RESEARCH

Vadim Kulikov, Kurt Gödel Research Center, Währinger Straße 25, 1090, Wien, Austria. email: vadim.kulikov@iki.fi

THE CLASS OF PURELY UNRECTIFIABLE SETS IN ℓ_2 IS Π_1^1 -COMPLETE

Abstract

The space $F(\ell_2)$ of all closed subsets of ℓ_2 is a Polish space. We show that the subset $P \subset F(\ell_2)$ consisting of the purely 1-unrectifiable sets is Π_1^1 -complete.

1 Introduction

The concepts of unrectifiable and purely unrectifiable sets are central in contemporary geometric measure theory; see e.g. [2]. In some sense, these are sets which are not capturable by smooth approximations: a set is *unrectifiable*, if it cannot be covered (up to a negligible set) by countably many C^1 -curves, and 1-purely unrectifiable if its 1-dimensional Hausdorff measure restricted to any C^1 -curve is zero. We only consider 1-purely unrectifiable sets in this article (as opposed to *m*-purely unrectifiable for m > 1), so we skip the "1" from the notation. There are several open questions concerning (partial) characterisations of purely unrectifiable sets, such as, for example, whether or not the two-dimensional Brownian motion is purely unrectifiable with probability 1 [3].

Another question asked by David Preiss (2013) is whether purely unrectifiable sets can be (in a certain sense) approximated by open sets; see Question 3.

Here we show that the notion of pure unrectifiability is subtle to the extent that any decision procedure for checking whether a given closed subset of ℓ_2 is purely unrectifiable requires an exhaustive search through continuum many cases. That is to say, in the language of descriptive set theory, the set of all closed purely unrectifiable subsets of ℓ_2 is Π_1^1 -hard. On the other hand, there

Mathematical Reviews subject classification: Primary: 03E15, 28A05; Secondary: 28E15 Key words: purely unrectifiable, co-analytic complete, Hilbert space

Received by the editors March 13, 2013

Communicated by: Marianna Csörnyei

is a decision procedure of this sort, so the set is Π_1^1 -complete (or *co-analytic complete*).

This might lead to a negative answer to Question 3; see discussion after the statement of the question.

Acknowledgement I would like to thank David Preiss for introducing me to this topic and pointing to this research direction.

2 Basic definitions

In order to define purely unrectifiable sets in ℓ_2 , let us review the definition of C^1 -curve in ℓ_2 :

Definition 1. A Fréchet derivative of a function $f: [0,1] \to \ell_2$ at a point $x \in [0,1]$ is a linear operator $A_x: \mathbb{R} \to \ell_2$ such that

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - A_x h\|_2}{|h|} = 0.$$

The function belongs to C^1 if the Fréchet derivative exists at every point and the map $x \mapsto A_x$ is continuous in the operator norm.

The linear operator A_x is uniquely determined by the vector $A_x(1)$, so denote $f'(x) = A_x(1)$. Also denote the space of all C^1 -curves by $C^1([0,1], \ell_2)$.

Definition 2. A subset N of ℓ_2 is *purely unrectifiable* if it is null on every C^1 curve. That is, given a C^1 -map $f: [0,1] \to \ell_2$, the one-dimensional Hausdorff measure of $N \cap \operatorname{ran}(f)$, denoted $\mathcal{H}^1(N \cap \operatorname{ran}(f))$, equals 0. Denote the set of purely unrectifiable curves in ℓ_2 by P.

Question 3. Let e_0 be the first basis vector of ℓ_2 . Let us call a closed set $N \subset \ell_2$ weakly purely unrectifiable if there exists $\tau > 0$ such that for every $\varepsilon > 0$ there exists open $G \subset \ell_2$ with $N \subset G$, such that for all C^1 -curves f, if

$$\|f'(x) - e_0\|_2 < \tau$$

for all $x \in \text{dom } f$, then the one-dimensional Hausdorff measure of $\operatorname{ran}(f) \cap G$ is less than ε . Denote the set of weakly purely unrectifiable curves by P^* . David Preiss asked the following question (2013): Is $P \subset P^*$?

