RESEARCH

Gerald Beer, Department of Mathematics, California State University Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA. email: gbeer@cslanet.calstatela.edu

Michael J. Hoffman, Department of Mathematics, California State University Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA. email: mhoffma@calstatela.edu

TUBES ABOUT FUNCTIONS AND MULTIFUNCTIONS

Abstract

We provide a characterization of lower semicontinuity for multifunctions with values in a metric space $\langle Y, d \rangle$ which, in the special case of single-valued functions, says that a function is continuous if and only if for each $\varepsilon > 0$, the ε -tube about its graph is an open set. Applications are given, one of which provides a novel understanding of the Open Mapping Theorem from functional analysis. We also give a related but more complicated characterization of upper semicontinuity for multifunctions with closed values in a metrizable space.

1 Introduction

Let $\langle X, \tau \rangle$ be a topological space. If $\langle f_n \rangle$ is a sequence of real-valued functions on X and $f: X \to \mathbb{R}$, then the uniform convergence of $\langle f_n \rangle$ to f is described graphically as follows: given any ε -tube about the graph of f with $\varepsilon > 0$

Tube $(f, \varepsilon) = \{(x, y) : x \in X, y \in \mathbb{R} \text{ and } |y - f(x)| < \varepsilon\},\$

then the graph of f_n must lie in the tube for large enough n. (see Figure 1).

33

Mathematical Reviews subject classification: Primary: 54C05, 54C60; Secondary: 54E35, 46A30 Key words: tube, semicontinuous multifunction, semicontinuous function, continuous

Key words: tube, semicontinuous multifunction, semicontinuous function, continuous function, uniform convergence, open mapping, Open Mapping Theorem Received by the editors January 9, 2013

Communicated by: Emma D'Aniello

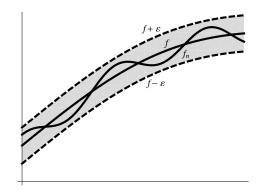


Figure 1: Uniform convergence and ε -tubes.

If the target space \mathbb{R} is replaced by a general metric space $\langle Y, d \rangle$, then the same description of uniform convergence applies replacing \mathbb{R} by Y and |y - f(x)| by d(y, f(x)) in the definition of Tube (f, ε) . It is tempting to call this metric tube a tubular neighborhood, and indeed this is literally the case if $f: X \to Y$ is continuous. In fact, f is continuous if and only each such metric tube about its graph is an open subset of the product space.

By a multifunction Γ from X to Y, denoted by $\Gamma : X \rightrightarrows Y$, we mean a single-valued function from X to the nonempty subsets of Y. One can construct metric tubes about the graph of a multifunction Γ from X to Y in an analogous way, and we show here that each metric tube is open if and only if the multifunction is lower semicontinuous in the usual sense. As a special case, continuity of a single-valued function $f : X \to Y$ is characterized by the condition that each ε -tube $\{(x, y) \in X \times Y : d(y, f(x)) < \varepsilon\}$ is open in $X \times Y$. We give several applications of our general characterization of lower semicontinuity, one of which leads to an alternative understanding of the Open Mapping Theorem from functional analysis.

We also prove a related characterization of upper semicontinuity for multifunctions with closed values in a metrizable space Y, which yields as a special case this unusual characterization of continuity for a single-valued function f: for each metric d on Y compatible with its topology, and for each $\varepsilon > 0$, the "anti-tube" $\{(x, y) \in X \times Y : d(y, f(x)) > \varepsilon\}$ is open in $X \times Y$.

2 Preliminaries

All topological spaces are assumed to contain at least two points. If $\langle Y, d \rangle$ is a metric space and $y \in Y$ and $\varepsilon > 0$, then the open ε -ball about y will be denoted by $B_d(y,\varepsilon)$. If A is a nonempty subset of Y, then as in [2], we call $\cup_{a \in A} B_d(a,\varepsilon) = \{y \in Y : \exists a \in A \text{ with } d(y,a) < \varepsilon\}$ the ε -enlargement of A.

