Real Analysis Exch
RESEARCH Vol. 39(2), 2013/2014, pp. 823 334

Vadim Kulikov, Kurt Godel Research Center, Wahringer Strafle 25, 1090,
Wien, Austria. email: vadim.kulikov@iki.fi

THE CLASS OF PURELY UNRECTIFIABLE
SETS IN /, IS [1}-COMPLETE

Abstract

The space F'(¢2) of all closed subsets of ¢5 is a Polish space. We show
that the subset P C F(f2) consisting of the purely l-unrectifiable sets
is II-complete.

1 Introduction

The concepts of unrectifiable and purely unrectifiable sets are central in con-
temporary geometric measure theory; see e.g. [2]. In some sense, these are sets
which are not capturable by smooth approximations: a set is unrectifiable, if it
cannot be covered (up to a negligible set) by countably many C*-curves, and
1-purely unrectifiable if its 1-dimensional Hausdorff measure restricted to any
C'-curve is zero. We only consider 1-purely unrectifiable sets in this article
(as opposed to m-purely unrectifiable for m > 1), so we skip the “1” from
the notation. There are several open questions concerning (partial) character-
isations of purely unrectifiable sets, such as, for example, whether or not the
two-dimensional Brownian motion is purely unrectifiable with probability 1 [3].

Another question asked by David Preiss (2013) is whether purely unrectifi-
able sets can be (in a certain sense) approximated by open sets; see Question 3.

Here we show that the notion of pure unrectifiability is subtle to the extent
that any decision procedure for checking whether a given closed subset of /5
is purely unrectifiable requires an exhaustive search through continuum many
cases. That is to say, in the language of descriptive set theory, the set of all
closed purely unrectifiable subsets of £, is IT{-hard. On the other hand, there
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is a decision procedure of this sort, so the set is ITI3-complete (or co-analytic
complete).

This might lead to a negative answer to Question 3; see discussion after
the statement of the question.

Acknowledgement I would like to thank David Preiss for introducing me
to this topic and pointing to this research direction.

2 Basic definitions

In order to define purely unrectifiable sets in o, let us review the definition of
Cl-curve in fs:

Definition 1. A Fréchet derivative of a function f: [0,1] — ¢ at a point
x € [0,1] is a linear operator A, : R — ¢ such that

fo U+ h) = F(@) = Ahll

h—0 |h| =0

The function belongs to C! if the Fréchet derivative exists at every point and
the map x — A, is continuous in the operator norm.

The linear operator A, is uniquely determined by the vector A,(1), so
denote f’(z) = A,(1). Also denote the space of all Ct-curves by C*([0,1],¢2).

Definition 2. A subset N of ¢ is purely unrectifiable if it is null on every C'-
curve. That is, given a C'-map f: [0,1] — £, the one-dimensional Hausdorff
measure of N Nran(f), denoted H!(N Nran(f)), equals 0. Denote the set of
purely unrectifiable curves in ¢5 by P.

Question 3. Let eg be the first basis vector of ¢5. Let us call a closed set
N C {y weakly purely unrectifiable if there exists 7 > 0 such that for every
£ > 0 there exists open G C £, with N C G, such that for all C'-curves f, if

I£"(x) = eolla < 7

for all € dom f, then the one-dimensional Hausdorff measure of ran(f) N G
is less than €. Denote the set of weakly purely unrectifiable curves by P*.
David Preiss asked the following question (2013): Is P C P*?

Here I propose a possible strategy for the solution. We prove in this paper
that the complexity of P is exactly II}. What about P*? The set of those N
that satisfy “N C G” in the formulation above is itself ITi-complete for a fixed
G, and additionally there is an existential quantifier over G. So P* is ¥, and
here is a conjecture:
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Conjecture 4. P* is Xi-complete.

Now, if the conjecture is correct and we could modify the definition of P*
into P** such that the complexity is preserved and such that if P C P*, then
P = P**, we would obtain a contradiction.

3 Preliminaries in descriptive set theory

We follow the notation and presentation of the book “Classical Descriptive Set
Theory” by A. Kechris [1] and refer frequently to it below when addressing
well-known facts.

A Polish space is a separable topological space which is homeomorphic to
a complete metric space. The Hilbert space {5 is an example of a Polish space.
A standard Borel space is a set X endowed with a o-algebra S such that there
exists a Polish topology on X in which the Borel sets are precisely the sets
in S.