Here I propose a possible strategy for the solution. We prove in this paper that the complexity of P is exactly Π_1^1 . What about P^* ? The set of those Nthat satisfy " $N \subset G$ " in the formulation above is itself Π_1^1 -complete for a fixed G, and additionally there is an existential quantifier over G. So P^* is Σ_2^1 , and here is a conjecture:

Conjecture 4. P^* is Σ_2^1 -complete.

Now, if the conjecture is correct and we could modify the definition of P^* into P^{**} such that the complexity is preserved and such that if $P \subset P^*$, then $P = P^{**}$, we would obtain a contradiction.

3 Preliminaries in descriptive set theory

We follow the notation and presentation of the book "Classical Descriptive Set Theory" by A. Kechris [1] and refer frequently to it below when addressing well-known facts.

A Polish space is a separable topological space which is homeomorphic to a complete metric space. The Hilbert space ℓ_2 is an example of a Polish space. A standard Borel space is a set X endowed with a σ -algebra S such that there exists a Polish topology on X in which the Borel sets are precisely the sets in S.

Let $F(\ell_2)$ denote the set of all closed subsets of ℓ_2 . This is a standard Borel space where the σ -algebra is generated by the sets of the form

$$\{A \in F(\ell_2) \mid A \cap U \neq \emptyset\},\tag{B}$$

where U ranges over the basic open sets of ℓ_2 [1, Thm. 12.6]. We need the following fact. Let H be the Hilbert cube $H = [0,1]^{\mathbb{N}}$. By [1, Thm. 4.14], ℓ_2 can be embedded into H so that the image is a G_{δ} subset. Let e be that embedding. Let K(H) be the set of all compact non-empty subsets of H equipped with the Hausdorff metric; K(H) is a compact Polish space.

Fact 5. The embedding $e: \ell_2 \to H$ induces an embedding of $F(\ell_2)$ into K(H) such that the image of $F(\ell_2)$ is G_{δ} in K(H), thus inducing a Polish topology on $F(\ell_2)$ [1, Thm. 3.17]. This topology gives rise to the same Borel sets as (B) above.

By ω and by \mathbb{N} , we denote the set of natural numbers; by \mathbb{N}_+ , the set of positive natural numbers. For $n \in \mathbb{N}$, ω^n is the set of all functions from $\{0, \ldots, n-1\}$ to ω , $\omega^{<\omega} = \bigcup_{n \in \mathbb{N}} \omega^n$ and ω^{ω} denotes the set of all functions from ω to ω . Similarly, 2^{ω} denotes the set of all functions from ω to $\{0, 1\}$, and $2^{<\omega}$ the set of functions from $\{0, \ldots, n-1\}$ to $\{0, 1\}$ for all n. The spaces ω^{ω} and 2^{ω} are Polish spaces in the product topology.

The set $\omega^{<\omega}$ can be ordered in a natural way: p < q if $q \upharpoonright \dim p = p$. This is an example of a *tree*. The set of all trees, Tr, is the set of all downward closed suborders of $\omega^{<\omega}$. The space Tr can be endowed naturally with a Polish topology as a closed subset of $2^{\omega^{<\omega}}$, which is in turn homeomorphic to 2^{ω} via

a bijection $\omega \to \omega^{<\omega}$. A branch of a tree $T \in \text{Tr}$ is a sequence $(p_n)_{n < \omega}$ such that $p_n \in \omega^n$, $p_n < p_{n+1}$ and $p_n \in T$ for all n.

A subset of a Polish space $A \subset X$ is Σ_1^1 if there is a Polish space Y and a Borel subset $B \subset X \times Y$ such that A is the projection of B to X. A set is Π_1^1 if it is the complement of a Σ_1^1 set.

Definition 6. A set $A \subset X$ is *Borel Wadge-reducible* to another $B \subset Y$ (X and Y are Polish) if there exists a Borel function $f: X \to Y$ such that for all $x \in X, x \in A \iff f(x) \in B$. We denote this by $A \leq_W B$.