Suppose $\langle X, \tau \rangle$ and $\langle Y, \sigma \rangle$ are topological spaces. A function from X to Y is continuous provided the inverse image of each open subset of Y is open in X. For a multifunction Γ from X to Y there are two natural ways to define the inverse image of a subset V of Y under Γ : either the set of all $x \in X$ such that $\Gamma(x)$ intersects V or the set of all $x \in X$ such that $\Gamma(x)$ is contained in V. These lead to two distinct continuity concepts for multifunctions. For $V \subseteq Y$ put

$$\Gamma^{-}(V) := \{ x \in X : \Gamma(x) \cap V \neq \emptyset \} \text{ and } \Gamma^{+}(V) := \{ x \in X : \Gamma(x) \subseteq V \}.$$

We call Γ lower semicontinuous (resp. upper semicontinuous) provided $\Gamma^{-}(V)$ (resp. $\Gamma^{+}(V)$) is open whenever V is open [1, 4, 7, 8]. If $f : X \to Y$ is single-valued and $\Gamma(x) = \{f(x)\}$, then these are the same, so continuity of f is equivalent both to lower semicontinuity and to upper semicontinuity of $x \rightrightarrows \{f(x)\}$.

Recall that a single-valued function $f : X \to (-\infty, \infty]$ is called *lower* semicontinuous provided for each $\alpha \in \mathbb{R}, \{x \in X : f(x) > \alpha\}$ is open in X. Dually, $f : X \to [-\infty, \infty)$ is called *upper semicontinuous* provided for each $\alpha \in \mathbb{R}, \{x \in X : f(x) < \alpha\}$ is open in X. We confine our subsequent remarks to the former class of functions, leaving it to the reader to construct/recall analogous assertions for the latter class.

For analysts, f is lower semicontinuous on X if and only if at each $x_0 \in X$, whenever $\langle x_\lambda \rangle_{\lambda \in \Lambda}$ is a net convergent to x_0 , we have $\lim \inf_{\lambda \in \Lambda} f(x_\lambda) \ge f(x_0)$. Lower semicontinuity is characterized by the following geometric condition: the *epigraph* of f defined by epi $(f) := \{(x, \alpha) : x \in X, \alpha \in \mathbb{R} \text{ and } \alpha \ge f(x)\}$ is a closed subset of $X \times \mathbb{R}$ [2, p. 14].

For real-valued functions, lower semicontinuity can be described in terms of the semicontinuity of two natural associated multifunctions. The proof of the following folk-theorem is left to the interested reader (cf. [8, p. 174]).

Proposition 2.1. Let $\langle X, \tau \rangle$ be a topological space and let $f : X \to \mathbb{R}$. The following conditions are equivalent:

- 1. f is lower semicontinuous;
- 2. $x \rightrightarrows (-\infty, f(x)]$ is lower semicontinuous;

3. $x \rightrightarrows [f(x), \infty)$ is upper semicontinuous.

If $\Gamma: X \rightrightarrows Y$ is a multifunction, its graph is defined by

Gr
$$(\Gamma) := \{(x, y) : x \in X, y \in Y \text{ and } y \in \Gamma(x)\}.$$

(Note that this is a subset of $X \times Y$ and is not the same as the graph of Γ as a function from X to the power set of Y.) Any subset of $X \times Y$ whose projection on X is surjective is the graph of a multifunction from X to Y.

Suppose now that $\langle Y, \sigma \rangle$ is metrizable with understood compatible metric d. With a slight abuse of notation, we use the same d for the distance from a point in Y to a subset of Y. If $\Gamma : X \rightrightarrows Y$ and $\varepsilon > 0$, we define the enlargement multifunction $\Gamma_{\varepsilon} : X \rightrightarrows Y$ by the formula $\Gamma_{\varepsilon}(x) = B_d(\Gamma(x), \varepsilon) = \{y \in Y : d(y, \Gamma(x)) < \varepsilon\}$. For the metric tube of radius ε about the graph of Γ , we will use the graph of Γ_{ε} .

$$Gr(\Gamma_{\varepsilon}) = \{(x, y) \in X \times Y : y \in \Gamma_{\varepsilon}(x)\} \\ = \{(x, y) \in X \times Y : d(y, \Gamma(x)) < \varepsilon\}$$

If $f: X \to Y$ is single valued and $\Gamma(x) = \{f(x)\}$, then this is the same as Tube (f, ε) from the introduction. As we shall see, while each enlargement multifunction has open values, it need need not have an open graph.

