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ON LIMITING RELATIONS FOR
CAPACITIES

Abstract

The paper is devoted to the study of limiting behaviour of Besov
capacities cap(E;Bαp,q) (0 < α < 1) of sets in Rn as α → 1 or α → 0.
Namely, let E ⊂ Rn and

Jp,q(α,E) = [α(1− α)q]p/q cap(E;Bαp,q).

It is proved that if 1 ≤ p < n, 1 ≤ q < ∞, and the set E is open, then
Jp,q(α,E) tends to the Sobolev capacity cap(E;W 1

p ) as α → 1. This
statement fails to hold for compact sets. Further, it is proved that if the
set E is compact and 1 ≤ p, q < ∞, then Jp,q(α,E) tends to 2np|E| as
α→ 0 (|E| is the measure of E). For open sets it is not true.

1 Introduction.

The Sobolev space W 1
p (Rn) (1 ≤ p <∞) is defined as the class of all functions

f ∈ Lp(Rn) for which all first-order weak derivatives ∂f/∂xk = Dkf (k =
1, ..., n) exist and belong to Lp(Rn).

The classical embedding theorem with limiting exponent states that if 1 ≤
p < n, then for any f ∈W 1

p (Rn)

||f ||p∗ ≤ c
n∑
k=1

||Dkf ||p, where p∗ =
np

n− p
. (1.1)

This theorem was proved by Sobolev in 1938 for 1 < p < n and by Gagliardo
and Nirenberg in 1958 for p = 1 (see [24, Chapter 5]).
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Embeddings with limiting exponent are also true for some spaces defined
in terms of moduli of continuity.

Let f ∈ Lp(Rn) (1 ≤ p < ∞) and k ∈ {1, ..., n}. The partial modulus of
continuity of f in Lp with respect to xk is defined by

ωk(f ; δ)p = sup
0≤h≤δ

(∫
Rn
|f(x+ hek)− f(x)|p dx

)1/p

(ek is the kth unit coordinate vector).

Let 0 < α < 1, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, and k ∈ {1, ..., n}. The Nikol’skĭı-
Besov space Bαp,q;k(Rn) consists of all functions f ∈ Lp(Rn) such that

‖f‖bαp,q;k ≡
(∫ ∞

0

(
t−αωk(f ; t)p

)q dt
t

)1/q

<∞

if q <∞, and

‖f‖bαp,∞;k
≡ sup

t>0
t−αωk(f ; t)p <∞

if q =∞. Further, set

Bαp,q(Rn) =

n⋂
k=1

Bαp,q;k(Rn) and ||f ||bαp,q =

n∑
k=1

‖f‖bαp,q;k .

We write also Bαp,p(Rn) = Bαp (Rn).

Observe that in these definitions and notations we follow Nikol’skĭı’s book
[23]; they can be immediately extended to anisotropic Nikol’skĭı-Besov spaces.

The spaces Bαp (Rn) are often considered as Sobolev spaces of fractional
smoothness. The embedding theorem with limiting exponent for these spaces
asserts that if 0 < α < 1 and 1 ≤ p < n/α, then

Bαp (Rn) ⊂ Lpα(Rn), where pα =
np

n− αp
. (1.2)

This theorem was proved in the late sixties independently by several authors
(for the references, see [4, § 18], [14, Section 10]).

In 2002 Bourgain, Brezis and Mironescu [6] discovered that embedding
W 1
p ⊂ Lp

∗
can be obtained as the limit of embedding (1.2) as α → 1. First,

they proved in [5] that for any f ∈W 1
p (Rn) (1 ≤ p <∞)

lim
α→1−

(1− α)1/p||f ||bαp � ||∇f ||p (1.3)
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(see also [7], [18, Section 14.3], [20, Section 10.2]). The main result in [6] is
the following: if 1/2 ≤ α < 1 and 1 ≤ p < n/α, then for any f ∈ Bαp (Rn),

‖f‖pLpα ≤ cn
1− α

(n− αp)p−1
‖f‖pbαp

(
pα =

np

n− αp

)
, (1.4)

where a constant cn depends only on n. In view of (1.3), inequality (1.1)
is a limiting case of (1.4) as α → 1−. The proof of (1.4) in [6] was quite
complicated. Afterwards, Maz’ya and Shaposhnikova [21] gave a simpler proof
of (1.4). Moreover, they studied the limiting behaviour of the Bαp−norm and
the sharp asymptotics of the embedding constant in (1.2) as α → 0. More
precisely, they proved that

‖f‖pLpα ≤ cp,n
α(1− α)

(n− αp)p−1
‖f‖pbαp

(
1 ≤ p < n

α
, pα =

np

n− αp

)
. (1.5)

Also, it was shown in [21] that if f ∈ Bα0
p (Rn) for some α0 ∈ (0, 1), then

lim
α→0

α||f ||pbαp � ||f ||
p
p. (1.6)

We note that in the works [6] and [21] a slightly different definition of the
seminorm || · ||bαp was used; it is equivalent to the one given above.