A set $A \subset X$ is Π_1^1 -hard if every Π_1^1 set B is Wadge-reducible to it, $B \leq_W A$. We define Σ_1^1 -hard similarly. A set is Π_1^1 -complete (Σ_1^1 -complete) if it is Π_1^1 and Π_1^1 -hard (Σ_1^1 and Σ_1^1 -hard).

Since the classes Σ_1^1 and Π_1^1 are closed under preimages in Borel maps [1, Thm. 14.4], it is clear that if A is Σ_1^1 and $B \leq_W A$, then B is also Σ_1^1 . On the other hand, a simple diagonalisation argument together with Souslin's Theorem [1, Thm. 14.11] shows that there are Π_1^1 sets that are not Σ_1^1 . Therefore, a Π_1^1 -hard set cannot be Σ_1^1 , because it Wadge reduces to some Π_1^1 set that is not Σ_1^1 . In particular, it cannot be Borel.

An example of a Π_1^1 -complete set is the set of those trees in Tr that do not have a branch [1, 27.1]. To sum up, the main conclusions in this paper are based on the following two facts:

Fact 7. 1. If A is Π_1^1 -hard and $A \leq_W B$, then B is Π_1^1 -hard.

2. The set $\{T \in \text{Tr} \mid T \text{ has no branches}\}$ is Π_1^1 -hard. [1, p. 209]

4 Main theorem

Proposition 8. The set $P = \{A \in F(\ell_2) \mid A \text{ is purely unrectifiable}\}$ is Π_1^1 .

PROOF. The space $C^1(\mathbb{R}, \ell_2)$ is Polish in the topology given by the sup-norm. Let $A \subset F(\ell_2) \times C^1(\mathbb{R}, \ell_2)$ be the set of those pairs (C, γ) such that

$$\mathcal{H}^1(C \cap \operatorname{ran} \gamma) > 0.$$

Then the projection of A to the first coordinate is precisely the complement of P. It remains to show that A is Borel.

Fix a dense countable subset D of ℓ_2 and define a basic open set of ℓ_2 to be an open ball B(x, r) where $r \in \mathbb{Q}$ and $x \in D$. Clearly, this is a countable basis.

Since $C \cap \operatorname{ran} \gamma$ is compact, the inequality $H^1(C \cap \operatorname{ran} \gamma) > 0$ is equivalent to the statement that there exists $n \in \mathbb{N}$ such that for all finite sequences $(B(x_1,r_1),\ldots,B(x_k,r_k))$ of basic open sets of ℓ_2 , if $\sum_{i=1}^k r_i < 1/n$, then $C \cap \operatorname{ran} \gamma \not\subset \overline{\bigcup_{i=1}^k B(x_i, r_i)}$. Denoting

$$A^*(x_1,\ldots,x_k,r_1,\ldots,r_k) =$$

$$\{(C,\gamma) \in F(\ell_2) \times C^1(\mathbb{R},\ell_2) \mid C \cap \operatorname{ran} \gamma \not\subset \bigcup_{i=1}^k \overline{B(x_i,r_i)}\},\$$

we get

$$A = \bigcup_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} \bigcap_{\substack{x \in D^k, r \in \mathbb{Q}^k \\ r_1 + \dots + r_k < 1/n}} A^*(x_1, \dots, x_k, r_1, \dots, r_k).$$

Being a subset of a closed set is Borel, so $A^*(x_1, \ldots, x_k, r_1, \ldots, r_k)$ is Borel. Hence, A is Borel. \square

Theorem 9 (Main Theorem). The set

$$P = \{A \in F(\ell_2) \mid A \text{ is purely unrectifiable}\}\$$

is Π^1_1 -complete.

Proof of Theorem 9. We have already shown (Proposition 8) that P is Π_1^1 , so we want to show that it is Π^1_1 -hard. The proof is reminiscent of the proof of [1, Thm. 27.6, pp. 210–211].

We will show that the set NB of those trees $T \in Tr$ which do not have a branch is Wadge-reducible to P. That is, we will find a Borel function $H: \operatorname{Tr} \to F(\ell_2)$ such that H(T) is not purely unrectifiable if and only if T has a branch. The result follows then from Fact 7.

