
RESEARCH Real Analysis Exchange
Vol. 39(2), 2013/2014, pp. 367–384
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EXACT HAUSDORFF MEASURES OF
CANTOR SETS

Abstract

Cantor sets in R are common examples of sets for which Hausdorff
measures can be positive and finite. However, there exist Cantor sets
for which no Hausdorff measure is supported and finite. The purpose of
this paper is to try to resolve this problem by studying an extension of
the Hausdorff measures µh on R, allowing gauge functions to depend on
the midpoint of the covering intervals instead of only on the diameter.
As a main result, a theorem about the Hausdorff measure of any regular
enough Cantor set, with respect to a chosen gauge function, is obtained.

1 Introduction

Felix Hausdorff, in his paper Dimension und ußeres Maß from 1918, as trans-
lated by Sawhill in the book Classics on Fractals [2], made the following
definition.

Definition 1. Let U be a system of bounded sets U in a q-dimensional space
having the property that one can cover any set A with an at most countable
number of sets U from U having arbitrarily small diameters |U |. Let h : U →
[0,∞) be a set function. Denote by

µδU,h(A) = inf
∑

h(Un)

where the infinum runs over all countable subsets {Un} of U such that ∪Un
covers A and |Un| < δ for all n. If U is the set of Borel sets, then µU,h(A) =
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limδ→0 µ
δ
U,h(A) is a measure. If h(U) is continuous or h(U) = h(Ū), then

µU,h is an outer measure.

In R, with which we will be concerned, a common choice is to take U to
be the set of all intervals and to restrict the choice of the set function h to
interval functions depending on only the diameter of the sets on which it is
applied. In this paper, we will use a definition somewhat closer to the original
definition made by Hausdorff.

Let I(w, δ) denote the interval with midpoint w and diameter δ. If I =
I(w, δ) and there is no risk for confusion, we sometimes write h(I) instead of
h(w, δ). By a δ-cover of a set E, we will mean a collection of sets of diameter
at most δ whose union contain E. Using these notations we can formulate
the definition of Hausdorff measures on R which we will use. This definition
differs from definitions previously used in the context of Cantor sets in R in
that the gauge function is allowed to depend not only on the diameter of the
covering intervals, but also on their midpoints.

Definition 2. Let h : R× R+ → R+ be a continuous function with
limδ→0 h(w, δ) = 0 for all w ∈ R which is increasing as an interval function.
Then the Hausdorff measure of the set E ⊆ R with respect to the gauge function
h is defined by

µh(E) = lim
δ→0

inf
{∑

h(wk, δk), where {I(wk, δk)} is a δ-covering of E
}
.

The function h in the definition above will be called the gauge function
associated with the measure µh, and µh will be called the Hausdorff measure
associated with the gauge function h. Moreover, any function with the prop-
erties above will be called a gauge function. The fact that the measure in
Definition 2 is a well-defined outer measure follows from Definition 1, even if
the assumption on h being continuous is dropped. When the sets we want to
measure are subsets of R, we get a definition equivalent to definition 2 if we
consider only coverings by intervals. Also, it can be shown (see e.g. [7]) that
the resulting measure does not depend on whether the sets considered in the
covering in the definition above are open or closed.

The reason for using the definition above instead of the more common
definition requiring that h(w, δ) does not depend on w, is that given this
restriction makes it possible to find Hausdorff measures which are finite and
supported on a given Cantor set for Cantor sets for which this, using the more
restrictive definition, is not possible. Also, assuming Lipschitz continuity of
h(w, δ) in the first argument, only small adaptions of the corresponding proofs
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for the case h(w, δ) = h(δ) (see e.q. [5]) are needed to show that results such
as Frostman’s lemma and common density bounds hold also in this setting [6].

By a Cantor set in R we mean a subset of R which is compact, perfect and
totally disconnected. Given the notation we will use throughout this paper,
this definition translates as follows.

Definition 3. Let

C = lim
n→∞

n⋂
k=0

⋃
j∈{0,1}k

Ij ,

where I = {Ij}j∈{0,1}k k=0,1,2,... is a collection of nonempty closed intervals.
Let j0 denote the concatenation of the two binary words j and 0, and j1 denote
the concatenation of the binary words j and 1. If for all Ij ∈ I,

• Ij0 ∩ Ij1 = ∅

• Ij0 ∪ Ij1 ⊆ Ij and

• Ij0 and Ij have the same left endpoint and Ij1 and Ij have the same
right endpoint,

we say that C is a Cantor set, and write C ∼ {Ij}.

