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OSCILLATION OF HÖLDER CONTINUOUS
FUNCTIONS

Abstract

Local oscillation of a function satisfying a Hölder condition is con-
sidered, and it is proved that its growth is governed by a version of the
Law of the Iterated Logarithm.

1 Introduction

For 0 < α < 1, let Λα(R) be the class of functions f : R → R for which there
exists a constant C = C(f) > 0 such that |f(x) − f(y)| ≤ C|x − y|α for any
x, y ∈ R. The infimum of such constants C is denoted by ‖f‖α. For b > 1, G.
H. Hardy proved in [7] that the Weierstrass function

fb(x) =

∞∑
j=1

b−jα cos(bjx), x ∈ R,

is in Λα(R) and exhibits the extreme behaviour

lim sup
h→0

|fb(x+ h)− fb(x)|
|h|α

> 0
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Key words: Hölder class, oscillation, martingales
Received by the editors February 18, 2013
Communicated by: Marianna Csörnyei

∗Both authors were supported by grants MTM2011-24606 and 2009SGR420.

305



306 J. G. Llorente and A. Nicolau

for any x ∈ R. However, for fixed x ∈ R, one may expect many changes of
sign of fb(x + h) − fb(x) as h → 0. The next definition provides a way of
quantifying it. Given a function f ∈ Λα(R) and 0 < ε < 1/2, consider

Θε(f)(x) =

∫ 1

ε

f(x+ h)− f(x− h)

hα
dh

h
, x ∈ R. (1.1)

It is clear that ‖Θε(f)‖∞ ≤ 2α‖f‖α log(1/ε). Moreover, this uniform estimate
cannot be improved as the elementary example f(x) = |x|α sign(x) shows.
However, at almost every point x, the uniform estimate can be substantially
improved. The main result of the paper is the following:

Theorem 1. Fix 0 < α < 1. For f ∈ Λα(R) and 0 < ε < 1/2, let Θε(f)(x)
be given by (1.1). Then, there exists a constant c(α) > 0, independent of ε
and f , such that

(a) For any interval I ⊂ R, |I| = 1, one has∫
I

|Θε(f)(x)|2 dx ≤ c(α)(log 1/ε)‖f‖2α.

(b) At almost every point x ∈ R, one has

lim sup
ε→0+

|Θε(f)(x)|√
log(1/ε) log log log(1/ε)

≤ c(α)‖f‖α.

The main technical step in the proof is the following estimate, which pro-
vides the right subgaussian decay: there exists a constant c = c(α) > 0 such
that for any t > 0 one has

|{x ∈ [0, 1] : |Θ∗ε(f)(x)| > t
√

log(1/ε)‖f‖α}| ≤ ce−t
2/c. (1.2)

Here Θ∗ε(f) is the maximal function given by

Θ∗ε(f)(x) = sup{|Θδ(f)(x)| : 1/2 ≥ δ ≥ ε}.

Theorem 1 follows from this subgaussian estimate by standard arguments. Our
proof of (1.2) is organized in two steps. First, we state and prove a dyadic
version of (1.2), and later we use an averaging procedure due to J. Garnett
and P. Jones ([6]). Theorem 1 is sharp up to the value of the constant c(α).
Moreover, there exists f ∈ Λα(R) for which there exists a constant
c = c(f) > 0 such that for any 0 < ε < 1/2 one has∫ 1

ε

|f(x+ h)− f(x− h)|
hα

dh

h
> c log(1/ε)
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at almost every x ∈ R. So, Theorem 1 holds due to certain cancellations which
occur in the integral defining Θε(f)(x).

Subgaussian estimates and Law’s of the Iterated Logarithm play a central
role in the boundary behavior of martingales and have also appeared in func-
tion theory. For instance, in the relation between the boundary behaviour of a
harmonic function in an upper half space and the size of its area function ([12],
[3], [2]), or in differentiability properties of functions defined in the euclidean
space ([1], [11]). Our result is inspired by the nice work of Y. Lyubarskii and
E. Malinnikova ([9]) who studied the oscillation of harmonic functions in the
Koremblum class. Related results can be found in [4] and [5].

The paper is organized as follows. Section 2 is devoted to the dyadic version
of Theorem 1. The averaging procedure, which is used to prove the results in
the continuous setting from their dyadic counterparts, is given in Section 3.
Section 4 contains the proof of the subgaussian estimate (1.2) as well as the
proof of Theorem 1. In Section 5, the sharpness of the results is discussed.
Finally, Section 6 provides a higher dimensional analogue of Theorem 1.

