THE CLASS OF PURELY UNRECTIFIABLE SETS IN ℓ_{2} IS Π_{1}^{1}-COMPLETE

Abstract

The space $F\left(\ell_{2}\right)$ of all closed subsets of ℓ_{2} is a Polish space. We show that the subset $P \subset F\left(\ell_{2}\right)$ consisting of the purely 1-unrectifiable sets is Π_{1}^{1}-complete.

1 Introduction

The concepts of unrectifiable and purely unrectifiable sets are central in contemporary geometric measure theory; see e.g. [2]. In some sense, these are sets which are not capturable by smooth approximations: a set is unrectifiable, if it cannot be covered (up to a negligible set) by countably many C^{1}-curves, and 1-purely unrectifiable if its 1-dimensional Hausdorff measure restricted to any C^{1}-curve is zero. We only consider 1-purely unrectifiable sets in this article (as opposed to m-purely unrectifiable for $m>1$), so we skip the " 1 " from the notation. There are several open questions concerning (partial) characterisations of purely unrectifiable sets, such as, for example, whether or not the two-dimensional Brownian motion is purely unrectifiable with probability 1 [3].

Another question asked by David Preiss (2013) is whether purely unrectifiable sets can be (in a certain sense) approximated by open sets; see Question 3.

Here we show that the notion of pure unrectifiability is subtle to the extent that any decision procedure for checking whether a given closed subset of ℓ_{2} is purely unrectifiable requires an exhaustive search through continuum many cases. That is to say, in the language of descriptive set theory, the set of all closed purely unrectifiable subsets of ℓ_{2} is Π_{1}^{1}-hard. On the other hand, there

[^0]is a decision procedure of this sort, so the set is Π_{1}^{1}-complete (or co-analytic complete).

This might lead to a negative answer to Question 3; see discussion after the statement of the question.

Acknowledgement I would like to thank David Preiss for introducing me to this topic and pointing to this research direction.

2 Basic definitions

In order to define purely unrectifiable sets in ℓ_{2}, let us review the definition of C^{1}-curve in ℓ_{2} :
Definition 1. A Fréchet derivative of a function $f:[0,1] \rightarrow \ell_{2}$ at a point $x \in[0,1]$ is a linear operator $A_{x}: \mathbb{R} \rightarrow \ell_{2}$ such that

$$
\lim _{h \rightarrow 0} \frac{\left\|f(x+h)-f(x)-A_{x} h\right\|_{2}}{|h|}=0
$$

The function belongs to C^{1} if the Fréchet derivative exists at every point and the map $x \mapsto A_{x}$ is continuous in the operator norm.

The linear operator A_{x} is uniquely determined by the vector $A_{x}(1)$, so denote $f^{\prime}(x)=A_{x}(1)$. Also denote the space of all C^{1}-curves by $C^{1}\left([0,1], \ell_{2}\right)$.

Definition 2. A subset N of ℓ_{2} is purely unrectifiable if it is null on every C^{1} curve. That is, given a C^{1}-map $f:[0,1] \rightarrow \ell_{2}$, the one-dimensional Hausdorff measure of $N \cap \operatorname{ran}(f)$, denoted $\mathcal{H}^{1}(N \cap \operatorname{ran}(f))$, equals 0 . Denote the set of purely unrectifiable curves in ℓ_{2} by P.

Question 3. Let e_{0} be the first basis vector of ℓ_{2}. Let us call a closed set $N \subset \ell_{2}$ weakly purely unrectifiable if there exists $\tau>0$ such that for every $\varepsilon>0$ there exists open $G \subset \ell_{2}$ with $N \subset G$, such that for all C^{1}-curves f, if

$$
\left\|f^{\prime}(x)-e_{0}\right\|_{2}<\tau
$$

for all $x \in \operatorname{dom} f$, then the one-dimensional Hausdorff measure of $\operatorname{ran}(f) \cap G$ is less than ε. Denote the set of weakly purely unrectifiable curves by P^{*}. David Preiss asked the following question (2013): Is $P \subset P^{*}$?

