b] with
respect to the Jordan content [the exceptional set does not depend upon
x∗ ∈ X∗].

(c) f ∈ D([a, b], X) and D −
∫ d
c
fdt = 0 for all [c, d] ⊂ [a, b].

Then (a)⇔ (b)⇒ (c).

Proof. (a)⇒ (b) Trivial.
(b)⇒ (a) There exists a set E ⊂ [a, b] (not depending upon x∗ ∈ X∗) such

that Jordan content of E is zero and x∗f(t) = 0 for all t ∈ [a, b] \ E and for
all x∗ ∈ X∗.
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Hence, f(t) = 0 for all t ∈ [a, b] \ E i.e. f(t) = 0 almost everywhere on
[a, b] with respect to Jordan content and (a) follows.

(a)⇒ (c) Let f(t) 6= 0 for all t ∈ E ⊂ [a, b]. Then, Jordan content of E is
zero and f(t) = 0 for t ∈ [a, b] \E. Since E is Jordan null, its Jordan content
is zero and hence its Jordan outer content is zero. So for any ε > 0 there exists
a partition Pε such that the sum of the lengths of the subintervals of Pε which
contains points of E ∪ δE is less than ε, where δE is the boundary of E; i.e.,

J(Pε, E) <
ε

2M + 1
where M = sup

t∈[a,b]

‖f(t)‖.

Let I1, I2, · · · , In be the subintervals of Pε and let I ′1, I
′
2, · · · , I ′k be those

subintervals of Pε which contains points of E ∪ δE and let I ′′1 , I
′′
2 , · · · , I ′′n−k be

those subintervals which contain no points of E ∪ δE. Then,

I1 ∪ I2 ∪ · · · ∪ In = (I ′1 ∪ I ′2 ∪ · · · ∪ I ′k) ∪ (I ′′1 ∪ I ′′2 ∪ · · · ∪ I ′′n−k)

and
k∑
i=1

δI ′i = J(Pε, E) <
ε

2M + 1
.

Therefore,

ω(f,Pε) =

n∑
i=1

ω(f, Ii)δIi

=

k∑
i=1

ω(f, I ′i)δI
′
i +

n−k∑
i=1

ω(f, I ′′i )δI ′′i

=

k∑
i=1

sup{‖f(u)− f(v)‖ : u, v ∈ I ′i}δI ′i

+

n−k∑
i=1

sup{‖f(u)− f(v)‖ : u, v ∈ I ′′i }δI ′′i

≤
k∑
i=1

sup{‖f(u)‖+ ‖f(v)‖ : u, v ∈ I ′i}δI ′i

+

n−k∑
i=1

sup{‖0− 0‖ : u, v ∈ I ′′i }δI ′′i

(since f(t) = 0 for all t ∈ [a, b] \ E and I ′′i contains

elements of [a, b] \ E only).
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≤ 2M

k∑
i=1

δI ′i

< 2M
ε

2M + 1
< ε.

Now, let P be any partition of [a, b] that refines Pε. Then, it is easy to
verify that

ω(f,P) ≤ ω(f,Pε) < ε

This implies that f ∈ D([a, b], X) [26, p. 933, Definition 17].
For the second part, let [c, d] ⊂ [a, b]. Let E1 = [c, d]∩E and E2 = [c, d]\E.

Then, f = 0 on E2 and Jordan content of E1 = 0 and so λ(E1) = 0.

Now, E1 ∪ E2 = [c, d] and E1 ∩ E2 = φ. So D −
∫ d
c
fdt = RP −

∫ d
c
fdt =

Pettis −
∫ d
c
fdλ = Pettis −

∫
E1
fdλ + Pettis −

∫
E2
fdλ = 0, since Pettis −∫

E2
fdλ = 0 for f = 0 on E2 and Pettis−

∫
E1
fdλ = 0 for λ(E1) = 0.

Note. In the above theorem, (c)⇒ (a) is not necessarily true even in the
case of real valued functions.

