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THE CLASS OF PURELY UNRECTIFIABLE
SETS IN `2 IS Π1

1-COMPLETE

Abstract

The space F (`2) of all closed subsets of `2 is a Polish space. We show
that the subset P ⊂ F (`2) consisting of the purely 1-unrectifiable sets
is Π1

1-complete.

1 Introduction

The concepts of unrectifiable and purely unrectifiable sets are central in con-
temporary geometric measure theory; see e.g. [2]. In some sense, these are sets
which are not capturable by smooth approximations: a set is unrectifiable, if it
cannot be covered (up to a negligible set) by countably many C1-curves, and
1-purely unrectifiable if its 1-dimensional Hausdorff measure restricted to any
C1-curve is zero. We only consider 1-purely unrectifiable sets in this article
(as opposed to m-purely unrectifiable for m > 1), so we skip the “1” from
the notation. There are several open questions concerning (partial) character-
isations of purely unrectifiable sets, such as, for example, whether or not the
two-dimensional Brownian motion is purely unrectifiable with probability 1 [3].

Another question asked by David Preiss (2013) is whether purely unrectifi-
able sets can be (in a certain sense) approximated by open sets; see Question 3.

Here we show that the notion of pure unrectifiability is subtle to the extent
that any decision procedure for checking whether a given closed subset of `2
is purely unrectifiable requires an exhaustive search through continuum many
cases. That is to say, in the language of descriptive set theory, the set of all
closed purely unrectifiable subsets of `2 is Π1

1-hard. On the other hand, there
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is a decision procedure of this sort, so the set is Π1
1-complete (or co-analytic

complete).
This might lead to a negative answer to Question 3; see discussion after

the statement of the question.

Acknowledgement I would like to thank David Preiss for introducing me
to this topic and pointing to this research direction.

2 Basic definitions

In order to define purely unrectifiable sets in `2, let us review the definition of
C1-curve in `2:

Definition 1. A Fréchet derivative of a function f : [0, 1] → `2 at a point
x ∈ [0, 1] is a linear operator Ax : R→ `2 such that

lim
h→0

‖f(x+ h)− f(x)−Axh‖2
|h|

= 0.

The function belongs to C1 if the Fréchet derivative exists at every point and
the map x 7→ Ax is continuous in the operator norm.

The linear operator Ax is uniquely determined by the vector Ax(1), so
denote f ′(x) = Ax(1). Also denote the space of all C1-curves by C1([0, 1] , `2).

Definition 2. A subset N of `2 is purely unrectifiable if it is null on every C1-
curve. That is, given a C1-map f : [0, 1]→ `2, the one-dimensional Hausdorff
measure of N ∩ ran(f), denoted H1(N ∩ ran(f)), equals 0. Denote the set of
purely unrectifiable curves in `2 by P .

Question 3. Let e0 be the first basis vector of `2. Let us call a closed set
N ⊂ `2 weakly purely unrectifiable if there exists τ > 0 such that for every
ε > 0 there exists open G ⊂ `2 with N ⊂ G, such that for all C1-curves f , if

‖f ′(x)− e0‖2 < τ

for all x ∈ dom f , then the one-dimensional Hausdorff measure of ran(f) ∩G
is less than ε. Denote the set of weakly purely unrectifiable curves by P ∗.
David Preiss asked the following question (2013): Is P ⊂ P ∗?

Here I propose a possible strategy for the solution. We prove in this paper
that the complexity of P is exactly Π1

1. What about P ∗? The set of those N
that satisfy “N ⊂ G” in the formulation above is itself Π1

1-complete for a fixed
G, and additionally there is an existential quantifier over G. So P ∗ is Σ1

2, and
here is a conjecture:
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Conjecture 4. P ∗ is Σ1
2-complete.

Now, if the conjecture is correct and we could modify the definition of P ∗

into P ∗∗ such that the complexity is preserved and such that if P ⊂ P ∗, then
P = P ∗∗, we would obtain a contradiction.

3 Preliminaries in descriptive set theory

We follow the notation and presentation of the book “Classical Descriptive Set
Theory” by A. Kechris [1] and refer frequently to it below when addressing
well-known facts.

A Polish space is a separable topological space which is homeomorphic to
a complete metric space. The Hilbert space `2 is an example of a Polish space.
A standard Borel space is a set X endowed with a σ-algebra S such that there
exists a Polish topology on X in which the Borel sets are precisely the sets
in S.