The intervals Ij = I(wj , δj) appearing in the construction of a Cantor set
C will be called the basic intervals associated with the Cantor set. Moreover,
any interval whose left endpoint is the left endpoint of a basic interval and
whose right endpoint is a right endpoint of a basic interval will be called a
near basic interval associated with C. We use Gj to denote the open interval
Ij\ (Ij0 ∪ Ij1), and say that Gj is a gap associated to the Cantor set C ∼ {Ij}.
When I = I(w, δ) is an interval and a > 0, we will write aI to denote the
interval I(w, aδ); i.e. we write aI = aI(w, δ) = I(w, aδ).

The unique probability measure ν satisfying ν(Ij0) = ν(Ij1) = 1
2 ν(Ij) for

all binary words j is called the Cantor measure associated with the Cantor
set C ∼ {Ij}. The fact that the Cantor measure is a well-defined measure
follows by Proposition 1.7 in [3]. More generally, a measure which non-trivial
and finite and supported on a given set E is called a mass distribution on E.

When j1 and j2 are two binary words, j1j2 will denote their concatenation.
Also, 0m will be used throughout this text to denote the binary word which
consists of m zeros. 1m is defined analogously.

In this paper we will almost exclusively use binary words to enumerate the
elements of the construction of a Cantor set. However, an alternative notation,
which is simpler in some situations, is to use Ikl to represent the lth interval in
the kth construction step. If j is a binary word and we let j10 be the integer
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we get if converting j when considered as a binary number to base 10, we can

convert between the two notations by Ij = I
|j|
j10

. Similarly Gj = G
|j|
j10

. We will
only use this notation in examples 10 to 12 and in the proof of Corollary 6.

2 Main results

Small adaptions of the standard methods for calculating Hausdorff measures
of Cantor sets (see e.g. [5], pp. 60-63) now yield the first of the two theorems
below, which shows that many of the Hausdorff measures as defined in this
paper are mass distributions on some Cantor sets. This fact motivates the use
of this definition, as it extends the family of Cantor sets whose dimension we
understand, in the sense of which gauge functions yield mass distributions on
the sets through its associated Hausdorff measure. Similar results, but with
less strict bounds, can easily be obtained when the ratio of h(Ij) and ν(Ij) is
bounded from above and below away from zero.

Theorem 4. Let h be any gauge function, and suppose there exists a constant
D such that D · h(w, δ) > h(w, 2δ) for all w and δ. Let C ∼ {Ij} be a Cantor
set such that 2 max

{
|Ij0|, |Ij1|

}
≤ |Ij |, and assume there exist two constants

q and r such that q · ν(Ij) ≤ h(Ij) ≤ r · ν(Ij), where ν is the Cantor measure
associated with C. Then µh is a mass distribution on C. Further, for any
interval J ⊆ [0, 1], q/2D2 · ν(J) ≤ µh(J ∩ C) ≤ r · ν(J).

While the previous theorem gives satisfactory information about the (local)
dimension of a Cantor set (through gauge functions), it does not give specific
information about the exact measure of any Cantor set. This is the main
purpose of our main result, the theorem below, which, especially in the case
r = q, gives more explicit information about Hausdorff measures of Cantor
sets, both globally and locally.

Theorem 5. Let J ⊆ [0, 1] be any closed interval, and let ε > 0 be a small
positive number. Further, let h be a gauge function and C ∼ {Ij} be a Cantor
set for which the following assumptions hold:

i. For any fixed w and small enough δ with I(w, δ) ⊆ (1 + ε) · J , we have1

−h11(w, δ) + 4h22(w, δ) ≤ 0 (1)

and
h11(w, δ) + 4h12(w, δ) + 4h22(w, δ) ≤ 0. (2)

1We will throughout this paper use subindices to denote derivates, s.t. for example

h11(w, δ) = ∂2h
∂w2 (w, δ).
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ii. For all long enough binary words j with Ij ⊆ (1 + ε) · J and all m ∈ N
the following inequality holds

1

2m
≤ |Gj ∪ Ij10

m |
|Gj ∪ Ij1|

.

iii. There exist two positive numbers q and r such that for all long enough
binary words j with Ij ⊆ (1 + ε) ·J the following pair of inequalities hold

q · ν(Ij) ≤ h(Ij) ≤ r · ν(Ij). (3)

Then (
q − (r − q)

)
· ν(J) ≤ µh(J ∩ C) ≤ r · ν(J) (4)

When the gauge function h only depends on the diameter of the covering
intervals (i.e. when the gauge function is of the form h(δ)), the first of the
three assumptions above simplifies into h being concave. This is a reasonable
requirement, since for the arguably most commonly studied Hausdorff mea-
sures in the context of Cantor sets, the Hausdorff measures associated to the
gauge functions h(δ) = δα, the corresponding gauge function is concave for
α ∈ (0, 1).