Later on, it was observed in [17] that inequalities (1.4) and (1.5) can be
directly derived from estimates of rearrangements obtained in [12].

Different extensions and some close aspects of these problems have been
studied in [9], [10], [17], [19], [22], [25].

This paper was inspired by the results described above. Namely, it is
devoted to the study of limiting behaviour of capacities in spaces Bαp,q as α
tends to 1 or α tends to 0.

Let K ⊂ Rn be a compact set. Denote by N(K) the set of all functions
f ∈ C∞0 (Rn) such that f(x) ≥ 1 for all x ∈ K. The capacity of the set K in
the space W 1

p (Rn) (1 ≤ p <∞) is defined by

cap(K;W 1
p ) = inf

{(
n∑
k=1

||Dkf ||p

)p
: f ∈ N(K)

}
(1.7)

(see [20, 2.2.1]).
Similarly, let 1 ≤ p, q < ∞ and 0 < α < 1. The capacity of a compact set

K ⊂ Rn in the space Bαp,q(Rn) is defined by

cap(K;Bαp,q) = inf{||f ||pbαp,q : f ∈ N(K)} (1.8)
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(see [1], [2, Section 4], [20, Section 10.4]). Note that in this definition the pth
power of the Besov norm is taken. This assures that the Hausdorff dimension
of the set function cap(·;Bαp,q) is equal to n− αp when p < n/α (see [1]).

Let X denote one of the spaces W 1
p (Rn) or Bαp,q(Rn). Let G ⊂ Rn be an

open set. Then we define the capacity of G in X as

cap(G;X) = sup{cap(K;X) : K ⊂ G,K is compact}.

The paper is organized as follows.
In Section 2 we give auxiliary statements which are used in the sequel.
In Section 3 we prove the main result of the paper. It states that if 1 ≤

p < n and 1 ≤ q <∞, then for any open set G ⊂ Rn

lim
α→1−

(1− α)p/q cap
(
G;Bαp,q

)
=

(
1

q

)p/q
cap(G;W 1

p ). (1.9)

We show that this statement may fail for a compact set. If n < p <∞, n ∈ N,
or n = p ≥ 2, then equality (1.9) is trivially true because in these cases both
the sides of (1.9) are equal to zero for any bounded open set G. Furthermore,
(1.9) also trivially holds for p = n = 1; in this case both the sides are equal to
2q−1/q for any non-empty open bounded set G ⊂ R.

In Section 4 we consider the case α→ 0 and we prove that if 1 ≤ p, q <∞,
then for any compact set K ⊂ Rn

lim
α→0+

αp/qcap(K;Bαp,q) = 2np
(

1

q

)p/q
|K|

(as usual, |K| denotes the Lebesgue measure of K). It is shown that generally
this equality is not true for open sets.

2 Auxiliary Propositions.

We begin with some properties of moduli of continuity.
We shall call modulus of continuity any non-decreasing, continuous and

bounded function ω(δ) on [0,+∞) which satisfies the conditions

ω(δ + η) ≤ ω(δ) + ω(η), ω(0) = 0. (2.1)

It is well known that for any f ∈ Lp(Rn) the functions ωj(f ; δ)p are moduli
of continuity.

For a modulus of continuity ω the function ω(δ)/δ may not be monotone.
Therefore we shall use the following lemma.
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Lemma 2.1. Let ω be a modulus of continuity. Set

ω(t) =
1

t

∫ t

0

ω(u) du, t > 0.

Then
ω(t) ≤ ω(t) ≤ 2ω(t), t > 0. (2.2)

Moreover, ω(t) increases and ω(t)/t decreases on (0,∞).

Proof. Since

ω(t) =

∫ 1

0

ω(tv) dv

and ω is increasing, it is obvious that ω increases and the left-hand side in-
equality in (2.2) is true. We prove the right-hand side inequality in (2.2), that
is,

ω(t) ≤ 2

t

∫ t

0

ω(u) du, t > 0. (2.3)

We have ∫ t

0

ω(u) du =

∫ t

0

ω(t− u) du.