Let F(¢2) denote the set of all closed subsets of f5. This is a standard
Borel space where the o-algebra is generated by the sets of the form

{A e F(tz) | ANU # 2}, (B)

where U ranges over the basic open sets of ¢3 [1, Thm. 12.6]. We need the
following fact. Let H be the Hilbert cube H = [0, 1]N. By [1, Thm. 4.14],
{5 can be embedded into H so that the image is a Gs subset. Let e be that
embedding. Let K(H) be the set of all compact non-empty subsets of H
equipped with the Hausdorff metric; K (H) is a compact Polish space.

Fact 5. The embedding e: {5 — H induces an embedding of F({3) into K(H)
such that the image of F({2) is Gs in K(H), thus inducing a Polish topology
on F(l3) [1, Thm. 3.17]. This topology gives rise to the same Borel sets as
(B) above. O

By w and by N, we denote the set of natural numbers; by Ny, the set
of positive natural numbers. For n € N, w™ is the set of all functions from
{0,...,n =1} to w, ws* = [J,enyw" and w* denotes the set of all functions
from w to w. Similarly, 2 denotes the set of all functions from w to {0, 1},
and 2<% the set of functions from {0,...,n—1} to {0,1} for all n. The spaces
w* and 2% are Polish spaces in the product topology.

The set w<* can be ordered in a natural way: p < ¢ if ¢ dom p = p. This
is an example of a tree. The set of all trees, Tr, is the set of all downward
closed suborders of w<*. The space Tr can be endowed naturally with a Polish
topology as a closed subset of 2“@, which is in turn homeomorphic to 2¢ via
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a bijection w — w<“. A branch of a tree T € Tr is a sequence (pn)n<w such
that p, € W™, pn < pn+1 and p, € T for all n.

A subset of a Polish space A C X is X1 if there is a Polish space Y and a
Borel subset B C X x Y such that A is the projection of B to X. A set is II}
if it is the complement of a X1 set.

Definition 6. A set A C X is Borel Wadge-reducible to another B C Y
(X and Y are Polish) if there exists a Borel function f: X — Y such that for
alze X,z € A < f(x) € B. We denote this by A <y B.

Aset A C X is II}-hard if every I1} set B is Wadge-reducible to it, B <y A.
We define ¥}-hard similarly. A set is I1i-complete (X1-complete) if it is TI1
and ITi-hard (X1 and 1-hard).

Since the classes X1 and IIi are closed under preimages in Borel maps
[1, Thm. 14.4], it is clear that if A is ¥} and B <y A, then B is also
Y. On the other hand, a simple diagonalisation argument together with
Souslin’s Theorem [1, Thm. 14.11] shows that there are I} sets that are not
¥1. Therefore, a ITj-hard set cannot be ¥, because it Wadge reduces to some
II} set that is not X}. In particular, it cannot be Borel.

An example of a ITj-complete set is the set of those trees in Tr that do not
have a branch [1, 27.1]. To sum up, the main conclusions in this paper are
based on the following two facts:

Fact 7. 1. If A is I1}-hard and A <w B, then B is I1}-hard.
2. The set {T € Tr | T has no branches} is I1}-hard. [1, p. 209] O

4 Main theorem

Proposition 8. The set P = {A € F({3) | A is purely unrectifiable} is 113

PRrOOF. The space C*(R,¢3) is Polish in the topology given by the sup-norm.
Let A C F(f3) x CY(R,¢3) be the set of those pairs (C,~) such that

H'(C Nranvy) > 0.

Then the projection of A to the first coordinate is precisely the complement
of P. It remains to show that A is Borel.

Fix a dense countable subset D of /5 and define a basic open set of /5 to
be an open ball B(x,r) where r € Q and z € D. Clearly, this is a countable
basis.



THE CLASS OF PURELY UNRECTIFIABLE SETS 327

Since C'Nran~ is compact, the inequality H(C Nranvy) > 0 is equivalent
to the statement that there exists n € N such that for all finite sequences
(B(x1,71),-..,B(xk, 7)) of basic open sets of o, if Zle r; < 1/n, then

CNrany ¢ Ui;l B(x;,7;). Denoting

A1, Thy Ty - TE) =

k
{(C.7) € F(t2) x C'(R, 1) | C Orany ¢ ] Blaima)},

i=1

we get

A:U ﬂ ﬂ AM(x1, o Xy Ty e, TR)-
neNkeEN zebDk,reqk
ridtr<i/n
Being a subset of a closed set is Borel, so A*(x1,...,2k,71,...,7k) is Borel.
Hence, A is Borel. O

Theorem 9 (Main Theorem). The set
P ={A e F({3) | A is purely unrectifiable}

is T1}-complete.

Proof of Theorem 9. We have already shown (Proposition 8) that P is I1}, so
we want to show that it is II}-hard. The proof is reminiscent of the proof of
[1, Thm. 27.6, pp. 210-211].