The second assumption also simplifies in special cases. A well-studied
subset of the set of all Cantor sets in R is the Cantor sets with so-called
decreasing gap sequences. We say that C ∼ {Ij} has a decreasing gap sequence

if |Gkl | ≤ |Gk
′

l′ | when 2k
′
+l′ < 2k+l. When using this notation, by assumption

we have

|Ikl | =
∞∑
n=0

2n∑
m=0

|Gk+n2nl+m| and |Ik
′

l′ | =
∞∑
n=0

2n∑
m=0

|Gk
′+n

2nl′+m|

and

2(k
′+n) +(2nl′ +m) = 2n(2k

′
+ l′)+m < 2n(2k + l)+m = 2(k+n) +(2nl +m) ,

implying that |Gk+n2nl+m| ≤ |G
k′+n
2nl′+m| for any fixedm and n when 2k

′
+l′ < 2k+l.

Comparing the two double sums above termwise, we see that this implies
|Ikl | ≤ |Ik

′

l′ |, which means the interval sequence is decreasing in the same sense



372 Malin Palö

as the gap sequence is. This gives

|Ij1| =
∑

k∈{0,1}m
|Ij1k|+

m−1∑
j=0

∑
m∈{0,1}l

|Gj1l|

≤
∑

k∈{0,1}m
|Ij10m |+

m−1∑
j=0

∑
m∈{0,1}l

|Gj | = 2m|Ij10m |+ (2m − 1) |Gj |.

Rearranging the terms above, we get

1

2m
≤ |Gj |+ |Ij10

m |
|Gj |+ |Ij1|

;

i.e. the second assumption of the theorem is satisfied for any Cantor set whose
gap sequence is decreasing. This observation, together with the previous ob-
servation, yields the following corollary.

Corollary 6. Let J ⊆ [0, 1] be any closed interval, and let ε > 0 be a small
positive number. Further, let h(δ) be a concave gauge function and C ∼ {Ij}
be a Cantor set associated to a decreasing gap sequence for which there exist
two positive numbers q and r such that for all long enough binary words j with
Ij ⊆ (1 + ε) · J

q · ν(Ij) ≤ h(Ij) ≤ r · ν(Ij).

Then
(
q − (r − q)

)
· ν(J) ≤ µh(J ∩ C) ≤ r · ν(J).

The rest of this paper is structured as follows. In the next section, we give
a proof of our main result. In the last section, we use this result to calculate
the exact Hausdorff measure of a family of Cantor sets, for which upper and
lower estimates were given in [1], and for which the measure (to the author’s
knowledge) was previously unknown.

3 Proof of the main results

To be able to give a proof of Theorem 5 and its subsequent corollary, we will
need the following lemma. This lemma and its proof use the notation ρ ·L I
to denote the leftmost ρ-proportion of the set I, and analogously ρ ·R I, the
rightmost ρ-proportion of the set I. Note that this implies that 1 ·L I = I,
1 ·R I = I, 0 ·L I = ∅ and 0 ·R I = ∅.

Lemma 7. Let C ∼ {Ij} be a Cantor set. Let {Gj} be the corresponding
gap sequence, and let ν be the associated Cantor measure. Then the following
claims are equivalent:
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(i) For all long enough binary words j and all ρ ∈ [0, 1],

ν
(
ρ ·L (Gj ∪ Ij1)

)
≤ ρ · ν(Ij1). (5)

(ii) For all long enough binary words j and all m ∈ N,

1

2m
≤ |Gj ∪ Ij10

m |
|Gj ∪ Ij1|

.

Proof. We first show that (i) implies (ii). To this end, let j be any binary
word which is long enough for (i) to hold, and let m ∈ N. Set ρ =

|Gj∪Ij10m |
|Gj∪Ij1|

and note that this implies that ρ ·L (Gj ∪ Ij1) = Gj ∪ Ij10m . Also

ν
(
ρ ·L (Gj ∪ Ij1)

)
= ν (Gj ∪ Ij10m) = ν (Ij10m) =

1

2m
ν (Ij1), (6)

by the definition of the Cantor measure. Using this equation and applying (i),
we get

1

2m
ν (Ij1)

(6)
= ν

(
ρ ·L (Gj ∪ Ij1)

) (i)

≤ ρ · ν(Ij1) =
|Gj ∪ Ij10m |
|Gj ∪ Ij1|

· ν(Ij1).