The letters c and c(α) will denote a constant and a constant depending on
the parameter α whose value may change from line to line.

It is a pleasure to thank Eugenia Malinnikova for several sharp remarks on
a first version of this paper.

2 Dyadic model

For 1 ≤ ρ ≤ 2, let D = D(ρ) be the collection of intervals of the form

[j2−kρ, (j + 1)2−kρ),

where j ∈ Z and k = 0, 1, 2, . . . . Let Dk = Dk(ρ) be the collection of intervals
of D of length 2−kρ and let Fk = Fk(ρ) be the σ-algebra generated by the
intervals of Dk. In the rest of this section, the number 1 ≤ ρ ≤ 2 is fixed. A
dyadic martingale is a sequence of functions {Sk} defined in [0, ρ] such that
for any k = 0, 1, 2, . . . the following two conditions hold: (a) Sk is adaptated
to Fk; (b) the conditional expectation of Sk+1 with respect to Fk is Sk. In
other words: Sk is constant in each interval of Dk and

1

|I|

∫
I

(Sk+1(x)− Sk(x)) dx = 0

for any I ∈ Dk, k = 0, 1, 2, . . . . Given a dyadic martingale {Sn}, its quadratic
variation 〈S〉n is defined as

〈S〉2n(x) =

n∑
k=1

(Sk(x)− Sk−1(x))2, n = 1, 2, . . . .
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It is well known that the quadratic variation governs the boundary behaviour
of the martingale. More concretely, the sets {x ∈ [0, ρ] : lim

n→∞
Sn(x) exists}

and {x ∈ [0, ρ] : 〈S〉∞(x) <∞} coincide except at most for a set of Lebesgue
measure 0. Moreover, there exits a universal constant c > 0 such that

lim sup
n→∞

|Sn(x)|√
〈S〉2n(x) log log〈S〉n(x)

≤ c,

at almost every point x where 〈S〉∞(x) =∞. See [2, p. 64]. We also mention
that an elementary orthogonality argument gives that∫ ρ

0

|Sn(x)|2 dx =

∫ ρ

0

〈S〉2n(x) dx, n = 1, 2, . . . .

Fix 0 < β < 1. Let {Sn} be a dyadic martingale satisfying ‖Sn‖∞ ≤ 2nβ ,
n = 0, 1, 2, . . . . For N = 1, 2, . . . , consider

ΓN (x) = ΓN ({Sn})(x) =

N∑
k=1

2−kβSk(x).

It is clear that ‖ΓN‖∞ ≤ N . Moreover, this uniform estimate is best possible.
Actually, if the initial martingale {Sn} satisfies S0 ≡ 0, ‖Sn‖∞ = 2nβ and
Sk(x) = 2kβ for some x ∈ R and any k ≤ N , then ‖ΓN ({Sn})‖∞ = N .
However, as next result shows, this uniform estimate can be substantially
improved at almost every point. Parts (b) and (c) are the discrete analogues
of Theorem 1.

Theorem 2. Fix 0 < β < 1 and C > 0. Let {Sn} be a dyadic margingale with
respect D(ρ) with S0 ≡ 0 and ‖Sn‖∞ ≤ C2nβ, n = 1, 2, . . . . For N = 1, 2, . . . ,
consider

ΓN (x) =

N∑
k=1

2−kβSk(x),

Γ∗N (x) = sup
k≤N
|Γk(x)|.

Then, there exists a constant c = c(β,C) > 0 such that

(a) For any λ > 0 and any N = 1, 2, . . . , one has∫ ρ

0

exp (λΓ∗N (x)) dx ≤ cecλ
2N .
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(b) For any N = 1, 2, . . . , one has∫ ρ

0

|Γ∗N (x)|2 dx ≤ cN.

(c) For almost every x ∈ [0, ρ] one has

lim sup
n→∞

|ΓN (x)|√
N log logN

≤ c.

Proof. We can assume C = 1. Although {ΓN} is not a dyadic martingale,
we will show that its size is comparable to the size of a dyadic martingale with
bounded differences. Actually, consider the dyadic martingale {Tn} defined
by T0 ≡ 0 and

Tn =

n∑
k=1

Sk − Sk−1
2kβ

, n = 1, 2, . . . .