3 Results

We immediately characterize those multifunctions Γ for which each metric tube about Gr (Γ) is open.

Theorem 3.1. Let $\langle X, \tau \rangle$ be a topological space and let $\langle Y, d \rangle$ be a metric space. For a multifunction Γ from X to Y, the following conditions are equivalent.

- 1. Γ is lower semicontinuous;
- 2. $\forall \varepsilon > 0$, the enlargement multifunction Γ_{ε} has open graph;
- 3. $\forall \varepsilon > 0$, the enlargement multifunction Γ_{ε} is lower semicontinuous;
- 4. $(x, y) \mapsto d(y, \Gamma(x))$ is an upper semicontinuous function on $X \times Y$.

PROOF. (1) \implies (2): Suppose Γ is lower semicontinuous and $\varepsilon > 0$. Fix $(x_0, y_0) \in \overline{\operatorname{Gr}(\Gamma_{\varepsilon})}$. Then there is a $y \in \Gamma(x_0)$ such that $\delta = d(y, y_0) < \varepsilon$. Let $\lambda = (\varepsilon - \delta)/2$. By lower semicontinuity of Γ , there is an open neighborhood

U of x_0 such that $x \in U \implies \Gamma(x) \cap B_d(y, \lambda) \neq \emptyset$. We claim that the neighborhood $U \times B_d(y_0, \lambda)$ of (x_0, y_0) is contained in Gr (Γ_{ε}) .

To see this, fix (x_1, y_1) in $U \times B_d(y_0, \lambda)$. By the choice of U, there is a y_2 in $\Gamma(x_1)$ with $d(y_2, y) < \lambda$. We compute

$$d(y_1, y_2) \le d(y_1, y_0) + d(y_0, y) + d(y, y_2) < \lambda + \delta + \lambda \le \varepsilon.$$

This shows that $d(y_1, \Gamma(x_1)) < \varepsilon$ as required.

 $(2) \implies (3)$: This follows readily from the observation that if $V \subseteq Y$, then

$$\Gamma_{\varepsilon}^{-}(V) = \{ x \in X : \Gamma_{\varepsilon}(x) \cap V \neq \emptyset \} = \pi_{x} \left(\operatorname{Gr}\left(\Gamma_{\varepsilon} \right) \cap \pi_{y}^{-1}(V) \right)$$

where π_x and π_y are the projections of $X \times Y$ onto X and Y respectively. If V is open, then $\pi_y^{-1}(V)$ is open since π_y is continuous. Since $\operatorname{Gr}(\Gamma_{\varepsilon})$ is open by hypothesis and π_x is an open mapping, $\pi_x \left(\operatorname{Gr}(\Gamma_{\varepsilon}) \cap \pi_y^{-1}(V) \right)$ is open. Thus $\Gamma_{\varepsilon}^{-}(V)$ is open and Γ_{ε} is lower semicontinuous as claimed.

 $\underbrace{(3) \implies (1):}_{\varepsilon \to \infty} \text{ Fix } x_0 \in X, y_0 \in \Gamma(x_0) \text{ and } \varepsilon > 0. \text{ It suffices to show that there is an open neighborhood } U \text{ of } x_0 \text{ such that } \Gamma(x) \cap B_d(y_0, \varepsilon) \neq \emptyset \text{ whenever } x \in U. \text{ Since } y_0 \in \Gamma_{\varepsilon/2}(x_0), \text{ the lower semicontinuity of the } (\varepsilon/2)\text{-enlargement multifunction gives an open neighborhood } U \text{ of } x_0 \text{ such that } x \in U \implies \Gamma_{\varepsilon/2}(x) \cap B_d(y_0, \varepsilon/2) \neq \emptyset. \text{ Thus, for each } x \text{ in } U \text{ there is a } y \text{ in } \Gamma(x) \text{ such that } d(y, B_d(y_0, \varepsilon/2)) < \varepsilon/2, \text{ and so } d(y, y_0) < \varepsilon.$