Dividing by ν(Ij1) gives (ii).
We will now show that the reverse implication holds (i.e. that (ii) implies

(i)) by showing that if (i) is false, then (ii) is also false. This part of the proof
will rely heavily on the following notation. Namely, if i is a binary word, we
will write ρj1i for the unique number in [0, 1] such that

ρj1i ·L (Gj ∪ Ij1) = Gj ∪ [wj1 −
δj1
2
, wj1i +

δj1i
2

].

Here, as
Ij1 = I(wj1, δj1) = [wj1 − δj1/2, wj1 + δj1/2]

and
Ij1i = I(wj1i, δj1i) = [wj1i − δj1i/2, wj1i + δj1i/2],

wj1 − δj1/2 is the left endpoint of Ij1 and wj1i + δj1i/2 is the right endpoint
of Ij1i. Although we will not use it below, we have that

ρj1i =

∣∣∣Gj ∪ [wj1 − δj1
2 , wj1i +

δj1i
2 ]
∣∣∣

|Gj ∪ Ij1|
.
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Note that with this notation, for any binary word i, we have ρj1i1 = ρj1i.

Suppose now that (i) is false. Then there is a binary word j and a number
ρ ∈ [0, 1] such that

ν (ρ ·L (Gj ∪ Ij1)) > ρ · ν(Ij1). (7)

As the lhs of equation 7 is constant at ρ corresponding to the gaps associ-

ρ · ν(Ij1) ν(ρ ·L (Gj ∪ Ij1))

ρ
1

ν(Ij1)

ν(Ij1)
2

Figure 1: The black diagonal line shows the rhs of equation 5 and the grey
line the lhs of the same equation. Note in particular that the lhs is constant
for ρ corresponding to gaps in the Cantor set.

ated to C (see Figure 1), we now conclude that there must exist at least one
pair (k,m), where k is a binary word and m is a positive integer, such that
ρ = ρj1k10m satisfies the inequality in equation 7 and, in addition, such that
if (k′,m′) is any other pair for which ρ = ρj1k′10m′ satisfies the inequality in
equation 7, then |k| ≤ |k′|.

As ρ = ρj1k10m minimizes |k|, the inequality in equation 5 holds for
ρ = ρj1k0 and ρ = ρj1k1; i.e.

ν(ρj1k0 ·L (Gj ∪ Ij1)) ≤ ρj1k0 · ν(Ij1) and ν(ρj1k1 ·L (Gj ∪ Ij1)) ≤ ρj1k1 · ν(Ij1).

This implies that the line segment between the two points

(ρj1k0, ν(ρj1k0 ·L (Gj ∪ Ij1))) and (ρj1k1, ν(ρj1k1 ·L (Gj ∪ Ij1)))
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lies completely below the line ρ · ν(Ij1) for ρ ∈ [ρj1k0, ρj1k1]; i.e. we have

ν(ρj1k0 ·L (Gj ∪ Ij1)) +
ρ− ρj1k0

ρj1k1 − ρj1k0
×(

ν(ρj1k1 ·L (Gj ∪ Ij1))− ν(ρj1k0 ·L (Gj ∪ Ij1))
)
< ρ · ν(Ij1)

for all ρ ∈ [ρj1k0, ρj1k1]. Noting that

ν(ρj1k1 ·L (Gj ∪ Ij1))− ν(ρj1k0 ·L (Gj ∪ Ij1)) = ν(Ij1k1)

and using equation 7, yields

ν(ρj1k0 ·L (Gj ∪ Ij1)) +
ρ− ρj1k0

ρj1k1 − ρj1k0
· ν(Ij1k1) < ν (ρ ·L (Gj ∪ Ij1)) .

Now set ρ = ρj1k10m . Then ρ ∈ [ρj1k0, ρj1k1] and

ν (ρ ·L (Gj ∪ Ij1))− ν(ρj0k0 ·L (Gj ∪ Ij1)) =

ν (ρj1k10m ·L (Gj ∪ Ij1))− ν(ρj0k0 ·L (Gj ∪ Ij1)) = ν(Ijk10m) =
1

2m
ν(Ij1k1).

Also,
ρ− ρj1k0
ρj1k1−ρj1k0

=
ρj1k10m − ρj1k0
ρj1k1−ρj1k0

=
|Gj1k ∪ Ij1k10m |
|Gj1k ∪ Ij1k1|

.

Combining the last three equations and dividing by ν(Ij1k1), we obtain

1

2m
>
|Gj1k ∪ Ij1k10m |
|Gj1k ∪ Ij1k1|

.