We will show that the set NB of those trees T" € Tr which do not have
a branch is Wadge-reducible to P. That is, we will find a Borel function
H: Tr — F({¢2) such that H(T') is not purely unrectifiable if and only if 7" has
a branch. The result follows then from Fact 7.

A Cantor set C' C R with a positive Lebesgue measure can be constructed
by removing an open interval of length 1/4 from the middle of the closed
unit interval [0, 1], and then removing open intervals of length 1/16 from the
middle of each of the remaining intervals and so on. At the n'® step we have
a disjoint union of 2" closed intervals. From left to right, label these intervals
by CL,...,C2" and set C = N2, Ur_, Ck.

Let {enm | n,m € N} be a basis for £5. For each s € w<%, let us define a
finite subset vg of ¢5 as follows:

dom(s)—

1
Z +p en,s(n) ‘ pe Zdom(s)}.
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Then for every tree T € Tr, let

H(T) = | vs.

seT

Claim 9.1. If T € Tr has a branch, then there is a C'-function f: [0,1] — /3
such that the one-dimensional Hausdorff measure of H(T') Nran f is positive.

Proof of Claim 9.1. Suppose that T has a branch and that b € w* is such that
bln €T for all n. Let us construct a C'-function f: [0,1] — /3 as follows.
For n € N define f,,: [0,1] — R to be a smooth function such that

o fu(x) = \/127 for z € C¥ when k is odd, and f,(z) = —2 for x € C¥

- /271.
when k is even,

e range of f, is [\/%, \/%}7 and

e if I is an open interval which is removed at the k' stage in the construc-
tion of C' and x € I, then
QR+1

Yok

0<|fn(@)] <

The derivative can be bounded in this way because if I is an open interval
that is removed at the k™" stage, then |I| = 4%, and in this interval, the
function is only required to either raise from 1/ V2" to 2 / V2" or decrease the
same amount in the opposite direction. On the other hand, if z € C, then the
derivative of fi is O for all k.

Now let f(z) = >0 fa()en pn). Clearly, f(x) € £o for all a:

IF@IE = D Iful@)f

n=0
[e'S)

N

S|
n=0 2"
> 2
2n

n=0
= 4.

Subclaim 9.1.1. The function f has a Fréchet derivative at each = € [0, 1].
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Proof of Subclaim 9.1.1. The vector Ay = 3" o f(x)en () is in £, because
the absolute value of f/ (z) is bounded by L;,
number that depends on x. Thus, A, defines a bounded linear operator h +—
Azh. We claim that A, is the Fréchet derivative of f at x. For that we need

to show that L AR
G B) = f(@) = Aghls
h—0 ‘h|

where k is a constant natural

=0.

So assume that € > 0. The numerator can be rewritten as

o0
D Ufala+h) = falz) = fi(z)h]2.
n=0

Let us show first that there exists £ € N such that for all A

S @+ h) = ful@) — £ (@)h]* < 2h?
n==k

[falz +h) = ful@) = fu@h? < (fale+h) = fu(@)] + | (2)h])?
(mean value theorem) = (|f,(€)IIA] + [ £ (2)||n])*

(O] + | (@))h?

K2
(for some constant K) < () .

2n

The last inequality follows from the definition of f. Therefore, for each i € N

we have
00 o0 K 2 )
> lfule+) = fulo) - Sual < 3 (55 ) 1
Now, by choosing k big enough, we can make sure that >~ , (25")2 < €2, 50

pick this k. Then, for each n < k, let h,, > 0 be a small enough real number
such that | fr(z+hy) — fu(2) = f1(2)ha| < Q%hn, and let h = h, = min, <y, h,.

Then we have

If (@ +h) = f(z) = Ashllz _ VYaolfulz + 1) — fu(e) = fr(2)h]?
Al ]

V(S5 ale 0 = £a(o) = Foh) + o
0

<
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J(Sibgne) +ee

<
R
- V4e2h2 + e2p2
|h]

=V/5e.

O Subclaim 9.1.1

Subclaim 9.1.2. The Fréchet derivative of f is continuous.
Thus f € C1([0,1],45).