 $\begin{array}{ll} (2) \iff (4): & \text{Finally, conditions (2) and (4) are equivalent since a function} \\ \hline & tion \ g : \ X \times Y \ \to \ [0,\infty) \ \text{is upper semicontinuous if and only if} \ \{(x,y) : \\ g(x,y) < \varepsilon\} \ \text{is open in} \ X \times Y \ \text{for each positive} \ \varepsilon. \ \text{Apply this with} \ g(x,y) = \\ d(y,\Gamma(x)). \end{array}$

As noted above this yields a pleasant continuity result for single-valued functions.

Corollary 3.2. Suppose $\langle X, \tau \rangle$ is a topological space and $\langle Y, d \rangle$ is a metric space. Then a single-valued function $f : X \to Y$ is continuous if and only if Tube (f, ε) is open in $X \times Y$ for every positive ε .

Condition (4) of Theorem 3.1 can be considerably weakened and still yield lower semicontinuity of $\Gamma: \forall y \in Y, x \mapsto d(y, \Gamma(x))$ is upper semicontinuous on X (see, e.g. [6, p. 352 and p. 360]).

While an upper semicontinuous multifunction with closed values from a topological space X to a regular topological space Y has closed graph (see [7, p. 78] or [8, p. 175]), a lower semicontinuous multifunction with open values need not have open graph, even if the target space is metrizable. Thus, the implication $(3) \Rightarrow (2)$ in Theorem 3.1 is not trivial.

Example 3.3. Let $X = Y = \mathbb{R}$, and define $\Gamma : X \rightrightarrows Y$ by

$$\Gamma(x) = \begin{cases} \mathbb{R} & \text{if } x = 0\\ \mathbb{R} \setminus \{0\} & \text{otherwise} \end{cases}$$

Evidently, Γ is lower semicontinuous with open values, yet its graph,

$$\mathbb{R}^2 \setminus (\{x : x \neq 0\} \times \{0\}),\$$

contains no neighborhood of (0, 0).

As is easy to see, in complete generality, a multifunction $x \Rightarrow \Gamma(x)$ is lower semicontinuous if and only if $x \Rightarrow \operatorname{cl}(\Gamma(x))$ is lower semicontinuous [7, p. 85]. One can wonder if conditions (1) and (3) of Theorem 3.1 remain equivalent if we redefine $\Gamma_{\varepsilon}(x)$ to be $\{y \in Y : d(y, \Gamma(x)) \leq \varepsilon\}$. This fails, even for single-valued functions.

Example 3.4. Let X = [0, 1] and $Y = [0, 1] \cup [2, \infty)$, with the Euclidean metric. The identity function f(x) = x is continuous, but $x \Rightarrow \{y : d(y, f(x)) \le 1\}$ fails to be lower semicontinuous because $d(2, f(1)) \le 1$. Of course, the graph of the auxiliary multifunction fails to be open as well.

Let $\langle X, \tau \rangle$ and $\langle Y, \sigma \rangle$ be topological spaces, and let $f : X \to Y$ be surjective. It is well-known that f is an open mapping if and only if the preimage multifunction $y \Rightarrow f^{-1}(\{y\})$ is a lower semicontinuous multifunction [7, p. 82]. When X is metrizable, Theorem 3.1 allows us to express openness of f in terms of preimages of singleton subsets of Y as follows.