This means that (ii) must be false if (i) is false, which finishes the proof of the
lemma.

In addition to the lemma above, in the proof of theorem 5, we will need
a lemma which is sometimes called the mass distribution principle. In this
paper, we will only use the mass distribution principle for Cantor measures.

Lemma 8 (The mass distribution principle). Let ν be a Cantor measure,
E ⊆ R, h(ξ, δ) a gauge function and q, ε > 0 positive numbers such that
h (I) ≥ q · ν (I) for all intervals I with diameter less that ε contained in
(1 + ε)E. Then µh (E ∩ C) ≥ q · ν (E).
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Proof. Fix δ < ε, and let {Ik}k∈K be an arbitrarily chosen δ-covering of E.
Then ∑

k∈K

h (Ik) ≥
∑
k∈K

q · ν (Ik) ≥ q · ν (E)

since E ⊂
⋃
k∈K Ik. By letting δ → 0, we get µh (E ∩ C) ≥ q · ν (E).

We now proceed to the proof of our main theorem.

Proof of theorem 5. For the upper bound on µh(J ∩C), consider the cov-
ering of J ∩ C with the basic intervals Ij from some fixed step k of the con-
struction which intersects J ; i.e. all basic intervals Ij associated to C for which
Ij ∩ J 6= ∅ and |j| = k. Then

µh(J ∩ C) ≤ lim
k→∞

∑
|j|=k
Ij∩J 6=∅

h(Ij) ≤ lim
k→∞

∑
|j|=k
Ij∩J 6=∅

r · ν(Ij)

= lim
k→∞

r · ν

 ⋃
|j|=k
Ij∩J 6=∅

Ij

 ≤ lim
k→∞

r · ν

 ⋃
|j|=k

Ij∩∂J 6=∅

Ij

+ r · ν (J) .

As at most two basic intervals from any fixed step k of the construction can
intersect ∂J and ν(Ij) = 2−|j| for any basic interval, we get

µh(J∩C) ≤ lim
k→∞

r·ν (J)+r·ν
( ⋃
|j|=k

Ij∩∂J 6=∅

Ij

)
≤ lim
k→∞

r·ν (J)+r·2·2−k = r·ν (J) .

We will now show that the lower bound in equation 4 holds; i.e. we will
show that µh(J ∩ C) ≥

(
q − (r − q)

)
· ν(J). To do this, we will use the mass

distribution principle after showing that h(I) ≥
(
q − (r − q)

)
· ν(I) for all

intervals I ⊆ J(1 + ε) with |I| < ∆ for some small ∆ > 0. As h is a gauge
function, h is increasing as an interval function and it is therefore enough to
consider the case when I is a near basic interval.

To this end, pick ∆0 small enough for the assumptions of the theorem to
hold for all intervals with diameter less than ∆0. As |Ij | → 0 when |j| → 0,
there exists k ∈ N such that max|j|>k |Ij | ≤ ∆0. Fix any such k, and set
∆ = min|j|≤k |Gj |. Now let I = I(w, δ) be any near basic interval associated
with C with |I| < ∆. If j1 and j1 are two binary words, we say that a gap
Gj1 is older than a gap Gj2 if |j1| > |j2|. Let Gj be the oldest gap which is
a subset of I. Since Gj is the oldest gap contained in I and I is a near basic
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interval, I ⊆ Ij . The choice of ∆ ensures that the diameter of Ij is smaller
than ∆0, which enables us to use all the assumptions of the theorem in the
reasoning below.

To simplify notations, set J0 = I ∩ Ij0 and J1 = I ∩ Ij1, and note that
I ∩ C ⊆ J0 ∪ J1. Let w be the midpoint of J0 and δ = |J0|, and consider

Ij0 Ij1

I

Ij

J0 J1

2t∗ Gj

Figure 2: The image above shows some of the notations used in the proof.
The black parts inside the light grey intervals are some of the basic intervals
of the Cantor set. Note that the endpoints of I coincide with the endpoints
of basic intervals, and also that I must be contained in Ij since if it was not,
Gj would not be the oldest gap in I. Note also that the right endpoint of Ij0
and J0 coincide.

the function f(t0, t1) = h(w − t0 + t1, δ + 2t0 + 2t1). As h is increasing as an
interval function, by the definition of f(t0, t1), we have ∂f

∂t0
≥ 0 and ∂f

∂t1
≥ 0.