Thus, by (2.1),

2

∫ t

0

ω(u) du =

∫ t

0

[ω(u) + ω(t− u)] du ≥ tω(t).

This implies (2.3). Using (2.3), we obtain(
ω(t)

t

)′
= − 2

t3

∫ t

0

ω(u) du+
ω(t)

t2
≤ 0.

for almost all t > 0. Since ω(t) is locally absolutely continuous on (0,+∞),
this implies that ω(t)/t decreases on (0,+∞).

Now we consider some estimates of partial moduli of continuity.
First, it is obvious that for any f ∈ Lp(Rn) (1 ≤ p <∞)

ωj(f ; δ)p ≤ 2||f ||p (j = 1, ..., n). (2.4)

It is easy to show that the constant 2 at the right-hand side is optimal (see
Remark 4.3 below). However, for non-negative functions the constant can be
improved. Namely, if f ∈ Lp(Rn) and f(x) ≥ 0, then

ωj(f ; δ)p ≤ 21/p||f ||p (j = 1, ..., n). (2.5)
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Indeed, let h > 0, j ∈ {1, ..., n}, and set Eh,j = {x : f(x) ≥ f(x+hej)}. Then∫
Rn
|f(x)− f(x+ hej)|p dx

≤
∫
Eh,j

f(x)p dx+

∫
Rn\Eh,j

f(x+ hej)
p dx ≤ 2

∫
Rn
f(x)p dx.

This implies (2.5).
In what follows, for a set E ⊂ Rn we denote by χE its characteristic

function. If E is a measurable set of finite measure, then by (2.5)

ωj(χE ; δ)p ≤ (2|E|)1/p. (2.6)

If a function f ∈ Lp(Rn) (1 ≤ p <∞) has a weak derivative Djf ∈ Lp(Rn)
for some 1 ≤ j ≤ n, then

ωj(f ; δ)p ≤ ||Djf ||pδ (2.7)

(see [4, § 16]). Moreover, by the Hardy-Littlewood theorem [23, § 4.8], if
1 < p < ∞ and f ∈ Lp(Rn), then the relation ωj(f ; δ)p = O(δ) holds if and
only if there exists the weak derivative Djf ∈ Lp(Rn).

We shall also use the following well-known statement which we prove for
completeness.

Lemma 2.2. Let a function f ∈ Lp(Rn) (1 ≤ p <∞) have a weak derivative
Djf ∈ L1

locRn for some j ∈ {1, ..., n}. Then

||Djf ||p = lim
δ→0+

ωj(f ; δ)p
δ

= sup
δ>0

ωj(f ; δ)p
δ

. (2.8)

Proof. The function f can be modified on a set of measure zero so that the
modified function is locally absolutely continuous on almost all straight lines
parallel to the xj−axis, and its usual derivative with respect to xj coincides
almost everywhere on Rn with Djf (see [23, Chapter 4]). We assume that f
itself has this property. Then

f(x+ hej)− f(x)

h
→ Djf(x) as h→ 0

almost everywhere on Rn. Thus, by Fatou’s Lemma,(∫
Rn
|Djf(x)|p dx

)1/p

≤ lim
h→0+

(
h−p

∫
Rn
|f(x+ hej)− f(x)|p dx

)1/p

≤ lim
h→0+

ωj(f ;h)p
h

.
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On the other hand, by (2.7)

||Djf ||p ≥ sup
h>0

ωj(f ;h)p
h

≥ lim
h→0+

ωj(f ;h)p
h

.

These inequalities yield (2.8).

Remark 2.3. As we have observed above, for a modulus of continuity ω the
function ω(δ)/δ may not be monotone. However, it is not difficult to show
that for any modulus of continuity ω

lim
δ→0+

ω(δ)

δ
= sup

δ>0

ω(δ)

δ
.

Now we derive some estimates involving Besov norms. First, we have the
following lemma which we shall often use in the sequel.

Lemma 2.4. Assume that a function f ∈ Lp(Rn) (1 ≤ p < ∞) has a weak
derivative Djf ∈ Lp(Rn) for some j ∈ {1, ..., n}. Then f ∈ Bαp,q;j(Rn) for any
1 ≤ q <∞ and any 0 < α < 1. Moreover,

‖f‖bαp,q;j ≤ q
−1/q

[
(1− α)−1/qT 1−α||Djf ||p + 2α−1/qT−α||f ||p

]
for any T > 0.