Theorem 3.5. Let $\langle X, \rho \rangle$ be a metric space and $\langle Y, \sigma \rangle$ be a topological space. Suppose $f: X \to Y$ maps X onto Y. Then f is an open mapping if and only if $\{(x, y) \in X \times Y : \rho(x, f^{-1}(\{y\})) < \varepsilon\}$ is an open subset of $X \times Y$ for each positive ε .

As important as any result regarding the openness of single-valued mappings is the Open Mapping Theorem from functional analysis [5, 10]: Let X and Y be Banach spaces (real or complex) and let $T: X \to Y$ be a continuous linear surjection. Then T is an open mapping. From Theorem 3.5, we get the following interpretation of this classical result.

Corollary 3.6. Let X and Y be Banach spaces and suppose $T : X \to Y$ is a continuous linear surjection. For each $y \in Y$, select $x_y \in X$ with $T(x_y) = y$. Then $\{(x, y) \in X \times Y : d(x, x_y + \ker(T)) < \varepsilon\}$ is an open subset of $X \times Y$ for each positive ε . By the Bartle-Graves Theorem [1, Theorem 4], which itself is a corollary of the comprehensive selection theorem of E. Michael (see, e.g., [2, 9, 7]), the selection $y \mapsto x_y$ as described above can be chosen to be continuous.

When T is a nontrivial linear functional defined on a general normed linear space, then T is automatically surjective and open [10, p. 38]. Assuming T is in addition continuous, each level set of T is a closed hyperplane in X. By the well-known formula of Ascoli [2, p. 5], for each $x \in X$ and each scalar α , we have $d(x, x_{\alpha} + \ker(T)) = |T(x) - \alpha| / ||T||$. Thus, we can treat this special case by:

Corollary 3.7. Let X be a normed linear space over a field of scalars \mathbb{F} (either \mathbb{R} or \mathbb{C}), and let T be a nontrivial continuous linear functional on X. Then $\{(x, \alpha) \in X \times \mathbb{F} : |T(x) - \alpha| < \varepsilon\}$ is an open subset of $X \times \mathbb{F}$ for each positive ε .

PROOF. Let α be a fixed scalar. Then $|T(x) - \alpha| < \varepsilon$ if and only if $d(x, x_{\alpha} + \ker(T)) < \varepsilon / ||T||$.

We next use Theorem 3.1 to prove a well-known optimization result often attributed to C. Berge (see [4, p. 115] or [2, p. 202]).

Proposition 3.8. Let $\langle X, \tau \rangle$ be a topological space and $\langle Y, d \rangle$ be a metric space. Suppose $f : X \times Y \to \mathbb{R}$ is lower semicontinuous and $\Gamma : X \rightrightarrows Y$ is lower semicontinuous. Define $M : X \to (-\infty, \infty]$ by $M(x) = \sup\{f(x, y) : y \in \Gamma(x)\}$. Then M is lower semicontinuous.

PROOF. Fix $x_0 \in X$ and let $\alpha < M(x_0)$ be arbitrary. Choose $y_0 \in \Gamma(x_0)$ with $f(x_0, y_0) > \alpha$. Then, by lower semicontinuity of f at (x_0, y_0) , choose an open neighborhood U of x_0 and $\varepsilon > 0$ such that $(x, y) \in U \times B_d(y_0, \varepsilon) \Longrightarrow f(x, y) > \alpha$. By condition (2) of Theorem 3.1, we can find a neighborhood $U_1 \subseteq U$ of x_0 and $\varepsilon_1 \in (0, \varepsilon)$ such that

$$U_1 \times B_d(y_0, \varepsilon_1) \subseteq \{(x, y) : d(y, \Gamma(x)) < \varepsilon\}.$$

If $x \in U_1$, then $(x, y_0) \in U_1 \times B_d(y_0, \varepsilon_1)$ so that there is a y in $\Gamma(x)$ with $d(y, y_0) < \varepsilon$, ensuring that $(x, y) \in U \times B_d(y_0, \varepsilon)$ as well. Then $M(x) \ge f(x, y) > \alpha$ as required. \Box

