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Abstract

In the present paper we prove the following theorem:
Let {ϕm,n(x, y)}∞m,n=1 be an arbitrary uniformly bounded double or-
thonormal system on I2 := [0, 1]2 such that for some increasing sequence
of positive integers {Nn}∞n=1 the Lebesgue functions LNn,Nn(x, y) of the
system are bounded below a. e. by ln1+εNn, where ε is a positive
constant. Then there exists a function g ∈ L(I2) such that the double
Fourier series of g with respect to the system {ϕm,n(x, y)}∞m,n=1 essen-
tially diverges in measure by squares on I2. The condition is critical in
the logarithmic scale in the class of all such systems

1 Introduction

The role of Lebesgue functions in divergence phenomena is crucial. The funda-
mental inequality of A. M. Olevskii on growth of Lebesgue functions on sets of
positive measure for general uniformly bounded ONS (orthonormal systems)
is well known [6]-[8].

Theorem 1. (A. M. Olevskii). Let {ϕn(x)}∞n=1 be an arbitrary ONS on I :=
[0, 1] that satisfy the condition:

|ϕn(x)| ≤ M, n = 1, 2, 3, . . . , for a.e. x ∈ I (1)

and for some positive constant M .
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Then for each n > 1 the following inequality holds

µ1

{
x ∈ I : max

1≤m≤n
Lm(x) ≥ C0 log2 n

}
≥ γ > 0, (2)

where C0 and γ are positive constants that depend only on M , µ1 denotes the
one-dimensional Lebesgue measure and

Lm(x) =

∫ 1

0

∣∣∣∣∣
m∑
k=1

ϕk(x)ϕk(ϑ)

∣∣∣∣∣ dϑ, m = 1, 2, . . . , x ∈ I,

denotes the m-th Lebesgue function of the system.

Now we continue with the following definitions

Definition 1. Let (X,Σ, ν) be σ-finite measurable space, E ∈ Σ and ν(E) > 0.
Let also a sequence of measurable real-valued functions {fn(x)}∞n=1 be defined
and a.e. finite on E. Then we say that the sequence {fn(x)}∞n=1 is essentially
divergent in measure on E if for every E1 ⊂ E, E1 ∈ Σ and ν(E1) > 0, the
sequence is divergent in measure (that is does not converge in measure to an
a.e. finite and measurable function ) on E1.

Definition 2. Let {ϕn(x)}∞n=1 be a complete orthonormal system on I := [0, 1]
such that ϕ1(x) = 1 on I ; Each function ϕn(x) is a bounded function on I;
There exists an integer N > 1 such that for every positive integer n there
exists a number k(n) such that ϕn(Nx) = ϕk(n)(x) and for any 1 ≤ n1 < n2
we have k(n1) < k(n2). Then we say that the system {ϕn(x)}∞n=1 is a system
of type T .

Note that the trigonometric system (contracted on I) is a system of type
T ( with arbitrary integer N ≥ 2). The Walsh system in Paley’s numeration
also is a system of type T with N = 2l where l is an arbitrary positive integer.

A. N. Kolmogorov ([10], p. 267) proved that all trigonometric Fourier
series converge in measure on [0, 2π]. S. V. Konyagin [5] and the author of
this paper [4] constructed a double trigonometric Fourier series that diverges
in measure by squares on [0, 2π]2.

Later we proved [3] the following

Theorem 2. (R. Getsadze) Let {ϕk(x)}∞k=1 be an arbitrary uniformly bounded
orthonormal system (ONS) on I. Then there exists an integrable function on
I2 whose Fourier series with respect to the product system {ϕk(x)ϕl(y)}∞k,l=1

diverges in measure by squares on I2.