The subgaussian estimate (see [2, p. 69]) gives that

|{x ∈ [0, ρ] : T ∗n(x) > t}| ≤ 2 exp(−t2/2‖〈T 〉2n‖∞) ,

for any t > 0. Here T ∗n(x) = sup{|Tk(x)| : 1 ≤ k ≤ n}. Hence,∫ ρ

0

exp (T ∗n(x)) dx =

∫ ∞
0

et|{x ∈ [0, ρ] : T ∗n(x) > t}| dt

≤ 2

∫ ∞
0

exp
(
t− t2/2‖〈T 〉2n‖∞

)
dt.

We deduce that∫ ρ

0

exp (T ∗n(x)) dx ≤ 2
√

2π‖〈T 〉n‖∞ exp
(
‖〈T 〉2n‖∞/2

)
, n = 1, 2, . . .

Since ‖Tn+1− Tn‖∞ ≤ 1 + 2−β for any n, one has ‖〈T 〉2n‖∞ ≤ n(1 + 2−β)2 for
n = 1, 2, . . . . We deduce that for any λ > 0, one has∫ ρ

0

exp (λT ∗n(x)) dx ≤ 2(1+2−β)
√

2πnλ exp

(
λ2

2
n(1 + 2−β)2

)
, n = 1, 2, . . .

On the other hand, summation by parts gives that

Tn = (1− 2−β)Γn−1 + 2−nβSn.
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Hence,

Γ∗n ≤ (1− 2−β)−1(T ∗n+1 + 1). (2.1)

We deduce that for any n = 1, 2, . . . , and any λ > 0, one has∫ ρ

0

exp (λΓ∗n(x)) dx

2
1 + 2−β

1− 2−β

√
2π(n+ 1)λ exp

(
λ(1− 2−β)−1

)
exp

(
1

2

(
1 + 2−β

1− 2−β

)2

λ2(n+ 1)

)
.

Hence, the trivial estimate λ(1− 2−β)−1 ≤ λ2/2 + (1− 2−β)−2/2 finishes the
proof of (a).

The estimate (2.1) gives∫ ρ

0

|Γ∗n(x)|2 dx ≤ 2(1− 2−β)−2
∫ ρ

0

|T ∗n+1(x)|2 dx+ 2ρ(1− 2−β)−2.

Since by Doob’s maximal inequality ([10, p.493])∫ ρ

0

|T ∗n+1(x)|2 dx ≤ c
∫ ρ

0

〈T 〉2n+1(x) dx ≤ c(n+ 1),

(b) follows. As mentioned before, we have ‖〈T 〉2n‖∞ ≤ n(1 + 2−β)2 for n =
1, 2, . . . . Hence, the Law of the Iterated Logarithm applied to {Tn} gives

lim sup
n→∞

|Tn(x)|√
n log log n

≤ c a.e. x.

We deduce

lim sup
n→∞

|Γn(x)|√
n log log n

≤ c(1− 2−β)−1 a.e. x,

which finishes the proof.

3 Averaging

An averaging procedure due to J. Garnett and P. Jones ([6]) will be used to go
from the discrete situation of Theorem 2 to the continuous one of Theorem 1.

Given x ∈ R, let Iρk (x) be the unique interval of D(ρ) of length 2−kρ which
contains x. Given a function f : R → R and an interval I = [a, b), we denote
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∆f(I) = f(b) − f(a) and consider the dyadic martingale with respect to the
filtration D(ρ) given by

S
(ρ)
k (f)(x) =

∆f(I
(ρ)
k (x))

2−kρ
, k = 0, 1, 2, . . . .

If f ∈ Λα(R), we have ‖S(ρ)
k (f)‖∞ ≤ (2k/ρ)β‖f‖α, k = 0, 1, . . . where β =

1− α. As in Section 2, consider

Γ(ρ)
n (f)(x) = Γ(ρ)

n ({S(ρ)
k })(x)

=

n∑
k=1

2−kβρβS
(ρ)
k (f)(x) =

n∑
k=1

∆f(I
(ρ)
k (x))

(2−kρ)α
. (3.1)

The main purpose of this section is to describe an averaging argument with
respect to both ρ ∈ [1, 2] and translates of the dyadic net D(ρ). We start with
a preliminary result.