As stated in Proposition 2.1, a real-valued function f is lower semicontinuous if and only if $\Gamma_f : X \rightrightarrows \mathbb{R}$ defined by $\Gamma_f(x) = (-\infty, f(x)]$ is a lower semicontinuous multifunction. For arbitrary f, the metric tube of radius ε about $\operatorname{Gr}(\Gamma_f)$ is easily seen to be $\{(x, \alpha) \in X \times \mathbb{R} : \alpha < f(x) + \varepsilon\}$ which is the complement of epi $(f + \varepsilon)$ in $X \times \mathbb{R}$. Thus, if we knew that just one metric tube about the graph of Γ_f were open, this would already ensure lower semicontinuity of f.

The uninitiated might guess that upper semicontinuity of a multifunction with values in a metric space $\langle Y, d \rangle$ is characterized by the lower semicontinuity of $(x, y) \mapsto d(y, \Gamma(x))$ on $X \times Y$. However, continuity of $(x, y) \mapsto d(y, \Gamma(x))$ is not enough to ensure upper semicontinuity of Γ , even if Γ has closed graph.

Example 3.9. Let $X = \mathbb{R}$ equipped with the usual topology and equip $Y = \mathbb{R}^2$ with the Euclidean metric d. Define $\Gamma : X \rightrightarrows Y$ by $\Gamma(x) = \{(x,\beta) : \beta \in \mathbb{R}\}$. Then $d((\alpha,\beta),\Gamma(x)) = |x - \alpha|$ and so $(x,(\alpha,\beta)) \mapsto d((\alpha,\beta),\Gamma(x))$ is continuous. However Γ fails to be upper semicontinuous because with $V = \{(\alpha,\beta) : \alpha < e^{\beta}\}$, we have $\Gamma^+(V) = (-\infty, 0]$.

Upper semicontinuity for multifunctions is a much stronger notion than lower semicontinuity. What is required to obtain upper semicontinuity for a multifunction with closed values is lower semicontinuity of $(x, y) \mapsto d(y, \Gamma(x))$ on $X \times Y$ with respect to each compatible metric d for Y. Our next result is anticipated by a characterization of the Vietoris topology by Beer, Lechicki, Levi and Naimpally [3]; indeed our main construction is based on techniques found in [3].

First, we introduce a well-studied weaker upper semicontinuity condition that coincides with upper semicontinuity as we have defined it for multifunctions with compact values (see, e.g., [2, 7]).

Definition 3.10. Let Γ be a multifunction from a topological space $\langle X, \tau \rangle$ to a metric space $\langle Y, d \rangle$. We call Γ *d*-Hausdorff upper semicontinuous if for each $x_0 \in X$ and each $\varepsilon > 0$, there exists a neighborhood U of x_0 such that for each $x \in U$ we have $\Gamma(x) \subseteq B_d(\Gamma(x_0), \varepsilon)$.

Theorem 3.11. Let $\langle X, \tau \rangle$ be a topological space and let $\langle Y, \sigma \rangle$ be a metrizable topological space. Suppose $\Gamma : X \rightrightarrows Y$ is a multifunction such that $\Gamma(x)$ is a closed subset of Y for every x in X. Then the following conditions are equivalent:

- 1. Γ is upper semicontinuous;
- Γ is d-Hausdorff upper semicontinuous for all metrics d which are compatible with σ;
- 3. $(x, y) \mapsto d(y, \Gamma(x))$ is a lower semicontinuous function on $X \times Y$ for each metric d compatible with σ ;
- 4. for each metric d compatible with σ and each $\varepsilon > 0$, the set $\{(x, y) : d(y, \Gamma(x)) > \varepsilon\}$ is open in $X \times Y$.

PROOF. $(1) \implies (2)$: This is trivial because an enlargement of a set is an open neighborhood of the set.