A Cantor set $C \subset \mathbb{R}$ with a positive Lebesgue measure can be constructed by removing an open interval of length 1/4 from the middle of the closed unit interval [0, 1], and then removing open intervals of length 1/16 from the middle of each of the remaining intervals and so on. At the n^{th} step we have a disjoint union of 2^n closed intervals. From left to right, label these intervals by $C_n^1, \ldots, C_n^{2^n}$ and set $C = \bigcap_{n=0}^{\infty} \bigcup_{k=1}^{2^n} C_n^k$. Let $\{e_{n,m} \mid n, m \in \mathbb{N}\}$ be a basis for ℓ_2 . For each $s \in \omega^{<\omega}$, let us define a

finite subset v_s of ℓ_2 as follows:

$$v_s = \Big\{ \sum_{n=0}^{\operatorname{dom}(s)-1} \frac{1+p(n)}{\sqrt{2^n}} e_{n,s(n)} \mid p \in 2^{\operatorname{dom}(s)} \Big\}.$$

Then for every tree $T \in \text{Tr}$, let

$$H(T) = \overline{\bigcup_{s \in T} v_s}.$$

Claim 9.1. If $T \in \text{Tr}$ has a branch, then there is a C^1 -function $f: [0,1] \to \ell_2$ such that the one-dimensional Hausdorff measure of $H(T) \cap \text{ran } f$ is positive.

Proof of Claim 9.1. Suppose that T has a branch and that $b \in \omega^{\omega}$ is such that $b \upharpoonright n \in T$ for all n. Let us construct a C^1 -function $f: [0,1] \to \ell_2$ as follows. For $n \in \mathbb{N}$ define $f_n: [0,1] \to \mathbb{R}$ to be a smooth function such that

- $f_n(x) = \frac{1}{\sqrt{2^n}}$ for $x \in C_n^k$ when k is odd, and $f_n(x) = \frac{2}{\sqrt{2^n}}$ for $x \in C_n^k$ when k is even,
- range of f_n is $\left[\frac{1}{\sqrt{2^n}}, \frac{2}{\sqrt{2^n}}\right]$, and
- if I is an open interval which is removed at the k^{th} stage in the construction of C and $x \in I$, then

$$0 < |f'_n(x)| \leqslant \frac{4^{k+1}}{\sqrt{2^n}}.$$

The derivative can be bounded in this way because if I is an open interval that is removed at the k^{th} stage, then $|I| = 4^{-k}$, and in this interval, the function is only required to either raise from $1/\sqrt{2^n}$ to $2/\sqrt{2^n}$ or decrease the same amount in the opposite direction. On the other hand, if $x \in C$, then the derivative of f_k is 0 for all k.

Now let $f(x) = \sum_{n=0}^{\infty} f_n(x) e_{n,b(n)}$. Clearly, $f(x) \in \ell_2$ for all x:

$$\|f(x)\|_{2}^{2} = \sum_{n=0}^{\infty} |f_{n}(x)|^{2}$$
$$\leqslant \sum_{n=0}^{\infty} |\frac{2}{\sqrt{2^{n}}}|^{2}$$
$$= \sum_{n=0}^{\infty} \frac{2}{2^{n}}$$
$$= 4.$$

Subclaim 9.1.1. The function f has a Fréchet derivative at each $x \in [0, 1]$.

328

Proof of Subclaim 9.1.1. The vector $A_x = \sum_{n=0}^{\infty} f'_n(x) e_{n,b(n)}$ is in ℓ_2 , because the absolute value of $f'_n(x)$ is bounded by $\frac{4^{k+1}}{\sqrt{2^n}}$, where k is a constant natural number that depends on x. Thus, A_x defines a bounded linear operator $h \mapsto A_x h$. We claim that A_x is the Fréchet derivative of f at x. For that we need to show that