Also, by the third assumption, for sufficiently small t0 and t1,

∂2f

∂t0∂t1
(t0, t1) = (−h11 + 4h22)|w−t0+t1,δ+2t0+2t1

(1)

≤ 0

and
∂2f

∂t21
(t0, t1) = (h11 + 4h12 + 4h22)|w−t0+t1,δ+2t0+2t1

(2)

≤ 0.

Since J0 and Ij0 have their right endpoint in common and J0 ⊆ Ij0, there
exists a unique number t∗ ∈ R+ such that I(w − t∗, δ + 2t∗) = Ij0. Set
f(t) = f(0, t2 ) and f∗(t) = f(t∗,

t
2 ). Then

f∗(t) = f(t∗,
t

2
) = h(w − t∗ +

t

2
, δ + 2t∗ + t) = h(wj0 +

t

2
, |Ij0|+ t),

which implies
f∗(0) = h(Ij0) = h(Ij1) (8)
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and
f∗(|Gj ∪ Ij1|) = h(Ij). (9)

Similarly,
f(0) = h(J0). (10)

As ∂2f
∂t0∂t1

≤ 0, ∂
∂t1
f(t0, t1) decreases as t0 increases for all t1. This implies

f ′∗(t) ≤ f ′(t) (11)

for all t, which in turn implies f(t)− f(0) ≥ f∗(t)− f∗(0) for all t.
Set T = |Gj ∪ Ij1|. Then

f∗(T )− f∗(0)
(8,9)
= h(Ij)− h(Ij0)

(3)

≥ q · ν(Ij)− r · ν(Ij0)

= q ·
(
ν(Ij)− ν(Ij0)

)
− (r − q) · ν(Ij0)

= q · ν(Ij1)− (r − q) · ν(Ij1) =
(
q − (r − q)

)
· ν(Ij1).

(12)

Since ∂2f
∂t21
≤ 0 and ∂f

∂t1
≥ 0, f ′∗(t) is positive and decreasing. Using this, we

obtain

f(ρT )− f(0) =

∫ ρT

0

f ′(t) dt
(11)

≥
∫ ρT

0

f ′∗(t) dt

f ′∗decreasing

≥ ρ ·
(
f∗(T )− f∗(0)

) (12)

≥
(
q − (r − q)

)
· ρ · ν(Ij1)

(13)

for all ρ ∈ [0, 1]. Now fix ρ ∈ [0, 1] as the unique number such that

ρT = |Gj ∪ J1|; i.e. set ρ =
|Gj∪J1|
|Gj∪Ij1| . Then

ρ ·L (Gj ∪ Ij1) = Gj ∪ J1. (14)

By lemma 7 and the second assumption, we have

ρ · ν(Ij1) ≥ ν(ρ ·L (Gj ∪ Ij1)). (15)

Using this inequality and the previous equations we get

h(I) = f(ρ)
(13)

≥ f(0) +
(
q − (r − q)

)
· ρ · ν(Ij1)

(10)
= h(J0) +

(
q − (r − q)

)
· ρ · ν(Ij1)

(15)

≥ h(J0) +
(
q − (r − q)

)
· ν(ρ ·L (Gj ∪ Ij1))

(14)
= h(J0) +

(
q − (r − q)

)
· ν(Gj ∪ J1)

= h(J0) +
(
q − (r − q)

)
· ν(J1).
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As we can repeat this procedure with J0 instead of I arbitrarily many times
and h(w, δ)→ 0 as δ → 0 for all w, we can conclude that

h(I) ≥
(
q − (r − q)

)
· ν(I).

This proves the theorem.

Remark 9. The symmetric theorem also holds; i.e. we can assume h11−4h12+

4h22 ≤ 0 and 1
2m ≤

|Gj∪Ij01m |
|Gj∪Ij0| instead of assuming h11 + 4h12 + 4h22 ≤ 0 and

1
2m ≤

|Gj∪Ij10m |
|Gj∪Ij1| .

4 Examples

We will end this paper with three examples that use Theorem 5 to calculate
the exact Hausdorff measure of three Cantor sets studied in [4] and [1].

Example 10. In [1], Cabrielli, Molter, Paulauskas and Shonkwiler studied
the Cantor sets Cp associated with the sequence of gap lengths

|Gkl | =
1

(2k + l)p

where p is any real number which is strictly larger than one. For the Hausdorff
measure µh associated to the gauge function h(w, δ) = δ1/p, the following
bounds were acquired (see [1], theorem 1.1)

1

8

(
2p

2p − 2

)1/p

≤ µh(Cp) ≤
(

1

p− 1

)1/p

.