Lemma 3. Let f : R→ R be a locally integrable function. For s ∈ R let fs be
the function defined by fs(x) = f(x− s), x ∈ R. Then for any x ∈ R and any
k = 1, 2, . . . , one has∫ ρ

0

∆fs(I
(ρ)
k (x+ s)) ds = 2k

∫ 2−kρ

0

(f(x+ t)− f(x− t)) dt.

Proof. Fix x ∈ R and k = 1, 2, . . . . Let I
(ρ)
k (x) = [a, b). Fix an integer j

with 0 ≤ j ≤ 2k − 1 and consider [2−kjρ, 2−k(j + 1)ρ) = J ∪ K where J =
J(x) = [2−kjρ, 2−kjρ+ b− x) and K = K(x) = [2−kjρ+ b− x, 2−k(j + 1)ρ).

Note that for s ∈ J one has I
(ρ)
k (x+ s) = [a+ 2−kjρ, b+ 2−kjρ) and∫

J

∆fs(I
(ρ)
k (x+ s)) ds =

∫
J

(f(b+ 2−kjρ− s)− f(a+ 2−kjρ− s)) ds

=

∫ b−x

0

(f(x+ t)− f(x+ t− 2−kρ)) dt.

For s ∈ K one has I
(ρ)
k (x+ s) = [a+ 2−k(j + 1)ρ, b+ 2−k(j + 1)ρ) and∫

K

∆fs(I
(ρ)
k (x+ s)) ds =

∫
K

(f(b+ 2−k(j + 1)ρ− s)

− f(a+ 2−k(j + 1)ρ− s)) ds

=

∫ 2−kρ

b−x
(f(x+ t)− f(x+ t− 2−kρ)) dt.



312 J. G. Llorente and A. Nicolau

Thus∫ 2−k(j+1)ρ

2−kjρ

∆fs(I
(ρ)
k (x+ s)) ds =

∫ 2−kρ

0

(f(x+ t)− f(x+ t− 2−kρ)) dt

=

∫ 2−kρ

0

(f(x+ t)− f(x− t)) dt.

Adding on j = 0, . . . , 2k − 1, one finishes the proof.

We now state the main result of this section.

Proposition 4. Fix 0 < α ≤ 1. Let f be a locally integrable function. For
s ∈ R, let fs be the function defined by fs(x) = f(x − s), x ∈ R. For n =

1, 2, . . . , consider Γ
(ρ)
n (fs) as defined in (3.1). Then for any x ∈ R, one has∫ 2

1

∫ ρ

0

Γ(ρ)
n (fs)(x+ s) ds

dρ

ρ2
=

1

1 + α

∫ 1

2−n

f(x+ t)− f(x− t)
t1+α

dt+An(f)(x),

where

|An(f)(x)| ≤ c(α)

∫ 1

2−n

|f(x+ t)− f(x− t)| dt

+ c(α)2n(1+α)
∫ 2−n

0

|f(x+ t)− f(x− t)| dt.

In particular if f ∈ Λα(R), one has sup
n,x
|An(f)(x)| < C(α)‖f‖α.

Proof. For k = 1, 2, . . . , consider

Bk =

∫ 2

1

∫ ρ

0

∆(fs)(I
(ρ)
k (x+ s))

(2−kρ)α
ds
dρ

ρ2
.

Lemma 3 gives that

Bk =

∫ 2

1

2k
∫ 2−kρ

0

f(x+ t)− f(x− t)
(2−kρ)α

dt
dρ

ρ2
.

The change of variables h = 2−kρ gives

Bk =

∫ 2−k+1

2−k

1

h2+α

∫ h

0

(f(x+ t)− f(x− t)) dt dh.
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Adding on k = 1, . . . , n, one deduces∫ 2

1

∫ ρ

0

Γ(ρ)
n (fs)(x+ s) ds

dρ

ρ2
=

∫ 1

2−n

1

h2+α

∫ h

0

(f(x+ t)− f(x− t)) dt dh.

Applying Fubini’s Theorem one deduces∫ 2

1

∫ ρ

0

Γ(ρ)
n (fs)(x+ s) ds

dρ

ρ2
=

1

1 + α

∫ 1

2−n

f(x+ t)− f(x− t)
t1+α

dt

− 1

1 + α

∫ 1

2−n

(f(x+ t)− f(x− t)) dt

+
2n(1+α) − 1

1 + α

∫ 2−n

0

(f(x+ t)− f(x− t)) dt,

which finishes the proof.