For example, let

f(t) =

{
0 for all t irrational or t = 0 in [0, 1]
1
q if t = p

q 6= 0 rational in [0, 1]

Then, f ∈ D[a, b] and D −
∫ 1

0
f(t)dt = 0 and so D −

∫ d
c
f(t)dt = 0 for all

subintervals [c, d] of [0, 1]. But, the outer Jordan content of Q− {0} is 1 6= 0.

Corollary 46. Let f, g ∈ X [a,b] be bounded and f = g almost everywhere
on [a, b] with respect to Jordan content. Then,

(a) f ∈ R([a, b], X) if and only if g ∈ R([a, b], X).

(b) f ∈ D([a, b], X) if and only if g ∈ D([a, b], X).

Proof. Let h(t) = f(t)−g(t) so that g(t) = f(t)−h(t) for all t ∈ [a, b]. Then,
h(t) = 0 almost everywhere on [a, b] with respect to Jordan content. Hence,
h ∈ D([a, b], X) by Theorem 45.

(a) Let f ∈ R([a, b], X). Since h ∈ D([a, b], X), we have h ∈ R([a, b], X).
So g = f − h ∈ R([a, b], X).

Similarly, g ∈ R([a, b], X) implies that f ∈ R([a, b], X).
(b) Let f ∈ D([a, b], X). Since h ∈ D([a, b], X), g = f − h ∈ D([a, b], X).
Similarly, g ∈ D([a, b], X) implies that f ∈ D([a, b], X).
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Corollary 47. If f ∈ X [a,b] is bounded and f = constant almost everywhere
on [a, b] with respect to Jordan content, then f ∈ D([a, b], X).

Note. If we replace Jordan content by Lebesgue measure, then Theorem
45 may not be true. For example, let us consider the function χE where E =
Q∩ [0, 1] denotes the set of all rational numbers in [0, 1]. Then, χE = 0 almost
everywhere on [0, 1] with respect to Lebesgue measure. But χE /∈ D([0, 1]).

However, if we replace Jordan content by Lebesgue measure in Theorem
45, then it will be valid provided that the exceptional set is closed. To prove
this result we need help of the following Lemma:

Lemma 48. Let X and Y be two topological spaces and let G be an open set
in X. Let f : X → Y be a function such that f(x) = constant for all x ∈ G.
Then f is continuous at every point of G.

Proof. Let f(x) = y ∈ Y , for all x ∈ G. Let z ∈ G be arbitrary. Then
f(z) = y. Let H be an arbitrary open set in Y such that y ∈ H. Then,
we see that f(x) ∈ H, for all x ∈ G. Thus, for any open set H in Y with
f(z) = y ∈ H,∃ an open set G in X such that z ∈ G and f(x) ∈ H, for all
x ∈ G. Hence, f is continuous at z ∈ G. But z ∈ G is arbitrary. Hence, f is
continuous at every point of G.

Theorem 49. If f ∈ X [a,b] is bounded and f = constant almost everywhere
on [a, b] and the exceptional set is closed, then f ∈ D([a, b], X).

Proof. Let D be the set of points of [a, b] such that f is not constant on D.
Then, D is closed with λ(D) = 0 and f is constant on [a, b]\D which is an open
set in [a, b] and hence by the Lemma 48, f is continuous on [a, b] \D. Thus, f
is continuous almost everywhere on [a, b] and therefore f ∈ D([a, b], X).

Alexiewicz and Orlicz have shown with an example that weak continuity
of a Banach space valued function need not imply Riemann integrability [2,
p. 130–132] (vide [26, p. 947, Example 35]).

However, the following result is valid which follows from [41, p. 206,
Theorem 7.3.7] and [26, p. 933, Theorem 18].

Theorem 50. Let f ∈ X [a,b] be bounded and weakly differentiable almost
everywhere on [a, b]. Then, f ∈ D([a, b], X). In particular, every weakly
differentiable function f ∈ X [a,b] is Darboux integrable.