Proof. Applying estimates (2.4) and (2.7), we obtain for T > 0

‖f‖bαp,q;j ≤

(∫ T

0

t−αqωj(f ; t)qp
dt

t

)1/q

+

(∫ ∞
T

t−αqωj(f ; t)qp
dt

t

)1/q

≤ ||Djf ||p

(∫ T

0

t(1−α)q dt

t

)1/q

+ 2||f ||p
(∫ ∞

1

t−αq
dt

t

)1/q

= q−1/q(1− α)−1/qT 1−α||Djf ||p + 2(αq)−1/qT−α||f ||p.

It is well known that for fixed α ∈ (0, 1) and p ∈ [1,∞) the Besov spaces
Bαp,q(Rn) increase as the second index q increases. Moreover, the following
estimate holds: if 1 ≤ p < ∞, 1 ≤ q < θ ≤ ∞, and 0 < α < 1, then for any
function f ∈ Lp(Rn) and any j = 1, ..., n

‖f‖bαp,θ;j ≤ 8[α(1− α)]1/q−1/θ‖f‖bαp,q;j (2.9)

(see [15, Lemma 2.2]). The constant coefficient at the right-hand side has
optimal order as α → 1 or α → 0. However, the value of this coefficient can
be improved. First, for ”small” α we have the following result.
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Lemma 2.5. Let 1 ≤ p < ∞, 1 ≤ q < θ ≤ ∞, and 0 < α < 1. Then for any
function f ∈ Lp(Rn) and any j = 1, ..., n

‖f‖bαp,θ;j ≤ (αq)1/q−1/θ‖f‖bαp,q;j . (2.10)

Proof. Indeed, for any δ > 0 and any j ∈ {1, ..., n},

α||f ||qbαp,q;j ≥ α
∫ ∞
δ

t−αqωj(f ; t)qp
dt

t

≥ ωj(f ; δ)qp α

∫ ∞
δ

t−αq
dt

t
=

1

q
δ−αqωj(f ; δ)qp.

Thus, we obtain (2.10) for θ =∞. From here, for any θ ∈ (q,∞), we get

‖f‖θbαp,θ;j =

∫ ∞
0

t−αθωj(f ; t)θp
dt

t

≤ ‖f‖θ−qbαp,∞;j

∫ ∞
0

t−αqωj(f ; t)qp
dt

t
≤ (αq)(θ−q)/q‖f‖θbαp,q;j .

This yields (2.10).

The following lemma plays an essential role in the case α→ 1− 0.

Lemma 2.6. Let 1 ≤ p < ∞, 1 ≤ q < θ ≤ ∞, and 0 < α < 1. Then for any
function f ∈ Lp(Rn) and any j = 1, ..., n

‖f‖bαp,θ;j ≤ [(1− α)q]1/q−1/θ

(
2

1 + α

)1−q/θ

‖f‖bαp,q;j . (2.11)

Proof. Fix j ∈ {1, ..., n} and set

ω(t) =
1

t

∫ t

0

ωj(f ;u)p du, t > 0.

By Hardy’s inequality [3, p. 124],∫ ∞
0

t−αqω(t)q
dt

t
≤ 1

(1 + α)q

∫ ∞
0

t−αqωj(f ; t)qp
dt

t
.

Using this estimate, we have

‖f‖qbαp,q;j =

∫ ∞
0

t−αqωj(f ; t)qp
dt

t

≥ (1 + α)q
∫ ∞

0

t−αqω(t)q
dt

t

≥ (1 + α)q
∫ δ

0

t(1−α)q

(
ω(t)

t

)q
dt

t



On Limiting Relations for Capacities 219

for any δ > 0. By Lemma 2.1, ω(t)/t decreases on (0,+∞). Hence,

(1− α)‖f‖qbαp,q;j ≥ (1 + α)q(1− α)

(
ω(δ)

δ

)q ∫ δ

0

t(1−α)q dt

t

=
(1 + α)q

q
δ−αqω(δ)q, δ > 0.

By (2.2), ωj(f ; δ)p ≤ 2ω(δ), and thus we obtain

(1− α)‖f‖qbαp,q;j ≥
1

q

(
1 + α

2

)q
δ−αqωj(f ; δ)qp, δ > 0.

This implies inequality (2.11) for θ = ∞. In the case θ < ∞ this inequality
follows as in the proof of Lemma 2.5.