4 Continuous setting

In this section, the results of the dyadic model of Section 2 and the averaging
procedure of Section 3 will be used to prove Theorem 1.

Given f ∈ Λα(R) and 0 < ε < 1, pick an integer N such that 2−N−1 ≤ ε <
2−N . Observe that |Θε(f)(x) − Θ2−N (f)(x)| ≤ 2‖f‖α. Hence, the estimates
of Θ2−N (f)(x) can be easily transferred to Θε(f)(x). The main technical step
in proving the relevant subgaussian estimate of Θ2−N (f)(x) is stated in next
result.

Proposition 5. Let f ∈ Λα([−1, 2]) with ‖f‖α ≤ 1. For x ∈ [0, 1] and
N = 1, 2, . . . , consider

Θ2−N (f)(x) =

∫ 1

2−N

f(x+ h)− f(x− h)

hα
dh

h
,

Θ∗2−N (f)(x) = sup
k≤N
|Θ2−k(f)(x)|.

Then, there exists a constant c(α) > 0 such that for any λ > 0 and any
N = 1, 2, . . . , one has∫ 1

0

exp (λΘ∗2−N (f)(x)) dx ≤ c(α) exp
(
c(α)λ2N

)
.
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Proof. Consider the set A = {(ρ, s) : 1 ≤ ρ ≤ 2, 0 ≤ s ≤ ρ} and the
measure dµ defined as

µ(E) =

∫
E

⋂
A

ds
dρ

ρ2
, E ⊂ R2.

For any k = 1, 2, . . . , Proposition 4 gives that

Θ2−k(f)(x) = (1 + α)

∫
A

Γ
(ρ)
k (fs)(x+ s) dµ(ρ, s) +Ak(f)(x) .

Moreover, there exists a constant C = C(α) such that sup
k,x
|Ak(x)| ≤ C. Here

is where the normalization ‖f‖α ≤ 1 is used. Hence, if k and N are integers
with k ≤ N , we deduce

|Θ2−k(f)(x)| ≤ (1 + α)

∫
A

(Γ
(ρ)
N )∗(fs)(x+ s) dµ(ρ, s) + C.

Here (Γ
(ρ)
N )∗(fs)(x) = sup{|Γ(ρ)

k (fs)(x)| : k ≤ N}. Hence, for any N =
1, 2, . . . , one has

Θ∗2−N (f)(x) ≤ (1 + α)

∫
A

(Γ
(ρ)
N )∗(fs)(x+ s) dµ(ρ, s) + C.

Now, Jensen’s inequality and Fubini’s Theorem give that∫ 1

0

exp (λΘ∗2−N (f)(x)) dx

≤ exp (λC)

∫
A

∫ 1

0

exp
(
λ(α+ 1)(Γ

(ρ)
N )∗(fs)(x+ s)

)
dx dµ(ρ, s). (4.1)

Recall that Γ
(ρ)
N (fs) is defined via the formula (3.1) from the martingale

S
(ρ)
k (fs), which is given by S

(ρ)
k (fs)(x) = (fs(b)− fs(a))/(b− a), where

x ∈ I
(ρ)
k (x) = [a, b) ∈ D(ρ). The normalization ‖f‖α ≤ 1 gives that there

exists an absolute constant c1 > 0 such that |S(ρ)
0 (fs)| ≤ c0 for any (ρ, s) ∈ A.

Recall that if ‖f‖α ≤ 1, the martingale S
(ρ)
k satisfies ‖S(ρ)

k ‖∞ ≤ (2k/ρ)1−α.

Applying (a) of Theorem 2 to the martingale S
(ρ)
k (fs)− S(ρ)

0 (fs), there exists
a constant c1(α) > 0 such that∫ 1

0

exp
(
λ(1 + α)(Γ

(ρ)
N )∗(fs)(x+ s)

)
dx ≤ c1(α) exp

(
c1(α)(c0λ+ λ2N)

)
.
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The trivial estimate 2λ ≤ λ2 + 1 shows that there exists a constant
c2(α) > c1(α) such that∫ 1

0

exp
(
λ(1 + α)(Γ

(ρ)
N )∗(fs)(x+ s)

)
dx ≤ c2(α)ec2(α)λ

2N .

By (4.1), one deduces∫ 1

0

exp (λΘ∗2−N (f)(x)) dx ≤ c2(α) exp (Cλ) exp
(
c2(α)λ2N

)
.