(2) \implies (3): Let *d* be a compatible metric and suppose $\alpha < d(y_0, \Gamma(x_0))$. If $\overline{d(y_0, \Gamma(x_0))} = 0$, then $\{(x, y) : d(y, \Gamma(x)) > \alpha\} = X \times Y$. If not, then $d(y_0, \Gamma(x_0)) > 0$ and we may assume that $\alpha > 0$ as well. Put $\varepsilon = (d(y_0, \Gamma(x_0)) - \alpha)/3$. Since $B_d(\Gamma(x_0), \varepsilon)$ is an open neighborhood of $\Gamma(x_0)$, by *d*-Hausdorff upper semicontinuity of Γ we can find an open neighborhood *U* of x_0 such that $x \in U \implies \Gamma(x) \subseteq B_d(\Gamma(x_0), \varepsilon)$. A routine calculation now shows that whenever $x \in U$ and $y \in B_d(y_0, \varepsilon)$, we have $d(y, \Gamma(x)) > \alpha$.

 $(3) \iff (4)$: As with upper semicontinuity, lower semicontinuity of the map $(x, y) \mapsto d(y, \Gamma(x))$ means that $\{(x, y) : d(y, \Gamma(x)) > \varepsilon\}$ is open for each positive ε . Thus, statements (3) and (4) are equivalent.

<u>(3)</u> \implies (1): We want to show that $\Gamma^{-}(V)$ is open whenever V is open in \overline{Y} . This is trivial if V = Y or if $\Gamma^{-}(V) = \emptyset$. Otherwise, let $x_0 \in \Gamma^{-}(V)$ and $y_0 \in Y \setminus V$ be arbitrary. Let d be a compatible metric for the topology of Y such that $d(y_1, y_2) \leq 1$ whenever $\{y_1, y_2\} \subseteq Y$, and let h be a Urysohn function for $\Gamma(x_0)$ and $Y \setminus V$, say h takes $\Gamma(x_0)$ to one and h takes $Y \setminus V$ to zero.

Define a second compatible metric ρ on Y by the formula

$$\rho(y_1, y_2) := d(y_1, y_2) + |h(y_1) - h(y_2)|,$$

and compute

$$\rho(y_0, \Gamma(x_0)) = \inf_{y \in \Gamma(x_0)} \left(d(y, y_0) + |h(y) - h(y_0)| \right) = d(y_0, \Gamma(x_0)) + 1 > 1.$$

By lower semicontinuity of $(x, y) \mapsto \rho(y, \Gamma(x))$ at (x_0, y_0) - in fact, by the lower semicontinuity of $x \mapsto \rho(y_0, \Gamma(x))$ at x_0 alone - we can find a neighborhood U of x_0 such that $x \in U \implies \rho(y_0, \Gamma(x)) > 1$. But then we have $\rho(y, y_0) > 1$ for each y in $\Gamma(x)$ and so $y \in V$ whenever $y \in \Gamma(x)$. We have shown that $x_0 \in U \subseteq \Gamma^-(V)$ as required. \Box

Note that condition (4) of our last theorem can be recast as a statement about "closed" metric tubes: for each metric *d* compatible with σ and each $\varepsilon > 0$, the tube $\{(x, y) : d(y, \Gamma(x)) \le \varepsilon\}$ is closed in $X \times Y$.

We note that openness of $\{(x, y) : d(y, \Gamma(x)) > \varepsilon\}$ for each positive ε and some compatible metric d implies $\{(x, y) : d(y, \Gamma(x)) > 0\}$ is open, so that if Γ in addition has closed values, then Γ has closed graph.

Condition (3) of Theorem 3.11 does not imply condition (1) without the assumption that Γ has closed values. Further, condition (2) does not imply condition (1) without this assumption. Consider again the multifunction Γ :

 $\mathbb{R} \rightrightarrows \mathbb{R}$ given in Example 3.3, but now interchanging the defining formulas to obtain $x \rightrightarrows \mathbb{R} \setminus \{0\}$ if x = 0, and $x \rightrightarrows \mathbb{R}$ otherwise. Let us denote this new multifunction by Δ . For each metric d compatible with the usual topology of the real line and for each $(x, y) \in \mathbb{R}^2$, we have $d(y, \Delta(x)) = 0$. Further, for each $\varepsilon > 0$ and each $x \in \mathbb{R}$, we have $B_d(\Delta(x), \varepsilon) = \mathbb{R}$ so that Δ is d-Hausdorff upper semicontinuous. But $\Gamma^+(\mathbb{R} \setminus \{0\})$ is not open.