Next, we consider some estimates of distribution functions.
For any measurable function f on Rn, denote

λf (y) = |{x ∈ Rn : |f(x)| > y}|, y > 0.

Let S0(Rn) be the class of all measurable and almost everywhere finite func-
tions f on Rn such that λf (y) <∞ for each y > 0.

A non-increasing rearrangement of a function f ∈ S0(Rn) is a non-increasing
function f∗ on (0,+∞) such that for any y > 0

|{t > 0 : f∗(t) > y}| = λf (y).

We shall assume in addition that the rearrangement f∗ is left continuous on
(0,∞). Under this condition it is defined uniquely by

f∗(t) = inf{y > 0 : λf (y) < t}, 0 < t <∞.

It follows that

f∗(λf (y)) ≥ y for any y ≥ 0. (2.12)

Set also

f∗∗(t) =
1

t

∫ t

0

f∗(u) du.

For any f ∈ S0(Rn)

f∗∗(t) =

∫ ∞
t

f∗∗(u)− f∗(u)

u
du, t > 0. (2.13)
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If f ∈ S0(Rn) is locally integrable and has all weak derivatives Dkf ∈
L1

loc (k = 1, ..., n), then

f∗∗(t)− f∗(t) ≤ n t1/n
n∑
k=1

(Dkf)∗∗(t) (t > 0) (2.14)

(see [13, Lemma 5.1], [16, Lemma 3.1]).

Lemma 2.7. Let f ∈W 1
p (Rn), 1 ≤ p < n, and let p∗ = np/(n− p). Then

λf (y) ≤ cp,n

(
n∑
k=1

||Dkf ||p

)p∗
y−p

∗
, y > 0. (2.15)

Proof. Of course, this weak-type inequality follows from the strong-type in-
equality (1.1). However, (2.15) is a direct consequence of the estimate (2.14).
Indeed, by (2.13) and (2.14),

f∗(t) ≤ f∗∗(t) ≤ n
n∑
k=1

∫ ∞
t

u1/n−1(Dkf)∗∗(u) du

= nn′
n∑
k=1

[
t1/n−1

∫ t

0

(Dkf)∗(u) du+

∫ ∞
t

u1/n−1(Dkf)∗(u) du

]
.

Applying Hölder inequality to both the integrals at the right-hand side, we
have

f∗(t) ≤ c t−1/p∗
n∑
k=1

||Dkf ||p.

Setting t = λf (y) and taking into account (2.12), we get (2.15).

Similarly, estimates of distribution functions in terms of moduli of conti-
nuity can be derived from the following inequality: for any f ∈ Lp(Rn) (1 ≤
p <∞)

f∗∗(t)− f∗(t) ≤ 2t−1/p
n∑
k=1

ωk(f ; t1/n)p. (2.16)

This inequality was first proved by Ul’yanov [26] in the one-dimensional case
(see [14, p. 148] for an alternative proof). For all n ≥ 1 it was proved in [11];
a simpler proof was given in [12, Theorem 1].

Lemma 2.8. Let 0 < α < 1, 1 ≤ p < n/α, and pα = np/(n − αp). Then for
any function f ∈ Lp(Rn)

λf (y) ≤ (2pα)pα ||f ||pαbαp,∞y
−pα , y > 0. (2.17)
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Proof. We have
n∑
k=1

ωk(f ; t)p ≤ tα||f ||bαp,∞ for any t ≥ 0.

Thus, by (2.13) and (2.16),

f∗(t) ≤ f∗∗(t) ≤ 2

n∑
k=1

∫ ∞
t

u−1/pωk(f ;u1/n)p
du

u

≤ 2||f ||bαp,∞

∫ ∞
t

u−1/p+α/n du

u
= 2pα||f ||bαp,∞t

−1/pα .

Setting t = λf (y) and applying (2.12), we obtain (2.17).

We shall use the following notations. For any x = (x1, ..., xn) ∈ Rn we
denote by x̂k the (n− 1)−dimensional vector obtained from the n-tuple x by
removal of its kth coordinate. Let E ⊂ Rn. For every k = 1, ..., n, denote by
Πk(E) the orthogonal projection of E onto the coordinate hyperplane xk = 0.
If E is a set of the type Fσ, then all its projections Πk(E) are sets of the type Fσ
in Rn−1 and therefore they are measurable in Rn−1. The (n−1)−dimensional
measure of the projection Πk(E) will be denoted by mesn−1 Πk(E). For the
n−dimensional measure of the set E we keep the usual notation |E|. As above,
by ek we denote the kth unit coordinate vector.