Here I propose a possible strategy for the solution. We prove in this paper that the complexity of P is exactly Π_{1}^{1}. What about P^{*} ? The set of those N that satisfy " $N \subset G$ " in the formulation above is itself Π_{1}^{1}-complete for a fixed G, and additionally there is an existential quantifier over G. So P^{*} is Σ_{2}^{1}, and here is a conjecture:

Conjecture 4. P^{*} is Σ_{2}^{1}-complete.
Now, if the conjecture is correct and we could modify the definition of P^{*} into $P^{* *}$ such that the complexity is preserved and such that if $P \subset P^{*}$, then $P=P^{* *}$, we would obtain a contradiction.

3 Preliminaries in descriptive set theory

We follow the notation and presentation of the book "Classical Descriptive Set Theory" by A. Kechris [1] and refer frequently to it below when addressing well-known facts.

A Polish space is a separable topological space which is homeomorphic to a complete metric space. The Hilbert space ℓ_{2} is an example of a Polish space. A standard Borel space is a set X endowed with a σ-algebra S such that there exists a Polish topology on X in which the Borel sets are precisely the sets in S.

Let $F\left(\ell_{2}\right)$ denote the set of all closed subsets of ℓ_{2}. This is a standard Borel space where the σ-algebra is generated by the sets of the form

$$
\begin{equation*}
\left\{A \in F\left(\ell_{2}\right) \mid A \cap U \neq \varnothing\right\} \tag{B}
\end{equation*}
$$

where U ranges over the basic open sets of ℓ_{2} [1, Thm. 12.6]. We need the following fact. Let H be the Hilbert cube $H=[0,1]^{\mathbb{N}}$. By [1, Thm. 4.14], ℓ_{2} can be embedded into H so that the image is a G_{δ} subset. Let e be that embedding. Let $K(H)$ be the set of all compact non-empty subsets of H equipped with the Hausdorff metric; $K(H)$ is a compact Polish space.

Fact 5. The embedding $e: \ell_{2} \rightarrow H$ induces an embedding of $F\left(\ell_{2}\right)$ into $K(H)$ such that the image of $F\left(\ell_{2}\right)$ is G_{δ} in $K(H)$, thus inducing a Polish topology on $F\left(\ell_{2}\right)$ [1, Thm. 3.17]. This topology gives rise to the same Borel sets as (B) above.

By ω and by \mathbb{N}, we denote the set of natural numbers; by \mathbb{N}_{+}, the set of positive natural numbers. For $n \in \mathbb{N}, \omega^{n}$ is the set of all functions from $\{0, \ldots, n-1\}$ to $\omega, \omega^{<\omega}=\bigcup_{n \in \mathbb{N}} \omega^{n}$ and ω^{ω} denotes the set of all functions from ω to ω. Similarly, 2^{ω} denotes the set of all functions from ω to $\{0,1\}$, and $2^{<\omega}$ the set of functions from $\{0, \ldots, n-1\}$ to $\{0,1\}$ for all n. The spaces ω^{ω} and 2^{ω} are Polish spaces in the product topology.

The set $\omega^{<\omega}$ can be ordered in a natural way: $p<q$ if $q \upharpoonright \operatorname{dom} p=p$. This is an example of a tree. The set of all trees, Tr , is the set of all downward closed suborders of $\omega^{<\omega}$. The space Tr can be endowed naturally with a Polish topology as a closed subset of $2^{\omega^{<\omega}}$, which is in turn homeomorphic to 2^{ω} via
a bijection $\omega \rightarrow \omega^{<\omega}$. A branch of a tree $T \in \operatorname{Tr}$ is a sequence $\left(p_{n}\right)_{n<\omega}$ such that $p_{n} \in \omega^{n}, p_{n}<p_{n+1}$ and $p_{n} \in T$ for all n.

A subset of a Polish space $A \subset X$ is Σ_{1}^{1} if there is a Polish space Y and a Borel subset $B \subset X \times Y$ such that A is the projection of B to X. A set is Π_{1}^{1} if it is the complement of a Σ_{1}^{1} set.

