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THE DESCRIPTIVE COMPLEXITY OF
SERIES REARRANGEMENTS

Abstract

We consider the descriptive complexity of some subsets of the in-
finite permutation group S∞ which arise naturally from the classical
series rearrangement theorems of Riemann, Levy, and Steinitz. In par-
ticular, given some fixed conditionally convergent series of vectors in
Euclidean space Rd, we study the set of permutations which make the
series diverge, as well as the set of permutations which make the series
diverge properly. We show that both collections are Σ0

3-complete in S∞,
regardless of the particular choice of series.

1 Introduction

The goal of this paper is to establish the exact descriptive complexity of some
interesting subsets of the Polish group S∞ of permutations of ω, endowed with
the topology of pointwise convergence on ω, considered as a discrete set. Our
methods will involve a blending of the techniques of classical real analysis and
geometry, with the descriptive set theoretic notion of continuous reducibility
between Polish spaces.

First we recall Bernhard Riemann’s celebrated rearrangement theorem of
1876 [6], now a staple of every graduate course in real analysis, which states
the following remarkable fact (presented here as in [8]): given a conditionally

convergent series of real numbers

∞∑
k=0

ak, and two extended real numbers α, β ∈

[−∞,∞] with α ≤ β, it is possible to find an infinite permutation π ∈ S∞
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for which lim inf
n→∞

n∑
k=0

aπ(k) = α and lim sup
n→∞

n∑
k=0

aπ(k) = β. In other words,

by varying one’s choice of α and β, it is possible to rearrange the terms of
a conditionally convergent infinite series so that the partial sums converge to
any particular real number, or diverge to plus or minus infinity, or even diverge
properly.

Almost as famous as Riemann’s original theorem is the following d-dimensi-
onal analogue:

Levy-Steinitz Theorem. Let

∞∑
k=0

vk be a conditionally convergent series of

vectors in Rd. Then there exists a non-trivial affine subspace A(vk) ⊆ Rd (that
is, a space of the form A(vk) = w+M where w ∈ Rd and M ⊆ Rd is a linear
subspace with dimM ≥ 1) such that whenever a ∈ A(vk), there is π ∈ S∞ with
∞∑
k=0

vπ(k) = a.

The statement above implies that the set of all possible sums of rearrange-
ments of a conditionally convergent series of d-dimensional vectors is at least
as rich as in the 1-dimensional case. An incomplete proof was first given by
Levy in 1905 [5], and the complete proof was furnished by Steinitz in 1913 [9].
Steinitz’s proof relied on a particular geometric constant for Euclidean spaces
which is now referred to as the Steinitz constant. The proof is nontrivial, and
an excellent concise version of it may be found in the paper [7] by P. Rosenthal.
Our proofs will also rely heavily on the existence of a Steinitz constant.

The Levy-Steinitz theorem gives rise to a natural partition of S∞, into the

set D of all permutations π for which

∞∑
k=0

vπ(k) diverges (either properly or to

∞, where ∞ denotes the point at infinity in the one-point compactification

of Rd), and the complement set S∞\D of permutations π for which

∞∑
k=0

vπ(k)

converges to some vector in Rd. Both D and its complement are interesting
nontrivial sets. For instance, it is easy to observe, as we will do briefly in
Section 4, that both D and S∞\D are uncountable and dense in S∞, and also
that D is a comeager set.

We wish to examine these collections from the vantage point of descrip-
tive set theory, or, loosely speaking, the study of the definable subsets of
Polish spaces. Definable here may refer to Borel, analytic, projective, or any
other class of “well-behaved” sets, which are typically closed under continu-
ous preimages. Of course the Borel sets may be stratified by their relative
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complexity into a Borel hierarchy indexed by the countable ordinals, whose
exact definition we will recall for the reader in Section 2. It is an empirical
phenomenon that a great bulk of those Borel sets which present themselves
in the everyday study of mathematics will fall into the very bottom few levels
of the Borel hierarchy. Thus there has been some industry for descriptive set
theorists in finding “natural” examples of Borel sets which are “more com-
plex” than usual. For some instances of such sets, the reader may consult
the well-known references [2] and Sections 23, 27, 33, and 37 of [4], or the
paper [1], which produces many examples in the field of ordinary differential
equations.