Again the trivial estimate 2λ ≤ λ2 + 1 finishes the proof.

Now the subgaussian estimate follows easily.

Corollary 6. Let f ∈ Λα([−1, 2]) with ‖f‖α ≤ 1. Then there exists a constant
c(α) > 0 such that for any N > 0 and any t > 0 one has

|{x ∈ [0, 1] : Θ∗2−N (f)(x) >
√
Nt}| ≤ c(α) exp

(
−t2/c(α)

)
.

Proof. Let E = {x ∈ [0, 1] : Θ∗2−N (f)(x) >
√
Nt}. Previous Proposition 5

and Chebyshev inequality gives that for any λ > 0, one has

exp
(
λ
√
Nt
)
|E| ≤ c(α) exp

(
c(α)λ2N

)
, that is,

|E|≤c(α)exp(c(α)λ2N−λ
√
Nt) .

We take λ = t/2c(α)
√
N and deduce |E| ≤ c(α)exp(−t2/4c(α)) which finishes

the proof.

We can now prove Theorem 1.

Proof of Theorem 1. In the proof of part (a) we can assume that I is the
unit interval and ‖f‖α = 1. Given 0 < ε < 1/2, pick an integer N such that
2−N−1 ≤ ε < 2−N . Since |Θε(f)(x)−Θ2−N (f)(x)| ≤ 2, Corollary 6 gives that

|{x ∈ [0, 1] : |Θε(f)(x)| >
√
Nt}| ≤ c(α)e−t

2/c(α),

for any t > 0 such that t
√
N > 4. Now (a) follows easily from∫ 1

0

|Θε(f)(x)|2 dx = 2

∫ ∞
0

λ|{x ∈ [0, 1] : |Θε(f)(x)| > λ}| dλ.
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The Law of the Iterated Logarithm of part (b) follows from the subgaussian
estimate of Corollary 6 via a standard Borel-Cantelli argument. Consider the
set A of points x ∈ [0, 1] for which

Θ∗2−N (f)(x) > 2c
√
N log logN

for infinitely many N ≥ 0. Here c = c0(α) is a constant which will be chosen
later. Let Nm = 2m. If Θ∗2−N (f)(x) > 2c

√
N log logN and Nm−1 < N ≤ Nm,

then

Θ∗2−Nm (f)(x) ≥ Θ∗2−N (f)(x) > 2c
√
N log logN ≥ c

√
Nm log logNm.

Thus A ⊂ ∩k ∪m≥k ANm
where

ANm
= {x : Θ∗2−Nm f(x) > c

√
Nm log logNm}.

Now Corollary 4.2 with t = c
√

log logNm = c(log(m log 2))1/2 gives

|ANm | ≤ c(α)(m log 2)−c
2/c(α), and for c2 > c(α), the Borel-Cantelli lemma

gives |A| = 0. Thus, for almost every x ∈ [0, 1], one has

lim sup
N→∞

|Θ∗2−N (f)(x)|
√
N log logN

≤ 2c,

and the proof is completed.

5 Sharpness

In this section, the sharpness of our results is discussed.

5.1 Sharpness of Theorem 1

Both parts (a) and (b) in Theorem 1, as well as Proposition 5 and its Corol-
lary 6, are sharp up to the value of the constants c(α). Since Theorem 1
follows from Corollary 6, it is sufficient to construct a function f ∈ Λα(R) for
which ∫ 1

0

|Θε(f)(x)|2 dx ≥ c(log(1/ε)), 0 < ε < 1/2 (5.1)

and

lim sup
ε→0

Θε(f)(x)√
log(1/ε) log log log(1/ε)

> c, a.e. x ∈ [0, 1] (5.2)
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for a certain constant c = c(α) > 0. Fix 0 < α < 1. As it is usual in this
kind of questions, the function f will be given by a lacunary series. More
concretely, consider

f(x) =

∞∑
j=0

2−jα sin(2π2jx).

Then,

Θ2−N (f)(x) =

∫ 1

2−N

f(x+ h)− f(x− h)

hα
dh

h

= 2

∞∑
j=0

2−jα
(∫ 1

2−N

sin(2j2πh)

hα+1
dh

)
cos(2j2πx)

= 2

∞∑
j=0

cj,N cos(2j2πx),

where

cj,N =

∫ 2j

2j−N

sin(2πt)

tα+1
dt.