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - A_x h\|_2}{|h|} = 0$$

So assume that $\varepsilon > 0$. The numerator can be rewritten as

$$\sqrt{\sum_{n=0}^{\infty} |f_n(x+h) - f_n(x) - f'_n(x)h|^2}.$$

Let us show first that there exists $k \in \mathbb{N}$ such that for all h

$$\sum_{n=k}^{\infty} |f_n(x+h) - f_n(x) - f'_n(x)h|^2 \leq \varepsilon^2 h^2:$$

$$\begin{aligned} |f_n(x+h) - f_n(x) - f'_n(x)h|^2 &\leq (|f_n(x+h) - f_n(x)| + |f'_n(x)h|)^2 \\ \text{(mean value theorem)} &= (|f'_n(\xi)||h| + |f'_n(x)||h|)^2 \\ &= (|f'_n(\xi)| + |f'_n(x)|)^2 h^2 \\ \text{(for some constant } K) &\leqslant \left(\frac{K}{2^n}\right)^2 h^2. \end{aligned}$$

The last inequality follows from the definition of f. Therefore, for each $i \in \mathbb{N}$ we have

$$\sum_{n=i}^{\infty} |f_n(x+h) - f_n(x) - f'_n(x)h|^2 \leq \sum_{n=i}^{\infty} \left(\frac{K}{2^n}\right)^2 h^2.$$

Now, by choosing k big enough, we can make sure that $\sum_{n=k}^{\infty} \left(\frac{K}{2^n}\right)^2 < \varepsilon^2$, so pick this k. Then, for each n < k, let $h_n > 0$ be a small enough real number such that $|f_n(x+h_n) - f_n(x) - f'_n(x)h_n| \leq \frac{\varepsilon}{2^n}h_n$, and let $h = h_{\varepsilon} = \min_{n < k} h_n$. Then we have

$$\frac{\|f(x+h) - f(x) - A_x h\|_2}{|h|} = \frac{\sqrt{\sum_{n=0}^{\infty} |f_n(x+h) - f_n(x) - f'_n(x)h|^2}}{|h|} \\ \leqslant \frac{\sqrt{\left(\sum_{n=0}^{k-1} |f_n(x+h) - f_n(x) - f'_n(x)h|^2\right) + \varepsilon^2 h^2}}{|h|}$$

$$\leq \frac{\sqrt{\left(\sum_{n=0}^{k-1} \left(\frac{\varepsilon}{2^n}h\right)^2\right) + \varepsilon^2 h^2}}{|h|}$$
$$< \frac{\sqrt{4\varepsilon^2 h^2 + \varepsilon^2 h^2}}{|h|}$$
$$= \sqrt{5}\varepsilon.$$

 \Box Subclaim 9.1.1

Subclaim 9.1.2. The Fréchet derivative of f is continuous. Thus $f \in C^1([0, 1], \ell_2)$.

Proof of Subclaim 9.1.2. Let $x \in [0,1]$ and $\varepsilon > 0$. Denote by A_x the Fréchet derivative of f at x, which has the following form by the previous proof:

$$A_x = \sum_{n=0}^{\infty} f'_n(x) e_{n,b(n)}.$$

The norm of a linear operator from \mathbb{R} to ℓ_2 (such as A_x) is determined by the norm of the value at 1; thus for example,

$$||A_x|| = ||A_x(1)||_2 = \sum_{n=0}^{\infty} |f'_n(x)|^2.$$

So for every $y \in [0, 1]$, we have

$$\|A_x - A_y\| = \left\| \sum_{n=0}^{\infty} (f'_n(x) - f'_n(y))e_{n,b(n)} \right\|_2$$
$$= \sqrt{\sum_{n=0}^{\infty} |f'_n(x) - f'_n(y)|^2}.$$