Our objective here will be to establish the exact descriptive complexity of
our set D and its complement. In classical terminology, we will show that D
is Gδσ but not Fσδ (and hence not Fσ, Gδ, open, nor closed). Using the more
modern notation, we prove:

Theorem 1. Let

∞∑
k=0

vk be any conditionally convergent series of vectors in

Rd, and let D ⊆ S∞ be the set of all permutations π for which

∞∑
k=0

vπ(k)

diverges. Then D is Σ0
3-complete.

Of course, it follows immediately that S∞\D is Π0
3-complete. Now, for

π ∈ S∞, say that the rearrangement

∞∑
k=0

vπ(k) diverges properly if the series

diverges, but does not diverge to infinity. Our methods also give the following
result:

Theorem 2. Let

∞∑
k=0

vk be any conditionally convergent series of vectors in

Rd, and let DP ⊆ S∞ be the set of all permutations π for which

∞∑
k=0

vπ(k)

diverges properly. Then DP is Σ0
3-complete.

It follows that the set S∞\DP of series rearrangements which either con-
verge to a vector in Rd, or which diverge to ∞, is also a Π0

3-complete set in
S∞. Notice that, remarkably, none of the above statements depend on the

nature of the particular conditionally convergent series

∞∑
k=0

vk that we choose!

Thus, for each conditionally convergent series, we exhibit a naturally defined
subset of S∞ which lies no lower on the Borel hierarchy than the third level.
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2 Definitions and terminology

First we recall the definition of the Borel hierarchy. Given a Polish space X,
we let Σ0

1(X) be the family of all open subsets of X, and Π0
1(X) the family of

all closed subsets of X. We set ∆0
1(X) = Σ0

1(X) ∩Π0
1(X), so ∆0

1(X) consists
of the clopen sets in X. The rest of the levels of the hierarchy are defined
recursively as follows: Suppose for some countable ordinal β, we have defined
the classes Σ0

α(X) and Π0
α(X) for all α < β. Then we set

Σ0
β(X) = {

⋃
n∈ω An : An ∈ Π0

αn
for some αn < β},

Π0
β(X) = {Ac : A ∈ Σ0

β(X)}, and

∆0
β(X) = Σ0

β(X) ∩Π0
α(X).

It is well known that ∆0
β(X) ⊆ Σ0

β(X),Π0
β(X) ⊆ ∆0

β+1 for each β, and
that the inclusions are all proper.

Let X,Y be Polish spaces and A ⊆ X, B ⊆ Y . If there exists a continuous
function f : X → Y such that f−1(B) = A, then we say that A is Wadge
reducible or continuously reducible to B, and we write A ≤W B. Intuitively,
we think that A is “no more complex” than B.

Let Γ be any of the pointclasses Σ0
β , Π0

β , or ∆0
β . A standard induc-

tive argument through the hierarchy shows that Γ is closed under continuous
preimages, i.e., whenever X and Y are Polish, A ⊆ X, B ∈ Γ(Y ), and A is
continuously reducible to B, then we have A ∈ Γ(X).

The above comment provides a useful tool for determining the complexity
of a set. We say that a subset B of a Polish space Y is Γ-hard if for every
Polish space X and every A ∈ Γ(X) we have A ≤W B. It follows from
the above comments that if B is Γ-hard, then Γ is a lower bound for the
descriptive complexity of B. If in addition we have B ∈ Γ(Y ), then we say
that B is Γ-complete, and we have determined its exact complexity in the
Borel hierarchy.

The most common method for showing that a set B is Γ-hard is to find a
set A which is already known to be Γ-complete, and prove that A ≤W B by
constructing an explicit continuous reduction. This will be the method of our
proof in Section 4, and we will make use of the following subset C of the Baire
space ωω:

C = {x ∈ ωω : lim
n→∞

x(n) =∞}.

Exercise 23.2 of [4] asks the reader to show that C is in fact Π0
3-complete.

It necessarily follows that the complement ωω\C is Σ0
3-complete. Our proof
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will continuously reduce this complement ωω\C, simultaneously, to both D
and DP, and thus establish the Σ0

3-hardness of the latter two sets.
We regard each nonnegative integer n as a von Neumann ordinal, i.e. we

think of each n as the set {0, ..., n − 1}. If a function π : n → ω is injective,
then we call π a finite partial permutation. We use the notation dom(π) to
refer to the map’s domain n = {0, ..., n − 1} and ran(π) to refer to its range
{π(0), ..., π(n− 1)}. If σ ∈ S∞ or if σ is a finite partial permutation, then we
say σ extends π if σ � dom(π) = π.