Corollary 51. Let X be weakly sequentially complete. If f ∈ X [a,b] is
bounded and if there exists a Lebesgue null set E ⊂ [a, b] such that for each
x∗ ∈ X∗, x∗f is differentiable at each point of [a, b] \ E, then f is Darboux
integrable on [a, b].
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Proof. Follows from [41, p. 203, Theorem 7.3.3] and Theorem 50.

Let us recall that a Banach space X is said to have Gelfand-Phillips prop-
erty if limited subsets of X are relatively compact. If a Banach X space has
the Gelfand-Phillips property, then X is called a Gelfand-Phillips space.

From the very definition of a Gelfand-Phillips space and [26, p. 945,
Theorem 32], the following result follows.

Theorem 52. Let X be a Gelfand-Phillips space and let f ∈ X [a,b] be such
that for each x∗ ∈ X∗, x∗f is continuous almost everywhere on [a, b] and
f([a, b]) is a limited set in X. Then, f ∈ D([a, b], X).

Let us recall that a Banach space X has property SK if and only if BX∗

is weak∗ sequentially compact in X∗ [46, p. 230].

Theorem 53. In each of the following cases X is a Gelfand-Phillips space,
and hence the above result is valid in X:

(a) X is separable.

(b) X is reflexive.

(c) X∗ contains no copy of l1.

(d) X is a subspace of a weakly compactly generated Banach space.

(e) X∗ has the Radon-Nikodym property.

(f) X has property SK.

(g) X is a weak Asplund space.

(h) X is a closed subspace of a dual Banach space Y ∗ with Y not containing
l1.

(i) X is a Schur space.

Proof. (a) and (b) follows from [9, p. 55, Proposition (5) and (6)](vide [4,
p. 5, Corollary 3.2]).

(c) to (e) Follow from [4, p. 5, Corollary 3.2].
(f) Follows from [46, p. 230] and [17, p. 238, Exercise 4(i)].
(g) Since X is a weak Asplund space, X has property SK [17, p. 239].

Hence, the result follows from (f).
(h) Follows from [21, p. 157, Corollary 5].
(i) Follows from [40, p. 85].
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Theorem 54. Let f ∈ X [a,b] be such that x∗f is continuous almost everywhere
on [a, b] for each x∗ ∈ X∗ and f has a relatively weakly compact range. If X
has the Schur property, then f ∈ D([a, b], X).

Proof. Follows from [23, p. 37, Theorem 2.3.7] and [26, p. 945, Theorem
32].

Alexiewicz and Orlicz have shown that a weakly continuous function may
not be Riemann integrable [2, p. 130]. However, we have the following result
which follows from the above theorem.

Corollary 55. Let f ∈ X [a,b] be weakly continuous and X have the Schur
property, then f ∈ D([a, b], X).

The following result is analogous to [27, p. 171, Theorem 4] which is
generally known as Fundamental Theorem of Calculus.

Theorem 56. Let f ∈ X [a,b] be weakly differentiable with weak derivative f ′w.

(a) If f ′w ∈ RD([a, b], X), then RD −
∫ b
a
f ′w(t)dt = f(b)− f(a).

(b) If f ′w ∈ RP ([a, b], X), then RP −
∫ b
a
f ′w(t)dt = f(b)− f(a).

(c) If f ′w ∈ R([a, b], X), then R−
∫ b
a
f ′w(t)dt = f(b)− f(a).

(d) If f ′w ∈ D([a, b], X), then D −
∫ b
a
f ′w(t)dt = f(b)− f(a).

Proof. (a) Let f ′w ∈ RD([a, b], X). Then, for each x∗ ∈ X∗, x∗f ′w ∈ R[a, b],
and hence x∗f ′w is bounded and continuous almost everywhere on [a, b]. From
[32, p. 47, Theorem 66], it follows that∫ b

a

x∗f ′w(t)dt = x∗f(b)− x∗f(a), for all x∗ ∈ X∗.