Let F (`2) denote the set of all closed subsets of `2. This is a standard
Borel space where the σ-algebra is generated by the sets of the form

{A ∈ F (`2) | A ∩ U 6= ∅}, (B)

where U ranges over the basic open sets of `2 [1, Thm. 12.6]. We need the

following fact. Let H be the Hilbert cube H = [0, 1]
N

. By [1, Thm. 4.14],
`2 can be embedded into H so that the image is a Gδ subset. Let e be that
embedding. Let K(H) be the set of all compact non-empty subsets of H
equipped with the Hausdorff metric; K(H) is a compact Polish space.

Fact 5. The embedding e : `2 → H induces an embedding of F (`2) into K(H)
such that the image of F (`2) is Gδ in K(H), thus inducing a Polish topology
on F (`2) [1, Thm. 3.17]. This topology gives rise to the same Borel sets as
(B) above.

By ω and by N, we denote the set of natural numbers; by N+, the set
of positive natural numbers. For n ∈ N, ωn is the set of all functions from
{0, . . . , n − 1} to ω, ω<ω =

⋃
n∈N ω

n and ωω denotes the set of all functions
from ω to ω. Similarly, 2ω denotes the set of all functions from ω to {0, 1},
and 2<ω the set of functions from {0, . . . , n−1} to {0, 1} for all n. The spaces
ωω and 2ω are Polish spaces in the product topology.

The set ω<ω can be ordered in a natural way: p < q if q �dom p = p. This
is an example of a tree. The set of all trees, Tr, is the set of all downward
closed suborders of ω<ω. The space Tr can be endowed naturally with a Polish
topology as a closed subset of 2ω

<ω

, which is in turn homeomorphic to 2ω via
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a bijection ω → ω<ω. A branch of a tree T ∈ Tr is a sequence (pn)n<ω such
that pn ∈ ωn, pn < pn+1 and pn ∈ T for all n.

A subset of a Polish space A ⊂ X is Σ1
1 if there is a Polish space Y and a

Borel subset B ⊂ X × Y such that A is the projection of B to X. A set is Π1
1

if it is the complement of a Σ1
1 set.

Definition 6. A set A ⊂ X is Borel Wadge-reducible to another B ⊂ Y
(X and Y are Polish) if there exists a Borel function f : X → Y such that for
all x ∈ X, x ∈ A ⇐⇒ f(x) ∈ B. We denote this by A 6W B.

A setA ⊂ X is Π1
1-hard if every Π1

1 setB is Wadge-reducible to it, B 6W A.
We define Σ1

1-hard similarly. A set is Π1
1-complete (Σ1

1-complete) if it is Π1
1

and Π1
1-hard (Σ1

1 and Σ1
1-hard).

Since the classes Σ1
1 and Π1

1 are closed under preimages in Borel maps
[1, Thm. 14.4], it is clear that if A is Σ1

1 and B 6W A, then B is also
Σ1

1. On the other hand, a simple diagonalisation argument together with
Souslin’s Theorem [1, Thm. 14.11] shows that there are Π1

1 sets that are not
Σ1

1. Therefore, a Π1
1-hard set cannot be Σ1

1, because it Wadge reduces to some
Π1

1 set that is not Σ1
1. In particular, it cannot be Borel.

An example of a Π1
1-complete set is the set of those trees in Tr that do not

have a branch [1, 27.1]. To sum up, the main conclusions in this paper are
based on the following two facts:

Fact 7. 1. If A is Π1
1-hard and A 6W B, then B is Π1

1-hard.

2. The set {T ∈ Tr | T has no branches} is Π1
1-hard. [1, p. 209]

4 Main theorem

Proposition 8. The set P = {A ∈ F (`2) | A is purely unrectifiable} is Π1
1.

Proof. The space C1(R, `2) is Polish in the topology given by the sup-norm.
Let A ⊂ F (`2)× C1(R, `2) be the set of those pairs (C, γ) such that

H1(C ∩ ran γ) > 0.

Then the projection of A to the first coordinate is precisely the complement
of P . It remains to show that A is Borel.