3 The Bounded Walk Lemma

In this section we will develop the main technical lemma on which our proof
is built. An intuitive explanation for the Bounded Walk lemma is as follows:
Consider a conditionally convergent series as an abstract infinite collection
(vk)k∈ω of vectors in Rd from which we may build finite paths. Let α and β be
two points in Rd. Suppose we have already chosen some finite subcollection

{vπ(0), vπ(1), ..., vπ(J)}, J ∈ ω, of vectors from (vk)k∈ω whose sum

J∑
k=0

vπ(k)

(here visualized as a path of vectors laid end-to-end) is very close to α. We
wish to extend the path we have already built by choosing finitely many more
vectors, from among those we have not already chosen, in such a way that the
extended path will terminate very close to β, i.e. we wish to “walk from α to
β.”

We will show that if all the remaining vectors to choose from are sufficiently
small (say less than 1

3Cd
||β − α|| where Cd is some constant to be determined

later), then it is possible to build a finite path which (1) extends the path we
have already walked; (2) uses up all except arbitrarily small remaining vectors;
(3) takes us arbitrarily close to β; and (4) does not wander arbitrarily far from
the straight-line path connecting α and β. In addition we may (5) use up any
particular vector we wish. (Note that conditions (1) and (2) allow us to repeat
this “bounded walk” process between as many points as we like, as often as
we like.)

Now we aim to establish such a lemma. Before we do so, we first recall the
following classical result as stated in [7], which is attributed to Steinitz, and
which asserts the existence of a very useful “bounded rearrangement constant”
Cd in Euclidean space, now referred to as the Steinitz constant:

Lemma 3 (Polygonal Confinement Theorem). Let d ≥ 1 be any integer. Then
there exists a constant Cd which satisfies the following statement: Whenever
v0, v1, ..., vm are vectors in Rd which sum to 0 and satisfy ||vi|| ≤ 1 for each
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i ≤ m, then there is a finite permutation P ∈ Sm with the property that

∣∣∣∣∣
∣∣∣∣∣v0 +

j∑
i=1

vP (i)

∣∣∣∣∣
∣∣∣∣∣ ≤ Cd

for every j.

The Polygonal Confinement Theorem is the basis for the remaining lemmas
in this section.

Lemma 4. Let α, v1, ..., vm be vectors in Rd which sum to β ∈ Rd, and let
Cd be as in the Polygonal Confinement Theorem. Further suppose we have
||vi|| ≤ 1

Cd
||β−α|| for each i ≤ m. Then there is a finite permutation P ∈ Sm

with the property that

∣∣∣∣∣
∣∣∣∣∣
j∑
i=1

vP (i)

∣∣∣∣∣
∣∣∣∣∣ ≤ 2||β − α||

for every j.

Proof. Without loss of generality we may assume α = 0, for if not, replace
α with 0 and β with β − α. We may also without loss of generality take

||β|| = Cd, for if not, replace β with β · Cd
||β||

and vi with vi ·
Cd
||β||

. In this case

we have ||vi|| ≤ 1 for each i.

Now let s be an integer sufficiently large so that ||β||s ≤ 1, and set vm+1 =
vm+2 = ... = vm+s = −β/s. Then α, v1, ..., vm, vm+1, ..., vm+s are a collection
of vectors which satisfy the hypotheses of the Polygonal Confinement Theorem,
and hence there exists a permutation P ′ ∈ Sm+s for which∣∣∣∣∣∣

∣∣∣∣∣∣α+

j′∑
i=1

vP ′(i)

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
j′∑
i=1

vP ′(i)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ Cd

for every j′ ≤ m+ s. Let P ∈ Sm be the unique permutation which arranges
1, ...,m in the same order as P ′.