Hence,

RD −
∫ b

a

f ′w(t)dt = f(b)− f(a).

The proofs of (b), (c) and (d) are same as (a).

Corollary 57. Let f ∈ X [a,b] be weakly differentiable and if f ′w ∈ RD([a, b], X),
then f ′w ∈ RP ([a, b], X).

Proof. From the above theorem it follows that for any t ∈ [a, b], RD −∫ t
a
f ′w(t)dt = f(t) − f(a) ∈ X. Hence, the result follows from Corollary

13((a)⇔ (d)).
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Definition 58. A function f ∈ (X∗)[a,b] is said to be weak*-scalarly Riemann
integrable on [a, b] if xf is Riemann integrable on [a, b] for each x ∈ X.

It can be shown that every weak*-scalarly Riemann integrable function
is bounded and Gelfand integrable, and hence, it is also said to be Riemann-
Gelfand integrable. Thus, if f ∈ (X∗)[a,b] is weak∗-scalarly Riemann integrable
on [a, b], then for each E ∈ Σ, there exists an element x∗E ∈ X∗ such that
x∗E(x) =

∫
E
xfdλ, for all x ∈ X. The element x∗E is called the Riemann-

Gelfand integral of f over E and is denoted by RG −
∫
E
fdλ. Thus RG −∫

E
fdλ ∈ X∗ and x(RG −

∫
E
fdλ) =

∫
E
xfdλ for all x ∈ X. The collection

of all weak*-scalarly Riemann integrable functions of (X∗)[a,b] will be denoted
by RG([a, b], X∗).

From the very definition we have the following result:

Lemma 59. For any Banach space X, RP ([a, b], X∗) ⊂ RD([a, b], X∗) ⊂
RG([a, b], X∗).

Lemma 60. Let f ∈ RD([a, b], X∗). Then f ∈ RG([a, b], X∗). If for each

x∗∗ ∈ X∗∗, x∗∗f is Borel measurable and ‖RD −
∫ b
a
fdt‖ = ‖RG −

∫ b
a
fdt‖,

then f ∈ RP ([a, b], X∗).

Proof. First part follows from the above Lemma.
Since Lebesgue measure on the sigma algebra of Borel subsets of [a, b] is a

perfect measure, the second part follows by proceeding in the same way as in
the proof of [3, p. 268, Theorem 4].

Lemma 61. Let f ∈ RD([a, b], X∗). Then, f ∈ RG([a, b], X∗). Moreover,

f ∈ RP ([a, b], X∗) if and only if RD−
∫ d
c
fdt = RG−

∫ d
c
fdt for any subinterval

[c, d] of [a, b].

Proof. First part follows from Lemma 59.
For the second part, if f ∈ RP ([a, b], X∗), then for any subinterval [c, d]

of [a, b],
∫ d
c
x∗∗fdt = x∗∗(RP −

∫ d
c
fdt) for all x∗∗ ∈ X∗∗. In particular,∫ d

c
xfdt = x(RP −

∫ d
c
fdt) for all x ∈ X. Also as f ∈ RG([a, b], X∗), we

have
∫ d
c
xfdt = x(RG −

∫ d
c
fdt) for all x ∈ X. Hence x(RP −

∫ d
c
fdt) =

x(RG−
∫ d
c
fdt) for all x ∈ X which implies that RP −

∫ d
c
fdt = RG−

∫ d
c
fdt.

Also, RP −
∫ d
c
fdt = RD −

∫ d
c
fdt. Hence, RD −

∫ d
c
fdt = RG−

∫ d
c
fdt.

Conversely, let RD−
∫ d
c
fdt = RG−

∫ d
c
fdt for any subinterval [c, d] of [a, b].

Hence,
∫ d
c
x∗∗fdt = x∗∗(RD −

∫ d
c
fdt) = x∗∗(RG−

∫ d
c
fdt) for all x∗∗ ∈ X∗∗.