Fix a dense countable subset D of `2 and define a basic open set of `2 to
be an open ball B(x, r) where r ∈ Q and x ∈ D. Clearly, this is a countable
basis.
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Since C ∩ ran γ is compact, the inequality H1(C ∩ ran γ) > 0 is equivalent
to the statement that there exists n ∈ N such that for all finite sequences
(B(x1, r1), . . . , B(xk, rk)) of basic open sets of `2, if

∑k
i=1 ri < 1/n, then

C ∩ ran γ 6⊂
⋃k
i=1B(xi, ri). Denoting

A∗(x1, . . . , xk, r1, . . . ,rk) =

{(C, γ) ∈ F (`2)× C1(R, `2) | C ∩ ran γ 6⊂
k⋃
i=1

B(xi, ri)},

we get

A =
⋃
n∈N

⋂
k∈N

⋂
x̄∈Dk,r̄∈Qk

r1+···+rk<1/n

A∗(x1, . . . , xk, r1, . . . , rk).

Being a subset of a closed set is Borel, so A∗(x1, . . . , xk, r1, . . . , rk) is Borel.
Hence, A is Borel.

Theorem 9 (Main Theorem). The set

P = {A ∈ F (`2) | A is purely unrectifiable}

is Π1
1-complete.

Proof of Theorem 9. We have already shown (Proposition 8) that P is Π1
1, so

we want to show that it is Π1
1-hard. The proof is reminiscent of the proof of

[1, Thm. 27.6, pp. 210–211].
We will show that the set NB of those trees T ∈ Tr which do not have

a branch is Wadge-reducible to P . That is, we will find a Borel function
H : Tr→ F (`2) such that H(T ) is not purely unrectifiable if and only if T has
a branch. The result follows then from Fact 7.

A Cantor set C ⊂ R with a positive Lebesgue measure can be constructed
by removing an open interval of length 1/4 from the middle of the closed
unit interval [0, 1], and then removing open intervals of length 1/16 from the
middle of each of the remaining intervals and so on. At the nth step we have
a disjoint union of 2n closed intervals. From left to right, label these intervals

by C1
n, . . . , C

2n

n and set C =
⋂∞
n=0

⋃2n

k=1 C
k
n.

Let {en,m | n,m ∈ N} be a basis for `2. For each s ∈ ω<ω, let us define a
finite subset vs of `2 as follows:

vs =
{ dom(s)−1∑

n=0

1 + p(n)√
2n

en,s(n) | p ∈ 2dom(s)
}
.



328 V. Kulikov

Then for every tree T ∈ Tr, let

H(T ) =
⋃
s∈T

vs.

Claim 9.1. If T ∈ Tr has a branch, then there is a C1-function f : [0, 1]→ `2
such that the one-dimensional Hausdorff measure of H(T ) ∩ ran f is positive.

Proof of Claim 9.1. Suppose that T has a branch and that b ∈ ωω is such that
b � n ∈ T for all n. Let us construct a C1-function f : [0, 1] → `2 as follows.
For n ∈ N define fn : [0, 1]→ R to be a smooth function such that

• fn(x) = 1√
2n

for x ∈ Ckn when k is odd, and fn(x) = 2√
2n

for x ∈ Ckn
when k is even,

• range of fn is
[

1√
2n
, 2√

2n

]
, and

• if I is an open interval which is removed at the kth stage in the construc-
tion of C and x ∈ I, then

0 < |f ′n(x)| 6 4k+1

√
2n
.

The derivative can be bounded in this way because if I is an open interval
that is removed at the kth stage, then |I| = 4−k, and in this interval, the
function is only required to either raise from 1/

√
2n to 2/

√
2n or decrease the

same amount in the opposite direction. On the other hand, if x ∈ C, then the
derivative of fk is 0 for all k.

Now let f(x) =
∑∞
n=0 fn(x)en,b(n). Clearly, f(x) ∈ `2 for all x:

‖f(x)‖22 =

∞∑
n=0

|fn(x)|2

6
∞∑
n=0

| 2√
2n
|2

=

∞∑
n=0

2

2n

= 4.

Subclaim 9.1.1. The function f has a Fréchet derivative at each x ∈ [0, 1].
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Proof of Subclaim 9.1.1. The vector Ax =
∑∞
n=0 f

′
n(x)en,b(n) is in `2, because

the absolute value of f ′n(x) is bounded by 4k+1
√
2n

, where k is a constant natural

number that depends on x. Thus, Ax defines a bounded linear operator h 7→
Axh. We claim that Ax is the Fréchet derivative of f at x. For that we need
to show that

lim
h→0

‖f(x+ h)− f(x)−Axh‖2
|h|

= 0.

So assume that ε > 0. The numerator can be rewritten as√√√√ ∞∑
n=0

|fn(x+ h)− fn(x)− f ′n(x)h|2.