Definition 6. A set $A \subset X$ is Borel Wadge-reducible to another $B \subset Y$ (X and Y are Polish) if there exists a Borel function $f: X \rightarrow Y$ such that for all $x \in X, x \in A \Longleftrightarrow f(x) \in B$. We denote this by $A \leqslant_{W} B$.

A set $A \subset X$ is Π_{1}^{1}-hard if every Π_{1}^{1} set B is Wadge-reducible to it, $B \leqslant_{W} A$. We define Σ_{1}^{1}-hard similarly. A set is Π_{1}^{1}-complete (Σ_{1}^{1}-complete) if it is Π_{1}^{1} and Π_{1}^{1}-hard (Σ_{1}^{1} and Σ_{1}^{1}-hard).

Since the classes Σ_{1}^{1} and Π_{1}^{1} are closed under preimages in Borel maps [1, Thm. 14.4], it is clear that if A is Σ_{1}^{1} and $B \leqslant_{W} A$, then B is also Σ_{1}^{1}. On the other hand, a simple diagonalisation argument together with Souslin's Theorem [1, Thm. 14.11] shows that there are Π_{1}^{1} sets that are not Σ_{1}^{1}. Therefore, a Π_{1}^{1}-hard set cannot be Σ_{1}^{1}, because it Wadge reduces to some Π_{1}^{1} set that is not Σ_{1}^{1}. In particular, it cannot be Borel.

An example of a Π_{1}^{1}-complete set is the set of those trees in Tr that do not have a branch [1, 27.1]. To sum up, the main conclusions in this paper are based on the following two facts:

Fact 7. 1. If A is Π_{1}^{1}-hard and $A \leqslant_{W} B$, then B is Π_{1}^{1}-hard.
2. The set $\{T \in \operatorname{Tr} \mid T$ has no branches $\}$ is Π_{1}^{1}-hard. [1, p. 209]

4 Main theorem

Proposition 8. The set $P=\left\{A \in F\left(\ell_{2}\right) \mid A\right.$ is purely unrectifiable $\}$ is Π_{1}^{1}.

Proof. The space $C^{1}\left(\mathbb{R}, \ell_{2}\right)$ is Polish in the topology given by the sup-norm. Let $A \subset F\left(\ell_{2}\right) \times C^{1}\left(\mathbb{R}, \ell_{2}\right)$ be the set of those pairs (C, γ) such that

$$
\mathcal{H}^{1}(C \cap \operatorname{ran} \gamma)>0
$$

Then the projection of A to the first coordinate is precisely the complement of P. It remains to show that A is Borel.

Fix a dense countable subset D of ℓ_{2} and define a basic open set of ℓ_{2} to be an open ball $B(x, r)$ where $r \in \mathbb{Q}$ and $x \in D$. Clearly, this is a countable basis.

Since $C \cap \operatorname{ran} \gamma$ is compact, the inequality $H^{1}(C \cap \operatorname{ran} \gamma)>0$ is equivalent to the statement that there exists $n \in \mathbb{N}$ such that for all finite sequences $\left(B\left(x_{1}, r_{1}\right), \ldots, B\left(x_{k}, r_{k}\right)\right)$ of basic open sets of ℓ_{2}, if $\sum_{i=1}^{k} r_{i}<1 / n$, then $C \cap \operatorname{ran} \gamma \not \subset \overline{\bigcup_{i=1}^{k} B\left(x_{i}, r_{i}\right)}$. Denoting
$A^{*}\left(x_{1}, \ldots, x_{k}, r_{1}, \ldots, r_{k}\right)=$

$$
\left\{(C, \gamma) \in F\left(\ell_{2}\right) \times C^{1}\left(\mathbb{R}, \ell_{2}\right) \mid C \cap \operatorname{ran} \gamma \not \subset \overline{\left.\bigcup_{i=1}^{k} B\left(x_{i}, r_{i}\right)\right\}}\right.
$$

we get

$$
A=\bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} \bigcap_{\substack{\bar{x} \in D^{k}, \overline{,} \in Q^{k} \\ r_{1}+\cdots+r_{k}<1 / n}} A^{*}\left(x_{1}, \ldots, x_{k}, r_{1}, \ldots, r_{k}\right)
$$

Being a subset of a closed set is Borel, so $A^{*}\left(x_{1}, \ldots, x_{k}, r_{1}, \ldots, r_{k}\right)$ is Borel. Hence, A is Borel.