Since RG−
∫ d
c
fdt ∈ X∗, it follows that RG−

∫ d
c
fdt ∈ Jf ([c, d]) which implies

that Jf ([c, d]) 6= φ and the result follows from Theorem 12((a)⇔ (e)).
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Theorem 62. If X is a Grothendieck space, then

RP ([a, b], X∗) = RD([a, b], X∗).

Proof. Let f ∈ RD([a, b], X∗). Then, f ∈ RG([a, b], X∗). Let [c, d] be any
subinterval of [a, b]. For each positive integer n, let Pn be a tagged partition
of [c, d] with points {c + ( kn )(d − c) : 0 ≤ k ≤ n}. Since f ∈ RD([a, b], X∗),
x∗∗f ∈ R[a, b], and hence x∗∗f ∈ R[c, d] for each x∗∗ ∈ X∗∗. Hence, the

sequence {x∗∗f(Pn)} converges to
∫ d
c
x∗∗fdt = x∗∗(RD −

∫ d
c
fdt) for each

x∗∗ ∈ X∗∗. Again, xf ∈ R[c, d] for each x ∈ X. Therefore, the sequence

{xf(Pn)} converges to
∫ d
c
xfdt = x(RG −

∫ d
c
fdt) for all x ∈ X. Thus,

the sequence {f(Pn)} is weak* convergent to RG −
∫ d
c
fdt. Since X is a

Grothendieck space, {f(Pn)} must be weakly convergent to RG −
∫ d
c
fdt.

Therefore, {x∗∗f(Pn)} converges to x∗∗(RG−
∫ d
c
fdt) for all x∗∗ ∈ X∗∗. Hence,

x∗∗(RD −
∫ d
c
fdt) = x∗∗(RG −

∫ d
c
fdt) for all x∗∗ ∈ X∗∗. Therefore, RD −∫ d

c
fdt = RG−

∫ d
c
fdt. Hence, the result follows from above lemma.

Corollary 63. If X is reflexive, then RG([a, b], X∗) = RP ([a, b], X∗) =
RD([a, b], X∗).

Proof. Follows from the very definition of a reflexive space and Lemma 59.

Theorem 64. Let f ∈ (X∗)[a,b] be weak∗ differentiable and f ′w∗ ∈ RG([a, b], X∗).
Then,

RG−
∫ b

a

f ′w∗(t)dt = f(b)− f(a).

Proof. Similar to Theorem 56.

Theorem 65. If BX be weak∗-sequentially dense in BX∗∗ , then RD([a, b], X∗)
= RP ([a, b], X∗).

Proof. Let f ∈ RD([a, b], X∗) so that f ∈ RG([a, b], X∗) and x∗∗ ∈ X∗∗ be
arbitrary so that x∗∗

‖x∗∗‖ ∈ BX∗∗ . Then, there exists a sequence {xn} in BX

which converges to x∗∗

‖x∗∗‖ in weak∗-topology. Therefore, {xnf(t)} converges

to x∗∗

‖x∗∗‖f(t) for all t ∈ [a, b]. So {‖x∗∗‖xnf(t)} converges to x∗∗f(t) for all

t ∈ [a, b]. Also, {‖x∗∗‖xn(RG −
∫ b
a
fdt)} converges to x∗∗(RG −

∫ b
a
fdt).

Clearly, {‖x∗∗‖xn} is bounded in X. Hence, f is Pettis integrable [3, p. 269,
Theorem 5] and the result follows.
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4 A comparative study with Henstock-Kurzweil-type in-
tegration in Banach spaces.

In this section we shall present a comparative study of Riemann-type integra-
tion with Henstock-Kurzweil-type integration in Banach spaces. There are so
many similarities as well as dissimilarities between the two types of integrals.
The fundamental results which hold for both the two types of integration are
not listed here.