Integrating by parts, one shows that there exists a constant c1(α) > 0 such
that

|cj,N | ≤ c1(α)2−(j−N)(α+1), j = 1, 2, . . . , N = 1, 2, . . . .

Hence, ∑
j≥N

|cj,N | ≤ 2c1(α). (5.3)

On the other hand, using the estimate | sin t| ≤ t, we have

N∑
j=0

∣∣∣∣∣
∫ 2j−N

0

sin 2πt

tα+1
dt

∣∣∣∣∣ ≤ 2π

1− α

N∑
j=0

2(j−N)(1−α) ≤ c2(α). (5.4)

Using (5.3) and (5.4), one deduces that

Θ2−N (f)(x) =

N∑
j=0

bj cos(2j2πx) + EN (x), (5.5)

where |EN (x)| ≤ c3(α) = 2c1(α) + c2(α) for any x ∈ R and any N = 1, 2, . . .
and

bj = 2

∫ 2j

0

sin 2πt

tα+1
dt.
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Consider

A(α) = lim
j→∞

bj = 2

∫ ∞
0

sin 2πt

tα+1
dt

and observe that A(α) > 0. By orthogonality for N sufficiently large one has

‖Θ2−N (f)‖2L2[0,1] ≥
1

4
A(α)2N,

which gives (5.1).
A classical result by M. Weiss ([12]) gives that

lim sup
N→∞

∣∣∣∣∣ N∑j=0

bj cos(2j2πx)

∣∣∣∣∣
√
N log logN

= A(α).

Thus, from (5.5), one deduces

lim sup
N→∞

|Θ2−N (f)(x)|√
N log logN

= A(α),

which gives (5.2).

5.2 Cancellation

Theorem 1 says that the uniform estimate
‖Θε(f)‖∞ ≤ c(log 1/ε)‖f‖α, 0 < ε < 1/2, can be substantially improved at
almost every point. This is due to certain cancellations which occur in the
integral defining Θε(f)(x). Actually, there exist f ∈ Λα(R) and c = c(f) > 0
such that for any 0 < ε < 1/2 one has∫ 1

ε

|f(x+ h)− f(x− h)|
hα

dh

h
≥ c log(1/ε) (5.6)

for almost every x ∈ R. Let b > 1 be a large positive integer to be fixed later.
Consider

f(x) =

∞∑
j=0

b−jα cos(bjx), x ∈ R.

Fix k ≥ 0 and h such that b−k/2 ≤ h ≤ 2b−k. Observe that

2

hα

∑
j>k

b−jα ≤ c(α)b−α
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and
1

hα

∑
j<k

b−jα| cos(bjx+ bjh)− cos(bjx− bjh)| ≤ c(α)bα−1.

On the other hand,

cos(bkx+ bkh)− cos(bkx− bkh) = −2 sin(bkx) sin(bkh).

Hence, ∫ 2b−k

b−k/2

|f(x+ h)− f(x− h)|
hα

dh

h
≥ c| sin(bkx)| − c(α, b),

where c(α, b) = c(α)(b−α + bα−1) and c > 0. Thus, if b is taken sufficiently
large so that c(α, b) < c/4, one has∫ 1

ε

|f(x+ h)− f(x− h)|
hα

dh

h
> ct(ε, x)/4,

where t(ε, x) is the number of positive integers k such that b−k ≥ 2ε which sat-
isfy | sin(bkx)| ≥ 1/2. The uniform distribution of {bkx} (see Corollary 4.3 of
[8]) gives that there exists a constant c1 > 0 such that t(ε, x) ≥ c1 ln(2ε)−1/ ln b
almost every x ∈ R. So (5.6) follows.

6 Higher dimensions

Theorem 1 can be easily extended to higher dimensions. For 0 < α < 1, let
Λα(Rd) be the class of functions f : Rd → R for which there exists a constant
c = c(f) > 0 such that |f(x) − f(y)| ≤ c‖x − y‖α for any x, y ∈ Rd. The
infimum of the constants c > 0 verifying this estimate is denoted by ‖f‖α.
Lebesgue measure in Rd is denoted by dm. Let σ be a probability measure in
the unit sphere of Rd. For 0 < ε < 1/2, consider

Θε(f)(x) =

∫
{|ξ|=1}

Θε,ξ(f)(x) dσ(ξ), x ∈ Rd,

where

Θε,ξ(f)(x) =

∫ 1

ε

f(x+ ρξ)− f(x− ρξ)
ρα

dρ

ρ
, x ∈ Rd,

for ξ ∈ Rd, |ξ| = 1. The next result is the higher dimensional analogue of
Theorem 1
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Theorem 7. Let 0 < α < 1 and f ∈ Λα(Rd). Then, there exists a con-
stant c(α, d) > 0 such that

(a) For any cube Q ⊂ Rd with m(Q) = 1, one has∫
Q

|Θε(f)(x)|2dm(x) ≤ c(α, d)(log 1/ε)‖f‖2α.