Now let j ≤ m be arbitrary. Let j′ ≥ j be the least integer for which
{P (1), ..., P (j)} ⊆ {P ′(1), ..., P ′(j′)}. Note that since P and P ′ arrange 1, ..., j
in the same order, then for any i ≤ j′, we must have either (P ′)−1(i) ∈ {1, ..., j}
or (P ′)−1(i) ∈ {m+1, ...,m+s}. Let I = {i ≤ j′ : P−1(i) ∈ {m+1, ...,m+s}}.
Then we have:
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∣∣∣∣∣
∣∣∣∣∣
j∑
i=1

vP (i)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
j′∑
i=1

vP ′(i) −
∑
i∈I

vi

∣∣∣∣∣∣
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
j′∑
i=1

vP ′(j)

∣∣∣∣∣∣
∣∣∣∣∣∣+
∑
i∈I
||vi||

≤ Cd +
∑
i∈I

||β||
s

≤ ||β||+ s · ||β||
s

= 2||β||

as required.

Lemma 5. Let σ be any finite partial permutation, and let

∞∑
k=0

vk be a series

of vectors. If π ∈ S∞ is any permutation for which

∞∑
k=0

vπ(k) converges, then

there exists another permutation π′ ∈ S∞ for which

1. π′ extends σ, and

2.

∞∑
k=0

vπ′(k) =

∞∑
k=0

vπ(k).

Proof. This may be accomplished by simply finding a finitely supported
permutation τ ∈ S∞ for which τ ◦π � dom(σ) = σ, and setting π′ = τ ◦π.

For the remainder of the paper, given a conditionally convergent series
∞∑
k=0

vk in Rd, let A(vk) ⊆ Rd denote the affine subspace promised in the state-

ment of the Levy-Steinitz Theorem.

Lemma 6 (Bounded Walk Lemma). Let

∞∑
k=0

vk be a conditionally convergent

series of vectors in Rd. Let ε > 0 and n ∈ ω be arbitrary. Let α ∈ Rd,
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β ∈ A(vk), and let Cd be as in the Polygonal Confinement Theorem. Sup-
pose π is a finite partial permutation with dom(π) = J + 1 ∈ ω, for which∣∣∣∣∣
∣∣∣∣∣α−

J∑
k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ < 1

3 ||β − α||, and such that ||vk|| ≤ 1
3Cd
||β − α|| whenever

k /∈ ran(π).

Then there exists a finite partial permutation σ with dom(σ) = I + 1 ∈ ω
which satisfies the following properties:

1. σ extends π;

2. ||vk|| ≤ 1
Cd
· ε whenever k /∈ ran(σ);

3.

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ < ε;

4.

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤ 6||β − α|| whenever J + 1 ≤ i ≤ I; and

5. n ∈ ran(σ).

Proof. Since β ∈ A(vk), there is τ ∈ S∞ for which

∞∑
k=0

vτ(k) = β. By

applying Lemma 5, we may assume without loss of generality that τ ex-

tends π. Choose I ∈ ω to be so large that τ−1(n) ≤ I,

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vτ(k)

∣∣∣∣∣
∣∣∣∣∣ <

min(ε, 13 ||β − α||), and that ||vτ(k)|| ≤ 1
Cd
· ε for all k > I.

Set α1 =

J∑
k=0

vτ(k) =

J∑
k=0

vπ(k) and set β1 =

I∑
k=0

vτ(k). Now notice that

the images τ(J + 1), ..., τ(I) do not lie in the range of π, since τ is a bijection
extending π and dom(π) = {0, ..., J}. It follows that for each i ∈ {J + 1, ..., I}
we have
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1

Cd
||β1 − α1|| =

1

Cd
||β − α− (β − β1) + (α− α1)||

≥ 1

Cd
||||β − α|| − ||β − β1|| − ||α− α1||||

≥ 1

Cd
||||β − α|| − 1

3
||β − α|| − 1

3
||β − α||||

=
1

3Cd
||β − α||

≥ ||vi||.

Hence we may apply Lemma 4 to find a bijection P : {τ(J+1), ..., τ(I)} →
{τ(J + 1), ..., τ(I)} which satisfies

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vP (τ(k))

∣∣∣∣∣
∣∣∣∣∣ ≤ 2||β1 − α1||

whenever J + 1 ≤ i ≤ I. If we define σ : I + 1→ ω by σ(k) = τ(k) for k ≤ J
and σ(k) = P (τ(k)) for J < k ≤ I, then σ is a finite partial permutation with
domain I + 1 which clearly satisfies (1) above.