Condition (4) of of Theorem 3.11, leads readily to alternative necessary and sufficient conditions for continuity of a single-valued function assuming values in a metrizable space. Instead of ε -tubes, we reverse the inequality and consider "anti-tubes"

$$\{(x,y): d(y,f(x)) > \varepsilon\}.$$

Corollary 3.12. Let $\langle X, \tau \rangle$ be a topological space and let $\langle Y, \sigma \rangle$ be a metrizable topological space. Then f is continuous if and only if for each compatible metric d for σ and each $\varepsilon > 0$, the set $\{(x, y) : d(y, f(x)) > \varepsilon\}$ is open in $X \times Y$.

We close with an example showing that openness of each anti-tube for just one compatible metric is not enough to guarantee continuity for a function f.

Example 3.13. Define $f : \mathbb{R} \to \mathbb{R}$ by f(0) = 0 and f(x) = 1/|x| otherwise. Equipping the target space with the usual metric and fixing $\varepsilon > 0$, we see that $\{(x, y) : d(y, f(x)) > \varepsilon\}$ has three connected components (See Figure 2 which shows the graph of the function and the anti-tube for $\varepsilon = 3/4$).

- 1. $\{(x,y) : x < 0 \text{ and } y > (1/|x|) + \varepsilon\};$
- 2. $\{(x,y) : x > 0 \text{ and } y > (1/|x|) + \varepsilon\};$
- 3. $\{(0,y) : |y| > \varepsilon\} \cup \{(x,y) : x \neq 0 \text{ and } y < (1/|x|) \varepsilon\}.$

Evidently the first two components are open. If we define $g: \mathbb{R} \to (-\infty, \infty]$ by

$$g(x) = \begin{cases} (1/|x|) - \varepsilon, & \text{if } x \neq 0\\ \infty, & \text{if } x = 0 \end{cases},$$

then g is lower semicontinuous and so $\operatorname{epi}(g)$ is closed. Evidently, the third component can be expressed as $\mathbb{R}^2 \setminus (\operatorname{epi}(g) \cup \{(0, y) : -\varepsilon \leq y \leq \varepsilon\})$ which is open as well. This shows that $\{(x, y) : d(y, f(x)) > \varepsilon\}$ is open for each positive ε while f fails to be continuous.

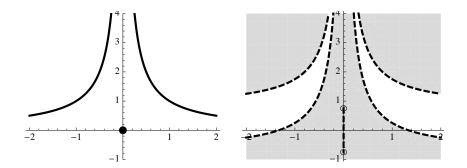


Figure 2: A discontinuous function with closed graph and open anti-tube.

References

- R. Bartle and L. Graves, *Mappings between function spaces*, Trans. Amer. Math. Soc., **72** (1952), 400–413.
- [2] G. Beer, Topologies on closed and closed convex sets, Kluwer Acad. Publ., Dordrecht, 1993.
- [3] G. Beer, A. Lechicki, S. Levi, and S. Naimpally, Distance functionals and suprema of hyperspace topologies, Ann. Mat. Pura Appl., 162 (1992), 367–381.
- [4] C. Berge, *Topological spaces*, Macmillan, New York, 1963.
- [5] J. Conway, A course in functional analysis, Springer-Verlag, New York, 1985.
- [6] S. Francaviglia, A. Lechicki, and S. Levi, Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl., 112 (1985), 347–370.
- [7] E. Klein and A. Thompson, *Theory of correspondences*, Wiley, New York, 1984.
- [8] K. Kuratowski, Topology, 1, Academic Press, New York, 1966.
- [9] E. Michael, Continuous selections, Ann. of Math., 63 (1956), 361–382.
- [10] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.

G. BEER AND M. J. HOFFMAN