The following theorem was proved in [1], p. 27,
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Theorem 3. (Dyachenko, M. I.; Kazaryan, K. S.; Sifuéntes, P.)
Let {ϕm(x)}∞m=1 be a uniformly bounded ONS on I that is a system of type T.
Suppose that there exists a function g0 ∈ L(I2) such that the Fourier series of
g0 with respect to the product system {ϕm(x)ϕn(y)}∞m,n=1 unboundedly diverges
in measure by squares on I2. Then there exists a function f0 ∈ L(I2) such that
the Fourier series of f0 with respect to the product system {ϕm(x)ϕn(y)}∞m,n=1

essentially diverges in measure by squares on I2.

Let µn denote the n-dimensional Lebesgue measure, where n = 1, 2, . . . .
Let

Lm,p(x, y) =

∫ 1

0

∫ 1

0

∣∣∣∣∣
m∑
k=1

p∑
l=1

ϕk,l(x, y)ϕk,l(ϑ, η)

∣∣∣∣∣ dϑdη, (3)

m, p = 1, 2, . . . , (x, y) ∈ I2,

denote the (m, p)-th Lebesgue function of the double ONS {ϕi,j(x, y)}∞i,j=1 on

I2 and let

Sm,p(f, x, y) :=

m∑
i=1

p∑
j=1

ai,j(f)ϕi,j(x, y) (4)

denote the (m, p)-th rectangular partial sum of the Fourier series of an inte-
grable on I2 function f with respect to the system.

In the present article we prove the following

Theorem 4. Let {ϕm,n(x, y)}∞m,n=1 be an arbitrary double ONS on I2 that
satisfies the condition:

|ϕm,n(x, y)| ≤ M, m,n = 1, 2, 3, . . . , for a.e. (x, y) ∈ I2 (5)

and for some positive constant M .
Suppose also that there exists an increasing sequence of positive integers

{Nn}∞n=1 such that for each n = 1, 2, . . . the following inequality holds

LNn,Nn(x, y) ≥ ln1+εNn, for a.e. (x, y) ∈ I2 (6)

and for some positive constant ε. Then there exists a function g ∈ L(I2)
such that the Fourier series of g with respect to the system {ϕm,n(x, y)}∞m,n=1

essentially diverges in measure by squares on I2.

It follows from the inequality of A. M. Olevskii (see (1), (2)) that all
product systems {ψm(x)ψn(y)}∞m,n=1, where {ψm(x)}∞m=1 is an arbitrary rear-
rangement of the trigonometric system ( contracted on I) or of the Walsh-Paley
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system, satisfy all conditions and, consequently, the conclusion of Theorem 4.
Indeed, for such systems {ψm(x)}∞m=1 ”the Lebesgue functions” are ”Lebesgue
constants,” that is for all positive integers m and a. e. x ∈ I we have∫ 1

0

∣∣∣∣∣
m∑
i=1

ψi(x)ψi(ϑ)

∣∣∣∣∣ dϑ =

∫ 1

0

∣∣∣∣∣
m∑
i=1

ψi(ϑ)

∣∣∣∣∣ dϑ.
On the other hand according to the inequality of A. M. Olevskii (see (1), (2))

max
1≤m≤n

∫ 1

0

∣∣∣∣∣
m∑
i=1

ψi(x)ψi(ϑ)

∣∣∣∣∣ dϑ ≥ C1 lnn

for any positive integer n on a set En, µ1En ≥ γ > 0, where γ and C1 are
positive constants.

Consequently, for each positive integer n there is a positive integer mn,
independent of x, 1 ≤ mn ≤ n, such that∫ 1

0

∣∣∣∣∣
mn∑
i=1

ψi(ϑ)

∣∣∣∣∣ dϑ ≥ C1 lnn.

Now it is clear that for all positive integers n and a.e. (x, y) ∈ I2

∫ 1

0

∫ 1

0

∣∣∣∣∣∣
mn∑
i=1

mn∑
j=1

ψi(x)ψi(ϑ)ψj(y)ψj(η)

∣∣∣∣∣∣ dϑdη ≥ C2
1 ln2 n ≥ C2

1 ln2mn.