Note that if k /∈ ran(σ), then k /∈ {σ(0), ..., σ(J), σ(J + 1), ..., σ(I)} =
{τ(0), ..., τ(J), P (τ(J + 1)), ..., P (τ(I)} = {τ(0), ..., τ(I)}. So τ−1(k) > I, and
hence by our choice of I, we have ||vk|| = ||vτ(τ−1(k))|| ≤ 1

Cd
· ε. Thus (2) is

also satisfied.

Since P is a bijection, we have

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣β −

(
J∑
k=0

vτ(k) +

I∑
k=J+1

vP (τ(k)

)∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vτ(k)

∣∣∣∣∣
∣∣∣∣∣ < ε,

so (3) is satisfied.

Lastly note that ||β1−α1|| ≤ ||β− β1||+ ||β−α||+ ||α−α1|| ≤ 3||β−α||.
Hence, we have
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∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

i∑
k=J+1

vP (τ(k))

∣∣∣∣∣
∣∣∣∣∣

≤ 2||β1 − α1||
≤ 6||β − α||

whenever J + 1 ≤ i ≤ I. So (4) is also satisfied. (5) holds simply because
τ−1(n) ≤ I = dom(τ), and hence n ∈ ran(τ) = ran(σ). So the lemma is
proved.

Remark. For simplicity, from now on when we apply the Bounded Walk lemma,
we will say that we use it to walk from α to β, where α and β are as in the
statement of the theorem.

4 Proof of Theorems 1 and 2

First let us make a few introductory observations. We will describe our sets of
interest using logical notation, with the assumption in place that all quantified
variables range over ω. Notice that by Cauchy’s criterion for convergence, the
following equivalence holds:

π ∈ D ↔ ∃m ∀n ∃i ∃j

[
i, j ≥ n ∧

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≥ 1

m

]
.

Since the latter predicate is an open condition in S∞, a count of quantifiers
verifies that D indeed lies in Σ0

3(S∞). Now fix any m ≥ 1, and consider the
set Dm defined by the following rule:

π ∈ Dm ↔ ∀n ∃i ∃j

[
i, j ≥ n ∧

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≥ 1

m

]
.

Then Dm is a nonempty Π0
2 (Gδ)-subset of D which is invariant under

multiplication by finitely supported permutations, and hence dense in S∞.
This shows that D is a comeager set. The complement S∞\D is also nonempty
and invariant under finitely supported permutations, and hence dense as well.

Define a map φ : 2ω → S∞ by the rule

[φ(x)](2k) = 2k and [φ(x)](2k + 1) = 2k + 1 if x(k) = 0; and
[φ(x)](2k) = 2k + 1 and [φ(x)](2k + 1) = 2k if x(k) = 1;
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for x ∈ 2ω and k ∈ ω. Let T = ran(φ) ⊆ S∞. The map φ is injective
and hence T is uncountable. The permutations in T act only by transposing
consecutive integers, and as a consequence it is simple to check that both D
and S∞\D are invariant under multiplication on the left by elements of T .
Thus both sets D and S∞\D are uncountable dense, i.e. in some sense they
are “large” nontrivial sets in S∞, as promised in the introduction. The reader
may consult [3] for similar observations about some other sets in S∞ which
are closely related to our D and DP.

Next define a set I ⊆ S∞ by the rule

π ∈ I ↔ ∃m ∀n ∃i

[
i ≥ n ∧

∣∣∣∣∣
∣∣∣∣∣
i∑

k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤ m

]
.

Then I is a Σ0
3 set, which consists exactly of those permutations whose

corresponding series rearrangements

∞∑
k=0

vπ(k) do not diverge to infinity. Since

DP = D ∩ I, so too we have DP ∈ Σ0
3(S∞).

Proof of Theorems 1 and 2. In light of our comments above, it suffices
to show that D and DP are Σ0

3-hard. Recall that the set C = {x ∈ ωω :
lim
n→∞

x(n) = ∞} is known to be Π0
3-complete, and the complement ωω\C is

Σ0
3-complete. We will build a function f : ωω → S∞ that will be a continuous

reduction from ωω\C to both D and DP simultaneously. That is, both of the
following will hold:

x ∈ ωω\C ↔ f(x) ∈ D,
x ∈ ωω\C ↔ f(x) ∈ DP.