Let us show first that there exists k ∈ N such that for all h

∞∑
n=k

|fn(x+ h)− fn(x)− f ′n(x)h|2 6 ε2h2 :

|fn(x+ h)− fn(x)− f ′n(x)h|2 6 (|fn(x+ h)− fn(x)|+ |f ′n(x)h|)2

(mean value theorem) = (|f ′n(ξ)||h|+ |f ′n(x)||h|)2

= (|f ′n(ξ)|+ |f ′n(x)|)2h2

(for some constant K) 6

(
K

2n

)2

h2.

The last inequality follows from the definition of f . Therefore, for each i ∈ N
we have

∞∑
n=i

|fn(x+ h)− fn(x)− f ′n(x)h|2 6
∞∑
n=i

(
K

2n

)2

h2.

Now, by choosing k big enough, we can make sure that
∑∞
n=k

(
K
2n

)2
< ε2, so

pick this k. Then, for each n < k, let hn > 0 be a small enough real number

such that |fn(x+hn)−fn(x)−f ′n(x)hn| 6
ε

2n
hn, and let h = hε = minn<k hn.

Then we have

‖f(x+ h)− f(x)−Axh‖2
|h|

=

√∑∞
n=0 |fn(x+ h)− fn(x)− f ′n(x)h|2

|h|

6

√(∑k−1
n=0 |fn(x+ h)− fn(x)− f ′n(x)h|2

)
+ ε2h2

|h|
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6

√(∑k−1
n=0( ε

2nh)2
)

+ ε2h2

|h|

<

√
4ε2h2 + ε2h2

|h|
=
√

5ε.

� Subclaim 9.1.1

Subclaim 9.1.2. The Fréchet derivative of f is continuous.
Thus f ∈ C1([0, 1] , `2).

Proof of Subclaim 9.1.2. Let x ∈ [0, 1] and ε > 0. Denote by Ax the Fréchet
derivative of f at x, which has the following form by the previous proof:

Ax =

∞∑
n=0

f ′n(x)en,b(n).

The norm of a linear operator from R to `2 (such as Ax) is determined by the
norm of the value at 1; thus for example,

‖Ax‖ = ‖Ax(1)‖2 =

∞∑
n=0

|f ′n(x)|2.

So for every y ∈ [0, 1], we have

‖Ax −Ay‖ =
∥∥∥ ∞∑
n=0

(f ′n(x)− f ′n(y))en,b(n)

∥∥∥
2

=

√√√√ ∞∑
n=0

|f ′n(x)− f ′n(y)|2.

Now, similar to the previous proof, let us find k ∈ N such that

∞∑
n=k

|f ′n(x)− f ′n(y)|2 < ε2.

But

|f ′n(x)− f ′n(y)|2 6 (|f ′n(x)|+ |f ′n(y)|)2 6
(
K

2n

)2

,
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where K is some constant (this follows again from the definition of f). So we
can find a big enough k as required. Now, for every i < k pick δi such that for
every y in the δi-neighbourhood of x we have |f ′n(x)− f ′n(y)| < ε/2n. This is
possible since fn are smooth by definition. Then let δ = mini<k δi. Now, if y
is the δ-neighbourhood of x, then by applying the above, we have

‖Ax −Ay‖ =

√√√√ ∞∑
n=0

|f ′n(x)− f ′n(y)|2

=

√√√√( k−1∑
n=0

|f ′n(x)− f ′n(y)|2
)

+

∞∑
n=k

|f ′n(x)− f ′n(y)|2

6

√√√√( k−1∑
n=0

|f ′n(x)− f ′n(y)|2
)

+ ε2

6

√√√√( k−1∑
n=0

(ε/2n)2
)

+ ε2

<
√

2ε2 + ε2

=
√

3ε.

� Subclaim 9.1.2

Subclaim 9.1.3. f is a homeomorphism onto its image.

Proof of Subclaim 9.1.3. Since dom f is compact, it is sufficient to show that
it is injective. Let x, y ∈ [0, 1]. If there is an interval I which is removed at
some stage n in the construction of C such that x, y ∈ I, then fn(x) 6= fn(y),
because f ′n(z) > 0 for all z ∈ I by the definition of fn. If not, find the least
m and an interval I such that I is removed at the mth stage and I is be-
tween x and y or x ∈ I ⇐⇒ y /∈ C. Then clearly again, fm(x) 6= fm(y).