Remark. The order of the lower bound in Theorem 4 is exact in the logarith-
mic scale for the class of all uniformly bounded double ONS {ϕm,n(x, y)}∞m,n=1.
Indeed, let {tm(x)}∞m=1 be the trigonometric system (contracted on I).

Let σ be a measurable mapping (see [9], p. 94) from I onto I2 such that
1.) If x 6= y then σ(x) 6= σ(y),
2.) if E ⊂ I is a measurable set, then σ(E) ⊂ I2 is also measurable and

µ1(E) = µ2σ(E).
Let Z+ be the set of all positive integers. Let also σ0 be a one-to-one

mapping from Z2
+ onto Z+ defined by

σ0(m, j) :=

{
(j − 1)2 +m, if1 ≤ m ≤ j
m2 + 1− j, if1 ≤ j ≤ m− 1.

It is not difficult to see that

{σ0(m, j) : m, j = 1, 2 . . . , n} = {1, 2, 3, . . . , n2}
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for any n ∈ Z+.

We introduce an ONS {Tn(x, y)}∞n=1 on I2 by

Tn(x, y) := tn(σ−1(x, y))

for every positive integer n.

Finally, we introduce a double ONS {Φm,n(x, y)}∞m,n=1 on I2 by

Φm,n(x, y) := Tσ0(m,n)(x, y)

for every ordered couple of positive integers m and n. It is obvious that for
every positive integer n the following two sets are equal

{T1(x, y), T2(x, y), . . . , Tn2(x, y)} = {Φm,p(x, y) : m, p = 1, 2, . . . , n}.

It is clear that the system {Φm,n(x, y)}∞m,n=1 has the following properties:

1.) The sequence of square Lebesgue functions of the system has logarith-
mic growth a.e.

and

2.) all Fourier series with respect to this system converge in measure by
squares on I2.

It is not difficult to see from the proofs of Theorems 1-3 in [2] that the
following statement is true (see (3)-(6))

Lemma 1. Let {ϕm,n(x, y)}∞m,n=1 be an arbitrary ONS on I2 that satisfies the
conditions (5) and (6). Let E ⊂ I2 be an arbitrary Lebesgue measurable set,
µ2E > 0.Then there exist an increasing sequence of positive integers {mp =
mp(E)}∞p=1 and a function h = h(E) ∈ L(I2), || h ||L(I2)≤ 1, such that for
each p = 1, 2, . . . we have

µ2{(x, y) ∈ E :| Smp,mp(h, x, y) |≥ (ln lnmp)
ε
5 } ≥ 1

36
µ2E. (7)

By a dyadic interval in I we shall mean an interval of the form

∆(k)
n := [k2−n, (k + 1)2−n), (k = 0, 1, . . . , 2n − 1, n = 0, 1, 2, . . . ). (8)

Let n and 0 ≤ i, j ≤ 2n − 1, be nonnegative integers. Set

∆(i,j)
n := ∆(i)

n ×∆(j)
n . (9)
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2 Proof of Theorem 4

Let Sn denote a finite one-dimensional sequence of all intervals ∆
(i,j)
k where

i, j,= 0, 1, 2, . . . , 2k − 1, k = 0, 1, 2, . . . , n. According to the following scheme

S0, S1, S2, . . . , Sn, . . . ,

we obtain a sequence of sets

E1, E2, . . . , Ek, . . . , (10)

that has the following properties:
i.) For each positive integer k there exists a triple of non negative integers

(n, i, j) where 0 ≤ i, j ≤ 2n − 1, such that

Ek = ∆(i,j)
n (11)

and
ii.) for each triple of non negative integers (n, i, j), where i, j = 0, 1, 2, . . . ,

2n − 1, there exists an increasing sequence of positive integers
{rp = rp(n, i, j)}∞p=1 such that