We will show that by using Corollary 6, we can compute the exact value
of µh(Cp) for any p > 1. As δ1/p is concave for any fixed p > 1 and {Gkl }
is a decreasing gap sequence, we only need to find good estimates of q and
r. To find such estimates, we will need the following result from [1], which
gives bounds for the length of the basic intervals associated to the Cantor sets
considered:

2p

2p − 2
·
(

1

2k + l + 1

)p
≤ |Ikl | ≤

2p

2p − 2
·
(

1

2k + l

)p
. (16)
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We will now calculate estimates for the constants r and q in equation 3.
To this end, note that if Ikl and Ik

′

l′ are any two basic intervals associated with

Cp with Ik
′

l′ ⊆ Ikl , we have
l′

2k′
≥ l

2k
(17)

and also, by the definition of the Cantor measure,

ν(Ik
′

l′ ) =
1

2k′
and ν(Ikl ) =

1

2k
. (18)

Using these observations, we get

h(Ik
′

l′ ) = |Ik
′

l′ |1/p
(16)

≤ 2

(2p − 2)1/p
· 1

2k′ + l′
=

2

(2p − 2)1/p
· 1

1 + l′

2k′
· 1

2k′
(18)
=

2

(2p − 2)1/p
· 1

1 + l′

2k′
·ν
(
Ik
′

l′

)
(17)

≤ 2

(2p − 2)1/p
· 1

1 + l
2k

· ν
(
Ik
′

l′

)
.

Completely analogously, we get the lower limit

2

(2p − 2)1/p
· 1

1 + l+1
2k

· ν(Ik
′

l′ ) ≤ h(Ik
′

l′ ).

Combining the upper and lower limit, we obtain the following estimates of q
and r for all basic intervals contained in Ikl :

2

(2p − 2)1/p
· 1

1 + l+1
2k

· ν(Ik
′

l′ ) ≤ h(Ik
′

l′ ) ≤ 2

(2p − 2)1/p
· 1

1 + l
2k

· ν(Ik
′

l′ ). (19)

This yields

µh(Cp) =

2k−1∑
l=0

mh(Cp ∩ Ikl )
(19)

≤
2k−1∑
l=0

2

(2p − 2)1/p
· 1

1 + l
2k

· ν(Ikl )

(18)
=

2

(2p − 2)1/p
·
2k−1∑
l=0

1

1 + l
2k

· 1

2k
.

Since this is true for all k, and

lim
k→∞

2k−1∑
l=0

1

1 + l
2k

· 1

2k
=

∫ 1

0

dx

1 + x
= [log(1 + x)]

1
0 = log 2,
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we get

m1/p(Cp) ≤
2 log 2

(2p − 2)1/p
. (20)

Similarly for the lower limit,

m1/p(Cp) =

2k−1∑
l=0

m1/p

(
Cp ∩ Ikl

)
(19)

≥
2k−1∑
l=0

2

(2p − 2)1/p
·

(
1

1 + l+1
2k

−

(
1

1 + l
2k

− 1

1 + l+1
2k

))
· ν(Ikl )

≥ 2

(2p − 2)1/p
·
2k−1∑
l=0

(
1

1 + l+1
2k

− 1

2k

)
· ν(Ikl )

(18)
=

2

(2p − 2)1/p
·
2k−1∑
l=0

(
1

1 + l+1
2k

− 1

2k

)
· 1

2k

=
2

(2p − 2)1/p
·
2k−1∑
l=0

1

1 + l+1
2k

· 1

2k
− 2

(2p − 2)1/p
· 1

2k
.

As

lim
k→∞

2

(2p − 2)1/p
·
2k−1∑
l=0

1

1 + l+1
2k

· 1

2k
− 2

(2p − 2)1/p
· 1

2k

=
2

(2p − 2)1/p
·
∫ 1

0

1

1 + x
dx =

2 log 2

(2p − 2)1/p
,

we get the the lower limit

m1/p(Cp) ≥
2 log 2

(2p − 2)1/p
. (21)

By combining equation 20 and equation 21, we can conclude that

m1/p(Cp) =
2 log 2

(2p − 2)1/p
.

Example 11. As a small variation of the Cantor sets studied in the previous
example, we can consider the Cantor sets Cp,x associated with the sequences
of gap lengths

|Gkl | =
1

([xk] + l)p
, (22)
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where p > 1 and x > 2. These sets were also studied in [1], where Cabrielli,
Molter, Mendevil, Paulauskas and Shonkwiler gave the bounds

0 < m log 2
p log x

(Cp,x) ≤
(

4p

2p − 2

) log 2
p log x

.