Henstock-Kurzweil-type integration is a generalization of Riemann-type
integration. The necessity to introduce the notion of Henstock-Kurzweil inte-
gration originates from the fact that the derivative of a differentiable function
on [a, b] with values in a Banach space (even in R) may not be Riemann
integrable, but is Henstock-Kurzweil integrable [41, p. 209, Theorem 7.3.10].

For definitions and various properties of Henstock-Kurzweil, Henstock-
Kurzweil-Pettis and Henstock-Kurzweil-Dunford (in short HK, HKP and HKD
respectively) integrable functions, we refer to [6], [11], [18], [37].

From the very definitions the following results follow obviously :

A Banach space-valued Riemann integrable function is Henstock-Kurzweil
integrable, a Riemann-Pettis integrable function is Henstock-Kurzweil-Pettis
integrable and a Riemann-Dunford integrable function is Henstock-Kurzweil-
Dunford integrable.

Since a RD-integrable (and consequently a Riemann and RP-integrable)
function is bounded which is not necessarily true for HK-type integrable func-
tions, the converse of none of the above statements is true. Even a bounded
real valued HK-integrable function may not be Riemann integrable [44, p. 88,
Example 14.3].

There is a similarity between the interrelations among the two types of
integrals :

A Riemann integrable function is RP-integrable and a RP-integrable func-
tion is RD-integrable. Similarly, an HK- integrable function is HKP-integrable
and an HKP-integrable function is HKD-integrable.

However, the reverse implications do not hold in general (e.g., see [18, p.
545, Remark 1], [7, p. 589, Example 1]).

In a weakly sequentially complete space, an RD-integrable function is RP-
integrable [26, p. 944, Theorem 31]. This result is valid for an HKD-integrable
function to be HKP-integrable if the function is measurable [47, p. 1241,
Theorem 3.4].

In a Schur space, RD-integrability, RP-integrability and Riemann integra-
bility of a function coincide. This result is valid in a Schur space for HK-type
integrable functions provided that the functions are measurable and the con-



Riemann-type Integration in Banach Spaces 435

dition (C) is satisfied [48, p. 221, Theorem 4.5].

An RP-integrable function is Pettis integrable and an RD-integrable func-
tion is Dunford integrable, whereas an HKP-integrable function (even an HK-
integrable function) may not be Pettis integrable [18, p. 545, Remark 1]
and an HKD-integrable function may not be Dunford integrable as, in R,
an HKD-integrable function is HK-integrable and a Dunford integrable func-
tion is Lebesgue integrable, and an HK-integrable function is not necessarily
Lebesgue integrable.

A measurable Pettis integrable function is HK-integrable [41, p. 173, The-
orem 6.2.1 and p. 47, Theorem 3.2.3], but a measurable Pettis integrable
function (even a Bochner integrable function) may not be Riemann integrable
(even for a real valued function)[26, p. 947, Example 35].

A measurable RD-integrable (and hence a measurable Riemann integrable)
function is bounded and Bochner integrable [26, p. 944]. However a measur-
able HK-integrable function may not be Bochner integrable [37, p. 1098,
Remark 4].

A Riemann integrable (and hence an HK-integrable) function with values
in a Banach space is not necessarily measurable [26, p. 930, Example 12].
However, an HK-integrable function is scalarly measurable. On the other
hand an RD-integrable (and hence Riemann and RP-integrable) function is
scalarly integrable which is not true for HKD-integrable functions, even in R .

Ye has shown that a weakly continuous and bounded function with val-
ues in a Banach space is HKP-integrable [47, p. 1243, Theorem 3.6]. How-
ever a stronger result exists, namely, a weakly continuous (in fact, a weakly
continuous almost everywhere and bounded) function is measurable and RP-
integrable and hence Bochner integrable [26, p. 944] which implies that it is
HK-integrable. However, a weakly continuous function may not be Riemann
integrable [26, p. 947, Example 35].

If f = g a.e. in [a, b] (with respect to Lebesgue measure) and if g ∈
HK([a, b], X), then f ∈ HK([a, b], X). However this result is not true for a
Riemann integrable function (even in R ).