Theorem 9 (Main Theorem). The set

$$
P=\left\{A \in F\left(\ell_{2}\right) \mid A \text { is purely unrectifiable }\right\}
$$

is Π_{1}^{1}-complete.
Proof of Theorem 9. We have already shown (Proposition 8) that P is Π_{1}^{1}, so we want to show that it is Π_{1}^{1}-hard. The proof is reminiscent of the proof of [1, Thm. 27.6, pp. 210-211].

We will show that the set $N B$ of those trees $T \in \operatorname{Tr}$ which do not have a branch is Wadge-reducible to P. That is, we will find a Borel function $H: \operatorname{Tr} \rightarrow F\left(\ell_{2}\right)$ such that $H(T)$ is not purely unrectifiable if and only if T has a branch. The result follows then from Fact 7.

A Cantor set $C \subset \mathbb{R}$ with a positive Lebesgue measure can be constructed by removing an open interval of length $1 / 4$ from the middle of the closed unit interval $[0,1]$, and then removing open intervals of length $1 / 16$ from the middle of each of the remaining intervals and so on. At the $n^{\text {th }}$ step we have a disjoint union of 2^{n} closed intervals. From left to right, label these intervals by $C_{n}^{1}, \ldots, C_{n}^{2^{n}}$ and set $C=\bigcap_{n=0}^{\infty} \bigcup_{k=1}^{2^{n}} C_{n}^{k}$.

Let $\left\{e_{n, m} \mid n, m \in \mathbb{N}\right\}$ be a basis for ℓ_{2}. For each $s \in \omega^{<\omega}$, let us define a finite subset v_{s} of ℓ_{2} as follows:

$$
v_{s}=\left\{\left.\sum_{n=0}^{\operatorname{dom}(s)-1} \frac{1+p(n)}{\sqrt{2^{n}}} e_{n, s(n)} \right\rvert\, p \in 2^{\operatorname{dom}(s)}\right\}
$$

Then for every tree $T \in \operatorname{Tr}$, let

$$
H(T)=\overline{\bigcup_{s \in T} v_{s}}
$$

Claim 9.1. If $T \in \operatorname{Tr}$ has a branch, then there is a C^{1}-function $f:[0,1] \rightarrow \ell_{2}$ such that the one-dimensional Hausdorff measure of $H(T) \cap \operatorname{ran} f$ is positive.

Proof of Claim 9.1. Suppose that T has a branch and that $b \in \omega^{\omega}$ is such that $b \upharpoonright n \in T$ for all n. Let us construct a C^{1}-function $f:[0,1] \rightarrow \ell_{2}$ as follows. For $n \in \mathbb{N}$ define $f_{n}:[0,1] \rightarrow \mathbb{R}$ to be a smooth function such that

- $f_{n}(x)=\frac{1}{\sqrt{2^{n}}}$ for $x \in C_{n}^{k}$ when k is odd, and $f_{n}(x)=\frac{2}{\sqrt{2^{n}}}$ for $x \in C_{n}^{k}$ when k is even,
- range of f_{n} is $\left[\frac{1}{\sqrt{2^{n}}}, \frac{2}{\sqrt{2^{n}}}\right]$, and
- if I is an open interval which is removed at the $k^{\text {th }}$ stage in the construction of C and $x \in I$, then

$$
0<\left|f_{n}^{\prime}(x)\right| \leqslant \frac{4^{k+1}}{\sqrt{2^{n}}}
$$

The derivative can be bounded in this way because if I is an open interval that is removed at the $k^{\text {th }}$ stage, then $|I|=4^{-k}$, and in this interval, the function is only required to either raise from $1 / \sqrt{2^{n}}$ to $2 / \sqrt{2^{n}}$ or decrease the same amount in the opposite direction. On the other hand, if $x \in C$, then the derivative of f_{k} is 0 for all k.