Erp = ∆(i,j)
n (12)

for every p = 1, 2, . . . .
Now for the sequence of sets in (10) we will construct by induction an

increasing sequence of positive integers {lj}∞j=1, sequence of positive numbers

{δj}∞j=2 and a sequence of functions {Fj(x, y)}∞j=1 from L∞(I2) such that for
all j = 1, 2, . . . we have

|| Fj ||L(I2)≤ 1, (13)

1

(ln ln lj+1)
ε
10
≤ 1

2

1

(ln ln lj)
ε
10
, (14)

lj+1 > lj > e2, (15)

µ2{(x, y) ∈ Ej :| Slj ,lj (Fj , x, y) |≥ 1

2
(ln ln lj)

ε
5 } ≥ 1

36
µ2Ej , (16)

l2jM
2 2

(ln ln lj+1)
ε
10
< 1, (17)
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µ2{(x, y) ∈ I2 :| Slj+1,lj+1(αj , x, y) |≥ δj+1} ≤
1

108
µ2Ej+1, (18)

where

αj(x.y) =

j∑
i=1

1

(ln ln li)
ε
10
Fi(x, y) (19)

and
1

6
(ln ln lj+1)

ε
10 > max(1, δj+1). (20)

The constructions of the integer l1, the function F1 and the number δ2 are
contained by the description of the general k + 1-st step of the induction.

Let the numbers {lj}kj=1, {δj}kj=2 and functions {Fj(x, y)}kj=1 be already
defined so that they satisfy (13)-(20).

According to the inequalities of Chebyshev and Bessel we obtain that for
all positive numbers δ and for all positive integers n we have (see (4), (19))

µ2{(x, y) ∈ I2 :| Sn,n(αk, x, y) |≥ δ} ≤
|| αk ||2L2(I2)

δ2

and, consequently, one can choose a positive number δk+1 such that for all
positive integers n we have

µ2{(x, y) ∈ I2 :| Sn,n(αk, x, y) |≥ δk+1} ≤
1

108
µ2Ek+1. (21)

Now we apply Lemma 1 for the set E := Ek+1 (see (10)) and obtain an

increasing sequence of integers {n(k+1)
p = n

(k+1)
p (Ek+1)}∞p=1 and a function

hk+1 := h(Ek+1) ∈ L(I2), || hk+1 ||L(I2)≤ 1, such that for each p = 1, 2, . . .
we have (see (7))

µ2{(x, y) ∈ Ek+1 :| S
n
(k+1)
p ,n

(k+1)
p

(hk+1, x, y) |≥ (ln lnn(k+1)
p )

ε
5 } ≥ 1

36
µ2Ek+1.

(22)
Now we choose the integer lk+1 as one of the numbers in the sequence

{n(k+1)
p }∞p=1 large enough so that the following inequalities are satisfied

1

(ln ln lk+1)
ε
10
≤ 1

2

1

(ln ln lk)
ε
10
, (23)

lk+1 > lk, (24)



98 R. Getsadze

µ2{(x, y) ∈ Ek+1 :| Slk+1,lk+1
(hk+1, x, y) |≥ (ln ln lk+1)

ε
5 } ≥ 1

36
µ2Ek+1, (25)

l2kM
2 2

(ln ln lk+1)
ε
10
< 1, (26)

and
1

6
(ln ln lk+1)

ε
10 > max(δk+1, 1). (27)

It is clear now (see (5), (25)) that we can find a function Fk+1 such that
Fk+1 ∈ L∞(I2), || Fk+1 ||L(I2)≤ 1 and

µ2{(x, y) ∈ Ek+1 :| Slk+1,lk+1
(Fk+1, x, y) |≥ 1

2
(ln ln lk+1)

ε
5 } ≥ 1

36
µ2Ek+1.

The construction of sequences {lj}∞j=1, {δj}∞j=1 {Fj(x, y)}∞j=1 is now com-
pleted (see (13)-(27)).

Taking account of (18), (20) we obtain for all k = 1, 2, . . .