� Subclaim 9.1.3

Subclaim 9.1.4. (f �C)−1 is Lipschitz.

Proof of Subclaim 9.1.4. If η ∈ 2ω, denote by g(η) the unique point in C which
is obtained by going “left” at stage n if η(n) = 0 and “right” if η(n) = 1. That
is, g is the canonical homeomorphism of 2ω onto C. It is not hard to see that

g(η) =

∞∑
n=1

η(n)
2n+1 + 6

4n+1
.
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Now, fn(g(η)) is the image of g(η) under fn, and by the definition of fn, we
have fn(g(η)) = 1/

√
2n if η(n) = 0 and fn(g(η)) = 2/

√
2n if η(n) = 1; that

is, fn(g(η)) = (1 + η(n))/
√

2n. Let η and ξ be two arbitrary elements of 2ω,
thus corresponding to the two (arbitrary) elements g(η) and g(ξ) of C. Denote
cn = |η(n)− ξ(n)|. Note that for all n ∈ N, c2n = cn. Then

d(g(η), g(ξ)) =
∣∣∣ ∞∑
n=1

η(n)
2n+1 + 6

4n+1
−
∞∑
n=1

ξ(n)
2n+1 + 6

4n+1

∣∣∣
=

∣∣∣ ∞∑
n=1

(η(n)− ξ(n))
2n+1 + 6

4n+1

∣∣∣
6

∣∣∣ ∞∑
n=1

|η(n)− ξ(n)|2
n+1 + 6

4n+1

∣∣∣
=

∞∑
n=1

cn
2n+1 + 6

4n+1

=

∞∑
n=1

cn√
2n
· 2n+1 + 6

2n+1
√

2n+2

(Cauchy-Schwarz) 6

√√√√ ∞∑
n=0

c2n
2n
·

√√√√ ∞∑
n=1

(
2n+1 + 6

2n+1
√

2n+2

)2

︸ ︷︷ ︸
=:L

= L ·

√√√√ ∞∑
n=1

c2n
2n

= L ·

√√√√ ∞∑
n=1

∣∣∣η(n)√
2n
− ξ(n)√

2n

∣∣∣2

= L ·

√√√√ ∞∑
n=1

∣∣∣1 + η(n)√
2n

− 1 + ξ(n)√
2n

∣∣∣2

= L ·

√√√√ ∞∑
n=1

∣∣∣fn(g(η))− fn(g(ξ))
∣∣∣2

= L · ‖f(g(η))− f(g(ξ))‖2.

This verifies that the function (f �C)−1 is Lipschitz. � Subclaim 9.1.4
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Since C has positive measure, this implies that the one-dimensional Haus-
dorff measure of f [C] = ((f �C)−1)−1C must also have positive measure. So
it remains to show that f [C] ⊂ H(T ), and then the proof of Claim 9.1 is done.

Subclaim 9.1.5. f [C] ⊂ H(T ).

Proof of Subclaim 9.1.5. Suppose η ∈ 2ω and let g(η) be as in the previous
proof, the canonical image of η in C. Then, as above,

fn(g(η)) = (1 + η(n))/
√

2n,

so

f(g(η)) =
∞∑
n=0

1 + η(n)√
2n

en,b(n).

Now, by looking at the definition of vs, one can see that the approximations
of f(g(η)) of the form

k−1∑
n=0

1 + η(n)√
2n

en,b(n)

appear in vb�k, so f(g(η)) ∈
⋃
s∈T vs = H(T ). � Subclaim 9.1.5

�Claim 9.1

Claim 9.2. If T does not have a branch, then H(T ) is countable.

Proof of Claim 9.2. If H(T ) is uncountable, then, because
⋃
s∈T vs is count-

able, there is a point x in
⋃
s∈T vs \

⋃
s∈T vs. Let (pi)i∈N be a Cauchy sequence

of elements of
⋃
s∈T vs converging to x. By going to a subsequence, we can

assume that for all i ∈ N, d(pi+1, pi) < 2−i. The latter inequality implies, by
the definition of the sets vs, that if dom s 6 i, then

pi �dom s ∈ vs ⇐⇒ pi+1 �dom s ∈ vs.

So, we can find b ∈ ωω such that pi ∈ vb�i for all i, and so (b �n)n∈N must be
a branch in T . �Claim 9.2

By Claims 9.1 and 9.2, T has no branch if and only if H(T ) is purely un-
rectifiable which concludes the proof. �Theorem 9
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