Now let $f(x)=\sum_{n=0}^{\infty} f_{n}(x) e_{n, b(n)}$. Clearly, $f(x) \in \ell_{2}$ for all x :

$$
\begin{aligned}
\|f(x)\|_{2}^{2} & =\sum_{n=0}^{\infty}\left|f_{n}(x)\right|^{2} \\
& \leqslant \sum_{n=0}^{\infty}\left|\frac{2}{\sqrt{2^{n}}}\right|^{2} \\
& =\sum_{n=0}^{\infty} \frac{2}{2^{n}} \\
& =4 .
\end{aligned}
$$

Subclaim 9.1.1. The function f has a Fréchet derivative at each $x \in[0,1]$.

Proof of Subclaim 9.1.1. The vector $A_{x}=\sum_{n=0}^{\infty} f_{n}^{\prime}(x) e_{n, b(n)}$ is in ℓ_{2}, because the absolute value of $f_{n}^{\prime}(x)$ is bounded by $\frac{4^{k+1}}{\sqrt{2^{n}}}$, where k is a constant natural number that depends on x. Thus, A_{x} defines a bounded linear operator $h \mapsto$ $A_{x} h$. We claim that A_{x} is the Fréchet derivative of f at x. For that we need to show that

$$
\lim _{h \rightarrow 0} \frac{\left\|f(x+h)-f(x)-A_{x} h\right\|_{2}}{|h|}=0
$$

So assume that $\varepsilon>0$. The numerator can be rewritten as

$$
\sqrt{\sum_{n=0}^{\infty}\left|f_{n}(x+h)-f_{n}(x)-f_{n}^{\prime}(x) h\right|^{2}}
$$

Let us show first that there exists $k \in \mathbb{N}$ such that for all h

$$
\begin{aligned}
& \sum_{n=k}^{\infty}\left|f_{n}(x+h)-f_{n}(x)-f_{n}^{\prime}(x) h\right|^{2} \leqslant \varepsilon^{2} h^{2}: \\
&\left|f_{n}(x+h)-f_{n}(x)-f_{n}^{\prime}(x) h\right|^{2} \leqslant\left(\left|f_{n}(x+h)-f_{n}(x)\right|+\left|f_{n}^{\prime}(x) h\right|\right)^{2} \\
& \text { (mean value theorem) }=\left(\left|f_{n}^{\prime}(\xi)\right||h|+\left|f_{n}^{\prime}(x)\right||h|\right)^{2} \\
&=\left(\left|f_{n}^{\prime}(\xi)\right|+\left|f_{n}^{\prime}(x)\right|\right)^{2} h^{2} \\
&\text { (for some constant } K) \leqslant\left(\frac{K}{2^{n}}\right)^{2} h^{2} .
\end{aligned}
$$

The last inequality follows from the definition of f. Therefore, for each $i \in \mathbb{N}$ we have

$$
\sum_{n=i}^{\infty}\left|f_{n}(x+h)-f_{n}(x)-f_{n}^{\prime}(x) h\right|^{2} \leqslant \sum_{n=i}^{\infty}\left(\frac{K}{2^{n}}\right)^{2} h^{2}
$$