A function f ∈ X [a,b] is said to be absolutely Riemann(HK, Darboux) inte-
grable if both f and ‖f‖ are Riemann (respectively HK, Darboux) integrable.
A real valued Riemann integrable function is absolutely Riemann integrable
but a real valued HK-integrable function may not be absolutely HK-integrable
[41, p. 79, Example in Remark]. A Banach space valued Darboux integrable
function is absolutely Darboux integrable, but a Banach space valued Rie-
mann integrable function may not be absolutely Riemann integrable. Also,
a Banach space valued HK-integrable function is not necessarily absolutely
HK-integrable [26, p. 931, Example 14] and [18, p. 548, Example in Remark
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3]. Even though a Riemann integrable function is HK-integrable, a Riemann
integrable function is not necessarily absolutely HK-integrable. An absolutely
Riemann integrable function is absolutely HK-integrable, but the converse is
not true. Even a Riemann integrable and absolutely HK-integrable function
may not be absolutely Riemann integrable. For example, for E = Q ∩ [0, 1],
the function f : [0, 1]→ l∞[0, 1] defined by f(t) = θ if t /∈ E and f(t) = χ{t} if
t ∈ E is Riemann integrable but ‖f‖ = χE is Lebesgue integrable, and hence
HK-integrable but not Riemann integrable.

The indefinite integral of an RD-integrable function satisfies Lipschitz con-
dition and hence is absolutely continuous. This result is not true even for an
HK-integrable function. The indefinite integral for an HK-integrable func-
tion is continuous on [a, b], and there is a countable partition of [a, b] on each
subinterval of which it is absolutely continuous [41, p. 224, Theorem 7.4.19].
However, if the indefinite integral of an HK-integrable function f is absolutely
continuous, then f is Pettis integrable [36, p. 15, Definition 4]. The indefinite
integral of an HKP-integrable function may not even be continuous [36, p. 17,
Theorem 4].

The indefinite integral of an RP-integrable function and hence a Riemann
integrable function is scalarly differentiable almost everywhere on [a, b] which
is also valid for an HKP-integrable function. Consequently our Theorem 5(c)
follows from the corresponding result for HKP-integrable functions.

An RD-integrable function is Pettis integrable (and hence RP-integrable)
if and only if the indefinite RD-integral over every closed sub-interval [c, d] of
[a, b] belongs to X [26, p. 944]. But, this result is not true for HKD-integrable
functions as an HKP-integrable function is not necessarily Pettis integrable.

Di Piazza and Musia l have shown that weak derivative of a Banach space
valued function is HKP-integrable [19, p. 171, Proposition 2] but as the
derivative of a differentiable function is not necessarily Riemann integrable
(even in R where Riemann and RP-integrability coincide), the weak derivative
of a weakly differentiable function may not be RP-integrable.

In [19, p. 171, Proposition 2], Di Piazza and Musia l have shown that if f ∈
X [0,1] is weakly differentiable, then its weak derivative f ′ is HKP-integrable
and (HKP)

∫ s
0
f ′(t)dt = f(s) − f(0) for each s ∈ [0, 1]. As stated earlier, the

derivative of a differentiable real valued function defined on a closed interval
of R is not necessarily Riemann integrable (even not Lebesgue integrable, for
example, let f(t) = t2cos( πt2 ), t ∈ (0, 1], f(0) = 0. Then f is differentiable
on [0, 1] and f ′(t) = 2tcos( πt2 ) + 2π

t sin( πt2 ) for t ∈ (0, 1], f ′(0) = 0 and f ′ is
not Lebesgue integrable), the same result does not hold for an RP-integrable
function. Moreover, if the weak derivative f ′ of a weakly differentiable function
f is RP-integrable, then we have (RP)

∫ s
a
f ′(t)dt = f(s)−f(a) for each s ∈ [a, b]
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[Theorem 56].
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