As in the previous example, we will calculate the measure of these Cantor

sets using Corollary 6, for the gauge function hp,x(w, δ) = δ
log 2

p log x , and any
fixed p > 1 and x > 2, where x and p are the parameters for the Cantor set
considered. As the gauge function is clearly concave and the gap sequence is
decreasing, we only need to find estimates for q and r.

We begin by calculating upper and lower bounds for |Ikl | similar to those
in equation 16:

|Ikl | =
∞∑
h=0

2h−1∑
j=0

∣∣∣Gk+h2hl+j

∣∣∣ (22)≤ ∞∑
h=0

2h−1∑
j=0

∣∣∣Gk+h2hl+0

∣∣∣
(22)
=

∞∑
0

2h

(bxk+hc+ l · 2h)p
≤ 1

xkp
·
∞∑
h=0

2h(
xh − 1

xk

)p
≤ 1

xkp
· (1 + ε

(1)
k ) ·

∞∑
h=0

2h

xph
=

1

xkp
·
(

1 + ε
(1)
k

)
· 1

1− 2
xp

,

(23)

where ε
(1)
k is a small positive number which tends to zero as k →∞. Similarly,

but by somewhat more tedious calculations, we obtain

|Ikl | =
∞∑
h=0

2h−1∑
j=0

∣∣∣Gk+h2hl+j

∣∣∣ ≥ ∞∑
h=0

2h

(bxk+hc+ l · 2h + 2h − 1)
p

≥
∞∑
h=0

2h

(xk+h + (l + 1) · 2h)p
≥ 1

xkp
·
∞∑
h=0

2h

xhp ·
(

1 + l+1
xk · 2

h

xh

)p
≥ 1

xkp
·
∞∑
h=0

2h

xhp ·
(

1 + 2k

xk · 2
h

xh

)p ≥ 1

xkp
·
∞∑
h=0

2h

xhp
· 1(

1 + 2k

xk

)p
≥ 1

xkp
· 1

1− 2
xp

· 1(
1 + 2k

xk

)p =
1

xkp
· 1

1− 2
xp

·
(

1− ε(0)k
)
,

(24)

where ε
(0)
k is a small positive number which tends to zero as k →∞. Summing
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up equations 23 and 24, we have

1

xkp
· 1

1− 2
xp

·
(

1− ε(0)k
)
≤ |Ikl | ≤

1

xkp
·
(

1 + ε
(1)
k

)
· 1

1− 2
xp

.

This implies (
1

1− 2
xp

) log 2
p log x

·
(

1− ε(0)k
) log 2

p log x · 1

2k
≤ |Ikl |

log 2
p log x

≤ 1

xkp
·
(

1 + ε
(1)
k

) log 2
p log x ·

(
1

1− 2
xp

) log 2
p log x

· 1

2k
,

which, by the definition of hp,x and ν, can be written as(
1

1− 2
xp

) log 2
p log x

·
(

1− ε(0)k
) log 2

p log x · ν(Ikl ) ≤ hp,x(Ikl )

≤
(

1 + ε
(1)
k

) log 2
p log x ·

(
1

1− 2
xp

) log 2
p log x

· ν(Ikl ).

We can now use corollary 6 to conclude that((
1− ε(0)k

) log 2
p log x −

((
1 + ε

(1)
k

) log 2
p log x −

(
1− ε(0)k

) log 2
p log x

))
·
(

1

1− 2
xp

) log 2
p log x

≤ m log 2
p log x

(Cp,x)

and

m log 2
p log x

(Cp,x) ≤
(

1 + ε
(1)
k

) log 2
p log x ·

(
1

1− 2
xp

) log 2
p log x

.

By letting k tend to infinity in the two previous equations, we get

m log 2
p log x

(Cp,x) =

(
1

1− 2
xp

) log 2
p log x

.

Example 12. Our main theorem, Theorem 5, which we used indirectly when
calculating the Hausdorff measure of the Cantor sets in the previous two ex-
amples, can with small modifications be used also to calculate the measures
of the sets in the third and last family of Cantor sets mentioned in [1]; namely
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the Cantor sets C
(n)
(p) ∼ {G

k
l }, where |Gkl | = 1

(2k+l)p
and p > 1 as in the first

example, but where n − 1 open intervals are removed from each remaining
interval in each step of the construction of the Cantor set instead of one.
Small adjustments to Theorem 5 and its proof and similar calculations as in
examples 10 and 11, although omitted here, give

m1/p(C
(n)
(p) ) =

n log n

(np − n)1/p
· 1

n− 1
.
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