Now, by choosing k big enough, we can make sure that $\sum_{n=k}^{\infty}\left(\frac{K}{2^{n}}\right)^{2}<\varepsilon^{2}$, so pick this k. Then, for each $n<k$, let $h_{n}>0$ be a small enough real number such that $\left|f_{n}\left(x+h_{n}\right)-f_{n}(x)-f_{n}^{\prime}(x) h_{n}\right| \leqslant \frac{\varepsilon}{2^{n}} h_{n}$, and let $h=h_{\varepsilon}=\min _{n<k} h_{n}$. Then we have

$$
\begin{aligned}
\frac{\left\|f(x+h)-f(x)-A_{x} h\right\|_{2}}{|h|} & =\frac{\sqrt{\sum_{n=0}^{\infty}\left|f_{n}(x+h)-f_{n}(x)-f_{n}^{\prime}(x) h\right|^{2}}}{|h|} \\
& \leqslant \frac{\sqrt{\left(\sum_{n=0}^{k-1}\left|f_{n}(x+h)-f_{n}(x)-f_{n}^{\prime}(x) h\right|^{2}\right)+\varepsilon^{2} h^{2}}}{|h|}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{\sqrt{\left(\sum_{n=0}^{k-1}\left(\frac{\varepsilon}{2^{n}} h\right)^{2}\right)+\varepsilon^{2} h^{2}}}{|h|} \\
& <\frac{\sqrt{4 \varepsilon^{2} h^{2}+\varepsilon^{2} h^{2}}}{|h|} \\
& =\sqrt{5} \varepsilon
\end{aligned}
$$

Subclaim 9.1.2. The Fréchet derivative of f is continuous.
Thus $f \in C^{1}\left([0,1], \ell_{2}\right)$.
Proof of Subclaim 9.1.2. Let $x \in[0,1]$ and $\varepsilon>0$. Denote by A_{x} the Fréchet derivative of f at x, which has the following form by the previous proof:

$$
A_{x}=\sum_{n=0}^{\infty} f_{n}^{\prime}(x) e_{n, b(n)}
$$

The norm of a linear operator from \mathbb{R} to ℓ_{2} (such as A_{x}) is determined by the norm of the value at 1 ; thus for example,

$$
\left\|A_{x}\right\|=\left\|A_{x}(1)\right\|_{2}=\sum_{n=0}^{\infty}\left|f_{n}^{\prime}(x)\right|^{2}
$$

So for every $y \in[0,1]$, we have

$$
\begin{aligned}
\left\|A_{x}-A_{y}\right\| & =\left\|\sum_{n=0}^{\infty}\left(f_{n}^{\prime}(x)-f_{n}^{\prime}(y)\right) e_{n, b(n)}\right\|_{2} \\
& =\sqrt{\sum_{n=0}^{\infty}\left|f_{n}^{\prime}(x)-f_{n}^{\prime}(y)\right|^{2}}
\end{aligned}
$$

Now, similar to the previous proof, let us find $k \in \mathbb{N}$ such that

$$
\sum_{n=k}^{\infty}\left|f_{n}^{\prime}(x)-f_{n}^{\prime}(y)\right|^{2}<\varepsilon^{2}
$$

But

$$
\left|f_{n}^{\prime}(x)-f_{n}^{\prime}(y)\right|^{2} \leqslant\left(\left|f_{n}^{\prime}(x)\right|+\left|f_{n}^{\prime}(y)\right|\right)^{2} \leqslant\left(\frac{K}{2^{n}}\right)^{2}
$$

where K is some constant (this follows again from the definition of f). So we can find a big enough k as required. Now, for every $i<k$ pick δ_{i} such that for every y in the δ_{i}-neighbourhood of x we have $\left|f_{n}^{\prime}(x)-f_{n}^{\prime}(y)\right|<\varepsilon / 2^{n}$. This is possible since f_{n} are smooth by definition. Then let $\delta=\min _{i<k} \delta_{i}$. Now, if y is the δ-neighbourhood of x, then by applying the above, we have