Fix an arbitrary x ∈ ωω. Let v =

∞∑
k=0

vk. We will recursively construct

a sequence of integers (Jn)n≥−1 and a sequence of finite partial permutations
(πn)n≥−1, each with domain {0, ..., Jn}, which satisfy the following seven con-
ditions whenever n ≥ 0:

(I) πn extends πn−1;

(II) n ∈ {πn(0), ..., πn(Jn)};
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(III) the definitions of πn(Jn−1 + 1), ..., πn(Jn) depend only on the values of
x(n) and x(n+ 1);

(IV)

∣∣∣∣∣
∣∣∣∣∣v −

Jn∑
k=0

vπn(k)

∣∣∣∣∣
∣∣∣∣∣ < 1

x(n+ 1) + 1
;

(V)

∣∣∣∣∣∣
∣∣∣∣∣∣

j∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 36 · 1

x(n) + 1
for every j ∈ {Jn−1 + 1, ..., Jn};

(VI) there exist i, j ∈ {Jn−1, ..., Jn} for which

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπn(k)

∣∣∣∣∣
∣∣∣∣∣ > 1

x(n)+1 ; and

(VII) ||vk|| ≤ 1
Cd
· 1
x(n+1)+1 for all k /∈ ran(πn).

After this construction is finished, we will let π be the unique permutation
which extends all the πn’s, and set f(x) = π. Conditions (I) and (II) will
guarantee that π is indeed a permutation, while (III) will guarantee that the
map f is continuous. Conditions (IV) and (V) will ensure that if x ∈ C,

then

∞∑
k=0

vπ(k) will converge to v, while condition (VI) will guarantee that if

x /∈ C, then

∞∑
k=0

vπ(k) will diverge properly. (Condition (VII) is just a technical

requirement to facilitate our recursive definition.)
We will now proceed with our construction. Here for the sake of con-

venience our base case will be n = −1. Let J−1 ≥ 0 be so large that

||v −
J−1∑
k=0

vk|| < 1
x(0)+1 , and that ||vk|| ≤ 1

Cd
· 1
x(0)+1 for all k > J−1. Let

π−1 : J0 + 1 → J0 + 1 be the identity permutation. Note that π−1 and J−1
trivially satisfy (IV) and (VII) above; this will be enough to facilitate our
induction.

Now we assume that Ji and πi are defined for all i < n, and satisfy at least
(IV) and (VII), and we proceed with the inductive step of defining Jn and
πn. As we go we will verify that Jn and πn really do satisfy all of conditions
(I)-(VII).

By the Levy-Steinitz theorem, there is a non-trivial affine subspace A(vk) ⊆

Rd of points β such that some rearrangement of

∞∑
k=0

vk converges to β. In
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particular, there is at least a line of such points. So we may choose some
β ∈ A(vk) for which ||β − v|| = 3 · 1

x(n)+1 . Now we will define πn and Jn
by applying the Bounded Walk lemma twice: first, we will use the lemma to
“walk out” to a point near β, and then we will use the lemma to “walk back
in” to a point near v.

To “walk out”: observe that by condition (VII) of our inductive hypothesis,
we have ||vk|| ≤ 1

Cd
· 1
x(n)+1 ≤

1
3Cd
||β − v|| for all k /∈ ran(πn−1), and by

condition (IV) of our inductive hypothesis, we have∣∣∣∣∣∣
∣∣∣∣∣∣v −

Jn−1∑
k=0

vπn−1(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ < 1

x(n) + 1
=

1

3
||β − v||.

So we may apply the Bounded Walk lemma to walk from v to β, extending
the finite partial permutation πn−1 and with ε = 1

x(n)+1 . Thus we obtain an

index I > Jn−1 and a finite partial permutation σ : I + 1 → I + 1 which
satisfies properties (1)–(5) of the lemma. In particular, condition (3) ensures
that we have

∣∣∣∣∣∣
∣∣∣∣∣∣

I∑
k=Jn−1+1

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣β − v − β +

I∑
k=0

vσ(k) + v −
Jn−1∑
k=0

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣

≥ ||β − v|| −

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣−
∣∣∣∣∣∣
∣∣∣∣∣∣v −

Jn−1∑
k=0

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣

> 3 · 1

x(n) + 1
− 1

x(n) + 1
− 1

x(n) + 1

=
1

x(n) + 1

while condition (4) guarantees that

∣∣∣∣∣∣
∣∣∣∣∣∣

i∑
k=Jn−1+1

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 6 ||β − v|| = 18· 1

x(n)+1

whenever J + 1 ≤ i ≤ I.
Next we “walk back in.” By property (2) in our previous application of the