Now, similar to the previous proof, let us find $k\in\mathbb{N}$ such that

$$\sum_{n=k}^{\infty} |f'_n(x) - f'_n(y)|^2 < \varepsilon^2.$$

But

$$|f'_n(x) - f'_n(y)|^2 \leq (|f'_n(x)| + |f'_n(y)|)^2 \leq \left(\frac{K}{2^n}\right)^2,$$

where K is some constant (this follows again from the definition of f). So we can find a big enough k as required. Now, for every i < k pick δ_i such that for every y in the δ_i -neighbourhood of x we have $|f'_n(x) - f'_n(y)| < \varepsilon/2^n$. This is possible since f_n are smooth by definition. Then let $\delta = \min_{i < k} \delta_i$. Now, if y is the δ -neighbourhood of x, then by applying the above, we have

$$\begin{aligned} \|A_{x} - A_{y}\| &= \sqrt{\sum_{n=0}^{\infty} |f_{n}'(x) - f_{n}'(y)|^{2}} \\ &= \sqrt{\left(\sum_{n=0}^{k-1} |f_{n}'(x) - f_{n}'(y)|^{2}\right) + \sum_{n=k}^{\infty} |f_{n}'(x) - f_{n}'(y)|^{2}} \\ &\leqslant \sqrt{\left(\sum_{n=0}^{k-1} |f_{n}'(x) - f_{n}'(y)|^{2}\right) + \varepsilon^{2}} \\ &\leqslant \sqrt{\left(\sum_{n=0}^{k-1} (\varepsilon/2^{n})^{2}\right) + \varepsilon^{2}} \\ &\leqslant \sqrt{2\varepsilon^{2} + \varepsilon^{2}} \\ &= \sqrt{3}\varepsilon. \end{aligned}$$

□_{Subclaim 9.1.2}

Subclaim 9.1.3. f is a homeomorphism onto its image.

Proof of Subclaim 9.1.3. Since dom f is compact, it is sufficient to show that it is injective. Let $x, y \in [0, 1]$. If there is an interval I which is removed at some stage n in the construction of C such that $x, y \in I$, then $f_n(x) \neq f_n(y)$, because $f'_n(z) > 0$ for all $z \in I$ by the definition of f_n . If not, find the least m and an interval I such that I is removed at the mth stage and I is between x and y or $x \in I \iff y \notin C$. Then clearly again, $f_m(x) \neq f_m(y)$. \Box Subclaim 9.1.3

Subclaim 9.1.4. $(f \upharpoonright C)^{-1}$ is Lipschitz.

Proof of Subclaim 9.1.4. If $\eta \in 2^{\omega}$, denote by $g(\eta)$ the unique point in C which is obtained by going "left" at stage n if $\eta(n) = 0$ and "right" if $\eta(n) = 1$. That is, g is the canonical homeomorphism of 2^{ω} onto C. It is not hard to see that

$$g(\eta) = \sum_{n=1}^{\infty} \eta(n) \frac{2^{n+1} + 6}{4^{n+1}}.$$

Now, $f_n(g(\eta))$ is the image of $g(\eta)$ under f_n , and by the definition of f_n , we have $f_n(g(\eta)) = 1/\sqrt{2^n}$ if $\eta(n) = 0$ and $f_n(g(\eta)) = 2/\sqrt{2^n}$ if $\eta(n) = 1$; that is, $f_n(g(\eta)) = (1 + \eta(n))/\sqrt{2^n}$. Let η and ξ be two arbitrary elements of 2^{ω} , thus corresponding to the two (arbitrary) elements $g(\eta)$ and $g(\xi)$ of C. Denote $c_n = |\eta(n) - \xi(n)|$. Note that for all $n \in \mathbb{N}$, $c_n^2 = c_n$. Then