µ2{(x, y) ∈ I2 :| Slk+1,lk+1
(αk, x, y) |≥ 1

6
(ln ln lk+1)

ε
10 } ≤ 1

108
µ2Ek+1. (28)

Introduce the following functions defined on I2 by

g(x, y) :=

∞∑
i=1

1

(ln ln li)
ε
10
Fi(x, y) (29)

and

βk(x, y) :=

∞∑
i=k+1

1

(ln ln li)
ε
10
Fi(x, y). (30)

It is obvious that then (see (23)) for any k = 1, 2, . . .∫ 1

0

∫ 1

0

| βk(x, y) | dxdy ≤
∞∑

i=k+1

1

(ln ln li)
ε
10
≤ 2

(ln ln lk+1)
ε
10

(31)

and ∫ 1

0

∫ 1

0

| g(x, y) | dxdy ≤
∞∑
i=1

1

(ln ln li)
ε
10
<∞. (32)

Now Let E0 ⊂ I2 be an arbitrary Lebesgue measurable set, µ2E0 > 0.
It is clear that there exist a triple of non negative integers (n0, i0, j0), where
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0 ≤ i0, j0,≤ 2n − 1, and an increasing sequence of positive integers
{kq}∞q=1 such that (see (8), (9), (12))

µ2{E0 ∩∆(i0,j0)
n0

} ≥ 215

216
µ2∆(i0,j0)

n0
(33)

and
Ekq = ∆(i0,j0)

n0
(34)

for all q = 1, 2, . . . .
From (19), (29), (30) we have for all k = 2, 3, . . .

g(x, y) = αk−1(x, y) +
1

(ln ln lk)
ε
10
Fk(x, y) + βk(x, y)

It is obvious that ( see (4)) for all q = 1, 2, 3, . . .

µ2{(x, y) ∈ Ekq :| Slkq ,lkq (
1

(ln ln lkq )
ε
10
Fkq , x, y) |≥ 1

2
(ln ln lkq )

ε
10 }

≤ µ2{(x, y) ∈ Ekq :| Slkq ,lkq (αkq−1, x, y) |≥ 1

6
(ln ln lkq )

ε
10 }

+µ2{(x, y) ∈ Ekq :| Slkq ,lkq (βkq , x, y) |≥ 1

6
(ln ln lkq )

ε
10 }

+µ2{(x, y) ∈ Ekq :| Slkq ,lkq (g, x, y) |≥ 1

6
(ln ln lkq )

ε
10 }.

Using (4), (17), (31) we obtain that for all (x, y) ∈ I2 and any q = 1, 2, . . .

| Slkq ,lkq (βkq , x, y) |≤ l2kqM
2 2

(ln ln lkq+1)
ε
10
< 1.

Thus (see (20)),

µ2{(x, y) ∈ Ekq :| Slkq ,lkq (βkq , x, y) |≥ 1

6
(ln ln lkq )

ε
10 } = 0.

According to (28) we have for any q = 1, 2, . . .

µ2{(x, y) ∈ Ekq :| Slkq ,lkq (αkq−1, x, y) |≥ 1

6
(ln ln lkq )

ε
10 } ≤ 1

108
µ2Ekq .

Consequently, (see (16)) we conclude that for any q = 1, 2, . . .

µ2{(x, y) ∈ Ekq :| Slkq ,lkq (g, x, y) |≥ 1

6
(ln ln lkq )

ε
10 } ≥ 1

54
µ2Ekq .
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That is (see (34)),

µ2{(x, y) ∈ ∆(i0,j0)
n0

:| Slkq ,lkq (g, x, y) |≥ 1

6
(ln ln lkq )

ε
10 } ≥ 1

54
µ2∆(i0,j0)

n0
,

and, consequently, (see (33)), for any q = 1, 2, . . .

µ2{(x, y) ∈ E0 ∩∆(i0,j0)
n0

:| Slkq ,lkq (g, x, y) |≥ 1

6
(ln ln lkq )

ε
10 } ≥ 3

216
µ2∆(i0,j0)

n0
.

Theorem 4 (see (32)) is proved.
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