Bounded Walk lemma, we have ||vk|| ≤ 1
Cd
· 1
x(n)+1 = 1

3Cd
||v − β|| whenever

k /∈ ran(σ), and by property (3) we have

∣∣∣∣∣
∣∣∣∣∣β −

I∑
k=0

vσ(k)

∣∣∣∣∣
∣∣∣∣∣ < 1

x(n)+1 = 1
3 ||v−β||.

So we may apply the Bounded Walk lemma to walk from β to v, extending
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the finite partial permutation σ, with ε = 1
x(n+1)+1 . Then we obtain an index

Jn > I and a finite partial permutation πn : Jn + 1 → Jn + 1 which again
satisfies properties (1)–(5). By the previous inequality, and applying condition
(4) for πn, we see that

∣∣∣∣∣∣
∣∣∣∣∣∣

i∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣

I∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣

i∑
k=I+1

vπn(k)

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣∣
∣∣∣∣∣∣

I∑
k=Jn−1+1

vσ(k)

∣∣∣∣∣∣
∣∣∣∣∣∣+ 6 ||β − v||

≤ 18 · 1

x(n) + 1
+ 18 · 1

x(n) + 1

= 36 · 1

x(n) + 1

whenever I+1 ≤ i ≤ Jn. Thus we have shown that (V) holds for πn. (I), (III),
and (IV) obviously hold from our definition of πn, and (II) holds if we utilize
condition (5) in either of our two applications of the Bounded Walk lemma to
ensure that n ∈ ran(πn). We have shown that (VI) holds if we take i = Jn−1
and j = I, and (VII) follows from condition (2) in our second application of
the Bounded Walk lemma. So our construction is complete and we may let
π ∈ S∞ be the unique permutation which extends all of the πn’s.

Define the map f : ωω → S∞ by f(x) = π, where π is as we have con-
structed above. The function f , as a map between the Polish space ωω and
its Polish subspace S∞, is continuous by condition (III). We claim that f is in
fact the continuous reduction we desire.

To see this, suppose x ∈ C, so lim
n→∞

x(n) = ∞ and hence lim
n→∞

1
x(n)+1 = 0.

For any i ∈ ω, let ni be the greatest integer for which Jni−1 < i ≤ Jni
. Then

by (IV) and (V) we have

∣∣∣∣∣
∣∣∣∣∣v −

i∑
k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣v −

Jn−1∑
k=0

vπn−1(k)

∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣∣∣
∣∣∣∣∣∣

i∑
k=Jn−1+1

vπn(k)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 1

x(ni) + 1
+ 36 · 1

x(ni) + 1

= 37 · 1

x(ni) + 1
.
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Now taking the limit as i → ∞ (and as ni → ∞) we see that

∞∑
k=0

vπ(k)

converges to v. Hence f(x) ∈ S∞\D and f(x) ∈ S∞\DP.

On the other hand, suppose x ∈ ωω\C. Then the sequence (x(n)) is cofi-
nally bounded, i.e. there is an M < ∞ such that x(n) < M infinitely often.
Hence 1

x(n)+1 >
1

M+1 infinitely often. It follows from (VI) that there are in-

finitely many blocks i, ..., j of integers for which

∣∣∣∣∣
∣∣∣∣∣
j∑
k=i

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ > 1

x(n)+1 >
1

M+1 ,

and hence

∞∑
k=0

vπ(k) diverges by the Cauchy criterion. In addition, we have

already demonstrated that for any ni depending on i as above, we have∣∣∣∣∣
∣∣∣∣∣v −

i∑
k=0

vπ(k)

∣∣∣∣∣
∣∣∣∣∣ ≤ 37 · 1

x(ni) + 1
≤ 37.

This implies that all partial sums of the rearranged series are bounded, and
so the series must diverge properly. Thus in this case we have f(x) ∈ D and
f(x) ∈ DP. So f is the reduction we seek, and D and DP are Σ0

3-complete.
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