Proof of Subclaim 9.1.2. Let z € [0,1] and € > 0. Denote by A, the Fréchet
derivative of f at x, which has the following form by the previous proof:

Ar = Z fr/z(x)en,b(n)~

n=0

The norm of a linear operator from R to ¢5 (such as A,) is determined by the
norm of the value at 1; thus for example,

1Al = 1 A: (D)2 = D 1 (@)
n=0
So for every y € [0,1], we have

[Az = Ayl

H i(fr/:,(fc) - fT/L(y))en,b(n)
n=0

2

S 1) = fLw)l>

n=0

Now, similar to the previous proof, let us find k € N such that
D) = L) <&
n=k

But
(@) — L@ < (@) + £ @) < (K) ,
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where K is some constant (this follows again from the definition of f). So we
can find a big enough k as required. Now, for every i < k pick §; such that for
every y in the d;-neighbourhood of = we have |f] (z) — f/ (y)| < e/2™. This is
possible since f,, are smooth by definition. Then let 6 = min; . d;. Now, if y
is the d-neighbourhood of x, then by applying the above, we have

oo

|4, — Ayl = Zlfn — fhy)?

= (kZlma( ~ Il )Zlf’ ~ TP

n=0
k—1
< | (Zih@ - fwP) +e
n=0
k—1
< (Z (e/27) )+52
n=0

< A/2e? 42
= V3e.

U Subclaim 9.1.2

Subclaim 9.1.3. f is a homeomorphism onto its image.

Proof of Subclaim 9.1.3. Since dom f is compact, it is sufficient to show that
it is injective. Let x,y € [0,1]. If there is an interval I which is removed at
some stage n in the construction of C' such that x,y € I, then f,(z) # fn(y),
because f/,(z) > 0 for all z € I by the definition of f,. If not, find the least
m and an interval I such that I is removed at the m'™ stage and I is be-
tween z and y or ¢ € I <= y ¢ C. Then clearly again, f,,(x) # f(y).

O Subclaim 9.1.3

Subclaim 9.1.4. (f[C)~! is Lipschitz.

Proof of Subclaim 9.1.4. If n € 2 denote by g(n) the unique point in C' which
is obtained by going “left” at stage n if n(n) = 0 and “right” if n(n) = 1. That
is, g is the canonical homeomorphism of 2¢ onto C. It is not hard to see that
2”+1 +6
Z 4n+1 )
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Now, fn(g(n)) is the image of g(n) under f,, and by the definition of f,, we
have f,(g(n)) = 1/v2" if n(n) = 0 and f,(g(n)) = 2/v2" if n(n) = 1; that
is, fn(g(n)) = (1 +n(n))/v2". Let n and & be two arbitrary elements of 2%,
thus corresponding to the two (arbitrary) elements g(n) and g(&) of C. Denote
¢n = |n(n) — &€(n)|. Note that for all n € N, ¢2 = ¢,. Then
0 2n+1 oo 2n+l
o), 0©) = | Szt = e Z

n=1 n=1

n+1
= [ o - Tt

n=1

N

0 2n+1 16
> In(m) = €)= |
n=1
— 2"t146

477,+1

= C’I’L

B e Cn 2n+1 +6
Zl V27 on+l,/gni2

> ¢ > ontl 46 2
(Conchy-Sewars) < J >a. J > ()

n=1

I
™
M8
2|5

_ LRGN SR IOIE
= L\nz::l Niu ot ’

= L |3 |fulan) ~ fatat@)]]

= L-|If(g(n) — f(g(&))ll2-
This verifies that the function (f [C)~! is Lipschitz. O Subelaim 9.1.4
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Since C has positive measure, this implies that the one-dimensional Haus-
dorff measure of f[C] = ((fC)~!)~1C must also have positive measure. So
it remains to show that f[C] C H(T'), and then the proof of Claim 9.1 is done.

Subclaim 9.1.5. f[C] C H(T).

Proof of Subclaim 9.1.5. Suppose n € 2¥ and let g(n) be as in the previous
proof, the canonical image of n in C. Then, as above,

Falg(m)) = (L+n(n))/V2r,

SO
— 1+7(n
Z NGD e"b( )

Now, by looking at the definition of vs, one can see that the approximations
of f(g(n)) of the form

1+
Z "7 en,b(n)

n=0

appear in vpx, so f(g(n)) € U eqpvs = H(T). O subclaim 9.1.5
g Claim 9.1

Claim 9.2. If T does not have a branch, then H(T) is countable.

Proof of Claim 9.2. If H(T') is uncountable, then, because | J, .,

able, there is a point x in (J . vs \U,eq vs- Let (ps)ien be a Cauchy sequence
of elements of |J,.; vs converging to x. By going to a subsequence, we can
assume that for all i € N, d(p;11,p:) < 27%. The latter inequality implies, by
the definition of the sets v, that if dom s < 4, then

Vg 1S count-

p;ldoms € vy <= p;y1[doms € v;.

So, we can find b € w* such that p; € vy); for all 4, and so (b [n)peny must be
a branch in 7T. U Claim 9.2

By Claims 9.1 and 9.2, T has no branch if and only if H(T) is purely un-
rectifiable which concludes the proof. O Theorem 9
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