$$
\begin{aligned}
\left\|A_{x}-A_{y}\right\| & =\sqrt{\sum_{n=0}^{\infty}\left|f_{n}^{\prime}(x)-f_{n}^{\prime}(y)\right|^{2}} \\
& =\sqrt{\left(\sum_{n=0}^{k-1}\left|f_{n}^{\prime}(x)-f_{n}^{\prime}(y)\right|^{2}\right)+\sum_{n=k}^{\infty}\left|f_{n}^{\prime}(x)-f_{n}^{\prime}(y)\right|^{2}} \\
& \leqslant \sqrt{\left(\sum_{n=0}^{k-1}\left|f_{n}^{\prime}(x)-f_{n}^{\prime}(y)\right|^{2}\right)+\varepsilon^{2}} \\
& \leqslant \sqrt{\left(\sum_{n=0}^{k-1}\left(\varepsilon / 2^{n}\right)^{2}\right)+\varepsilon^{2}} \\
& <\sqrt{2 \varepsilon^{2}+\varepsilon^{2}} \\
& =\sqrt{3 \varepsilon}
\end{aligned}
$$

Subclaim 9.1.3. f is a homeomorphism onto its image.
Proof of Subclaim 9.1.3. Since $\operatorname{dom} f$ is compact, it is sufficient to show that it is injective. Let $x, y \in[0,1]$. If there is an interval I which is removed at some stage n in the construction of C such that $x, y \in I$, then $f_{n}(x) \neq f_{n}(y)$, because $f_{n}^{\prime}(z)>0$ for all $z \in I$ by the definition of f_{n}. If not, find the least m and an interval I such that I is removed at the $m^{\text {th }}$ stage and I is between x and y or $x \in I \Longleftrightarrow y \notin C$. Then clearly again, $f_{m}(x) \neq f_{m}(y)$.
$\square_{\text {Subclaim 9.1.3 }}$

Subclaim 9.1.4. $(f \upharpoonright C)^{-1}$ is Lipschitz.
Proof of Subclaim 9.1.4. If $\eta \in 2^{\omega}$, denote by $g(\eta)$ the unique point in C which is obtained by going "left" at stage n if $\eta(n)=0$ and "right" if $\eta(n)=1$. That is, g is the canonical homeomorphism of 2^{ω} onto C. It is not hard to see that

$$
g(\eta)=\sum_{n=1}^{\infty} \eta(n) \frac{2^{n+1}+6}{4^{n+1}}
$$

Now, $f_{n}(g(\eta))$ is the image of $g(\eta)$ under f_{n}, and by the definition of f_{n}, we have $f_{n}(g(\eta))=1 / \sqrt{2^{n}}$ if $\eta(n)=0$ and $f_{n}(g(\eta))=2 / \sqrt{2^{n}}$ if $\eta(n)=1$; that is, $f_{n}(g(\eta))=(1+\eta(n)) / \sqrt{2^{n}}$. Let η and ξ be two arbitrary elements of 2^{ω}, thus corresponding to the two (arbitrary) elements $g(\eta)$ and $g(\xi)$ of C. Denote $c_{n}=|\eta(n)-\xi(n)|$. Note that for all $n \in \mathbb{N}, c_{n}^{2}=c_{n}$. Then

$$
\begin{aligned}
& d(g(\eta), g(\xi))=\left|\sum_{n=1}^{\infty} \eta(n) \frac{2^{n+1}+6}{4^{n+1}}-\sum_{n=1}^{\infty} \xi(n) \frac{2^{n+1}+6}{4^{n+1}}\right| \\
& =\left|\sum_{n=1}^{\infty}(\eta(n)-\xi(n)) \frac{2^{n+1}+6}{4^{n+1}}\right| \\
& \leqslant\left|\sum_{n=1}^{\infty}\right| \eta(n)-\xi(n)\left|\frac{2^{n+1}+6}{4^{n+1}}\right| \\
& =\sum_{n=1}^{\infty} c_{n} \frac{2^{n+1}+6}{4^{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{c_{n}}{\sqrt{2^{n}}} \cdot \frac{2^{n+1}+6}{2^{n+1} \sqrt{2^{n+2}}} \\
& \text { (Cauchy-Schwarz) } \leqslant \sqrt{\sum_{n=0}^{\infty} \frac{c_{n}^{2}}{2^{n}}} \cdot \underbrace{\sqrt{\sum_{n=1}^{\infty}\left(\frac{2^{n+1}+6}{2^{n+1} \sqrt{2^{n+2}}}\right)^{2}}}_{=: L} \\
& =L \cdot \sqrt{\sum_{n=1}^{\infty} \frac{c_{n}^{2}}{2^{n}}} \\
& =L \cdot \sqrt{\sum_{n=1}^{\infty}\left|\frac{\eta(n)}{\sqrt{2^{n}}}-\frac{\xi(n)}{\sqrt{2^{n}}}\right|^{2}} \\
& =L \cdot \sqrt{\sum_{n=1}^{\infty}\left|\frac{1+\eta(n)}{\sqrt{2^{n}}}-\frac{1+\xi(n)}{\sqrt{2^{n}}}\right|^{2}} \\
& =L \cdot \sqrt{\sum_{n=1}^{\infty}\left|f_{n}(g(\eta))-f_{n}(g(\xi))\right|^{2}} \\
& =L \cdot\|f(g(\eta))-f(g(\xi))\|_{2} .
\end{aligned}
$$