$$\begin{split} d(g(\eta), g(\xi)) &= \left| \sum_{n=1}^{\infty} \eta(n) \frac{2^{n+1} + 6}{4^{n+1}} - \sum_{n=1}^{\infty} \xi(n) \frac{2^{n+1} + 6}{4^{n+1}} \right| \\ &= \left| \sum_{n=1}^{\infty} (\eta(n) - \xi(n)) \frac{2^{n+1} + 6}{4^{n+1}} \right| \\ &\leqslant \left| \sum_{n=1}^{\infty} |\eta(n) - \xi(n)| \frac{2^{n+1} + 6}{4^{n+1}} \right| \\ &= \sum_{n=1}^{\infty} c_n \frac{2^{n+1} + 6}{4^{n+1}} \\ &= \sum_{n=1}^{\infty} \frac{c_n}{\sqrt{2^n}} \cdot \frac{2^{n+1} + 6}{2^{n+1}\sqrt{2^{n+2}}} \\ (\text{Cauchy-Schwarz}) &\leqslant \sqrt{\sum_{n=1}^{\infty} \frac{c_n^2}{2^n}} \cdot \sqrt{\sum_{n=1}^{\infty} \left(\frac{2^{n+1} + 6}{2^{n+1}\sqrt{2^{n+2}}}\right)^2} \\ &= L \cdot \sqrt{\sum_{n=1}^{\infty} \frac{c_n^2}{2^n}} \\ &= L \cdot \sqrt{\sum_{n=1}^{\infty} \left|\frac{\eta(n)}{\sqrt{2^n}} - \frac{\xi(n)}{\sqrt{2^n}}\right|^2} \\ &= L \cdot \sqrt{\sum_{n=1}^{\infty} \left|\frac{1 + \eta(n)}{\sqrt{2^n}} - \frac{1 + \xi(n)}{\sqrt{2^n}}\right|^2} \\ &= L \cdot \sqrt{\sum_{n=1}^{\infty} \left|f_n(g(\eta)) - f_n(g(\xi))\right|^2} \\ &= L \cdot \|f(g(\eta)) - f(g(\xi))\|_2. \end{split}$$

This verifies that the function $(f \upharpoonright C)^{-1}$ is Lipschitz. \Box_{Subc}

 \Box _{Subclaim 9.1.4}

Since C has positive measure, this implies that the one-dimensional Hausdorff measure of $f[C] = ((f \upharpoonright C)^{-1})^{-1}C$ must also have positive measure. So it remains to show that $f[C] \subset H(T)$, and then the proof of Claim 9.1 is done.

Subclaim 9.1.5. $f[C] \subset H(T)$.

Proof of Subclaim 9.1.5. Suppose $\eta \in 2^{\omega}$ and let $g(\eta)$ be as in the previous proof, the canonical image of η in C. Then, as above,

$$f_n(g(\eta)) = (1 + \eta(n))/\sqrt{2^n},$$

 \mathbf{SO}

$$f(g(\eta)) = \sum_{n=0}^{\infty} \frac{1 + \eta(n)}{\sqrt{2^n}} e_{n,b(n)}.$$

Now, by looking at the definition of v_s , one can see that the approximations of $f(g(\eta))$ of the form

$$\sum_{n=0}^{k-1} \frac{1+\eta(n)}{\sqrt{2^n}} e_{n,b(n)}$$

appear in $v_{b \upharpoonright k}$, so $f(g(\eta)) \in \overline{\bigcup_{s \in T} v_s} = H(T)$.

□_{Subclaim} 9.1.5 □_{Claim} 9.1

Claim 9.2. If T does not have a branch, then H(T) is countable.

Proof of Claim 9.2. If H(T) is uncountable, then, because $\bigcup_{s \in T} v_s$ is countable, there is a point x in $\overline{\bigcup_{s \in T} v_s} \setminus \bigcup_{s \in T} v_s$. Let $(p_i)_{i \in \mathbb{N}}$ be a Cauchy sequence of elements of $\bigcup_{s \in T} v_s$ converging to x. By going to a subsequence, we can assume that for all $i \in \mathbb{N}$, $d(p_{i+1}, p_i) < 2^{-i}$. The latter inequality implies, by the definition of the sets v_s , that if dom $s \leq i$, then

$$p_i \upharpoonright \operatorname{dom} s \in v_s \iff p_{i+1} \upharpoonright \operatorname{dom} s \in v_s.$$

So, we can find $b \in \omega^{\omega}$ such that $p_i \in v_{b \restriction i}$ for all i, and so $(b \restriction n)_{n \in \mathbb{N}}$ must be a branch in T.

By Claims 9.1 and 9.2, T has no branch if and only if H(T) is purely unrectifiable which concludes the proof.

References

- A. S. Kechris, *Classical Descriptive Set Theory*, Springer-Verlag, Graduate Texts in Mathematics, 156 (1994).
- [2] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, Cambridge University Press, (1999)
- [3] David Preiss, Verbal Communication (2013).

334