(b) At almost every x ∈ Rd, one has

lim sup
ε→0

|Θε(f)(x)|√
log(1/ε) log log log(1/ε)

≤ c(α, d)‖f‖α.

Proof. We will take ε = 2−N and will write ΘN,ξ and ΘN instead of Θ2−N ,ε

and Θ2−N . Also, Θ∗N,ε, Θ∗N will denote the maximal functions defined as

Θ∗N,ξ(f)(x) = sup{|Θk,ξ(f)(x)| : k ≤ N},
Θ∗N (f)(x) = sup{|Θk(f)(x)| : k ≤ N}.

Then

Θ∗N (f)(x) ≤
∫
{|ξ|=1}

Θ∗N,ξ(f)(x) dσ(ξ), x ∈ Rd, N = 1, 2 . . . .

To prove (a) we can assume that Q is the unit cube and ‖f‖α ≤ 1. Jensen’s
inequality and Fubini’s Theorem give∫

Q

exp (λΘ∗N (f)(x)) dm(x) ≤
∫
{|ξ|=1}

∫
Q

exp
(
λΘ∗N,ξ(f)(x)

)
dm(x) dσ(ξ).

Fixed ξ ∈ Rd with |ξ| = 1, consider the lines in the direction of ξ intersectingQ.
Since the length of these intersections is uniformly bounded by a constant only
depending on d, we can apply Proposition 5 with the interval [0, 1] replaced by
some fixed interval depending on d. Hence for any ξ ∈ Rd, |ξ| = 1, we obtain∫

Q

exp
(
λΘ∗N,ξ(f)(x)

)
dm(x) ≤ c(α, d) exp

(
c(α)λ2N

)
,

for any λ > 0 and any N = 1, 2, . . . . We deduce∫
Q

exp (λΘ∗N (f)(x)) dm(x) ≤ c(α, d)ec(α)λ
2N .

Now arguing as in Corollary 6, one deduces the subgaussian estimate

m{x ∈ Q : |Θ∗N (f)(x)| >
√
Nt} ≤ c1(α, d) exp

(
−t2/c1(α, d)

)
.

Arguing as in the proof of Theorem 1, one finishes the proof.
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[3] S.-Y. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm in-
equalities concerning the Schrödinger operators, Comment. Math. Helv.,
60(2) (1985), 217–246.

[4] K. S. Eikrem, Hadamard gap series in growth spaces, Collect. Math.,
64(1) (2013), 1–15.

[5] K. S. Eikrem, E. Malinnikova and P. A. Mozolyako, Wavelet characteriza-
tion of growth spaces of harmonic functions, J. Anal. Math., 122 (2014),
87–111.

[6] J. B. Garnett and P. W. Jones, BMO from dyadic BMO, Pacific J. Math.,
99(2) (1982), 351–371.

[7] G. H. Hardy, Weierstrass’s non-differentiable function, Trans. Amer.
Math. Soc., 17(3) (1916), 301–325.

[8] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure
and Applied Mathematics. Wiley-Interscience John Wiley and Sons, New
York-London-Sydney, 1974.

[9] Y. Lyubarskii and E. Malinnikova, Radial oscillation of harmonic func-
tions in the Korenblum class, Bull. London Math. Soc., 44(1) (2012),
68–84.

[10] A.N. Shiryaev, Probability, Graduate Texts in Mathematics, 95, Springer-
Verlag, 1996.

[11] L. Slavin and A. Volberg, The s-function and the exponential integral, in
Topics in Harmonic Analysis and Ergodic Theory, Contemp. Math. 444,
Amer. Math. Soc., Providence, RI, (2007), 215–228.

[12] M. Weiss, The law of the iterated logarithm for lacunary trigonometric
series, Trans. Amer. Math. Soc., 91 (1959), 444–469.



322 J. G. Llorente and A. Nicolau