This verifies that the function $(f \upharpoonright C)^{-1}$ is Lipschitz.

Since C has positive measure, this implies that the one-dimensional Hausdorff measure of $f[C]=\left((f \upharpoonright C)^{-1}\right)^{-1} C$ must also have positive measure. So it remains to show that $f[C] \subset H(T)$, and then the proof of Claim 9.1 is done.

Subclaim 9.1.5. $f[C] \subset H(T)$.
Proof of Subclaim 9.1.5. Suppose $\eta \in 2^{\omega}$ and let $g(\eta)$ be as in the previous proof, the canonical image of η in C. Then, as above,

$$
f_{n}(g(\eta))=(1+\eta(n)) / \sqrt{2^{n}}
$$

so

$$
f(g(\eta))=\sum_{n=0}^{\infty} \frac{1+\eta(n)}{\sqrt{2^{n}}} e_{n, b(n)}
$$

Now, by looking at the definition of v_{s}, one can see that the approximations of $f(g(\eta))$ of the form

$$
\sum_{n=0}^{k-1} \frac{1+\eta(n)}{\sqrt{2^{n}}} e_{n, b(n)}
$$

appear in $v_{b \upharpoonright k}$, so $f(g(\eta)) \in \overline{\bigcup_{s \in T} v_{s}}=H(T)$.

Claim 9.2. If T does not have a branch, then $H(T)$ is countable.

Proof of Claim 9.2. If $H(T)$ is uncountable, then, because $\bigcup_{s \in T} v_{s}$ is countable, there is a point x in $\overline{\bigcup_{s \in T} v_{s}} \backslash \bigcup_{s \in T} v_{s}$. Let $\left(p_{i}\right)_{i \in \mathbb{N}}$ be a Cauchy sequence of elements of $\bigcup_{s \in T} v_{s}$ converging to x. By going to a subsequence, we can assume that for all $i \in \mathbb{N}, d\left(p_{i+1}, p_{i}\right)<2^{-i}$. The latter inequality implies, by the definition of the sets v_{s}, that if $\operatorname{dom} s \leqslant i$, then

$$
p_{i} \upharpoonright \operatorname{dom} s \in v_{s} \Longleftrightarrow p_{i+1} \upharpoonright \operatorname{dom} s \in v_{s}
$$

So, we can find $b \in \omega^{\omega}$ such that $p_{i} \in v_{b \upharpoonright i}$ for all i, and so $(b \upharpoonright n)_{n \in \mathbb{N}}$ must be a branch in T.

By Claims 9.1 and $9.2, T$ has no branch if and only if $H(T)$ is purely unrectifiable which concludes the proof.

References

[1] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, Graduate Texts in Mathematics, 156 (1994).
[2] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, Cambridge University Press, (1999)
[3] David Preiss, Verbal Communication (2013).

[^0]: Mathematical Reviews subject classification: Primary: 03E15, 28A05; Secondary: 28E15
 Key words: purely unrectifiable, co-analytic complete, Hilbert space
 Received by the editors March 13, 2013
 Communicated by: Marianna Csörnyei