Lemma 2.9. Let µ, λ, and η be positive numbers and let n ∈ N. Then for any
set E ⊂ Rn of the type Fσ, satisfying the conditions

|E| ≤ µ and mesn−1 Πk(E) ≥ λ (k = 1, ..., n), (2.18)

there exists 0 < h ≤ 2µ2n/(λη) such that

n∑
k=1

|{x ∈ E : x+ hek ∈ E}| < η. (2.19)

Proof. Let E ⊂ Rn satisfy (2.18). Denote

ϕE,k(h) = |{x ∈ E : x+ hek ∈ E}| =
∫
E

χE(x+ hek) dx (h > 0).

For any H > 0 and any k = 1, ..., n, we have∫ H

0

ϕE,k(h) dh =

∫
E

dx

∫ H

0

χE(x+ hek) dh

≤ |E|
∫
R
χE(y) dyk.
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Integrating over projection Πk(E), we obtain

mesn−1 Πk(E)

∫ H

0

ϕE,k(h) dh

≤ |E|
∫

ΠkE

dŷk

∫
R
χE(y) dyk = |E|2.

By (2.18), this implies that∫ H

0

ϕE,k(h) ≤ µ2

λ
(k = 1, ..., n).

Denoting

ϕE(h) =

n∑
k=1

ϕE,k(h),

we have ∫ H

0

ϕE(h) dh ≤ µ2n

λ
.

Thus,

inf
h∈[0,H]

ϕE(h) ≤ µ2n

λH

Setting H = 2µ2n/(λη), we obtain that there exists h ∈ (0, H] (depending on
µ, λ, η, and E) such that ϕE(h) < η.

Throughout this paper Br denotes the open ball with radius r > 0 centered
at the origin. In the sequel we shall use the standard mollifier (see, e.g, [18, p.
553])

ϕ(x) =

{
c exp(1/(|x|2 − 1)) if x ∈ B1

0 if x 6∈ B1,
(2.20)

where c > 0 is such that ∫
Rn
ϕ(x) dx = 1.

Set for τ > 0

ϕτ (x) =
1

τn
ϕ
(x
τ

)
. (2.21)

Then ϕτ (x) = 0 if |x| > τ, and∫
Rn
ϕτ (x) dx = 1. (2.22)
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We shall also use the following cutoff function

η(x) = (ϕ ∗ g)(x), (2.23)

where g is the characteristic function of the open ball B2. We have that
η ∈ C∞0 , η(x) = 1 if |x| ≤ 1 and η(x) = 0 if |x| ≥ 3.

Let f ∈ C∞(Rn)∩W 1
p (Rn). For any γ > 0 the function fγ(x) = f(x)η(γx)

belongs to C∞0 (Rn). Moreover, it is easy to see that for any ε > 0 there exists
γ0 > 0 such that for all 0 < γ ≤ γ0

||Dkfγ ||p < ||Dkf ||p + ε (k = 1, ..., n) (2.24)

(see, e.g., [24, p. 124]).

In the sequel we use also the following remark concerning capacities. Let
K ⊂ Rn be a compact set. Denote by P(K) the set of all functions f ∈
C∞0 (Rn) such that 0 ≤ f(x) ≤ 1 for all x ∈ Rn and f(x) = 1 in some
neighborhood of K. It is well known that the set N(K) in definitions (1.7) and
(1.8) may be replaced by P(K). Namely,

cap(K;W 1
p ) = inf

{(
n∑
k=1

||Dkf ||p

)p
: f ∈ P(K)

}

and

cap(K;Bαp,q) = inf{||f ||pbαp,q : f ∈ P(K)}

(see [20, 2.2.1]).

3 The Limit as α→ 1.

In this section we prove the main result of the paper. As we have already
mentioned in the Introduction, this result was inspired by the limiting relation
(1.3) proved in [5]. We observe that the following slight modification of (1.3)
holds: if a function f ∈ Lp(Rn) has a weak derivative Djf ∈ Lp(Rn), then
f ∈ Bαp,q;j(Rn) for any 1 ≤ q <∞ and any 0 < α < 1, and

lim
α→1−0

(1− α)1/q‖f‖bαp,q;j =

(
1

q

)1/q

‖Djf‖p .

This statement follows by standard arguments from Lemma 2.2 and inequality
(2.4) (see also [18, Section 14.3]).
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Theorem 3.1. Let n ≥ 2, 1 ≤ p < n, and 1 ≤ q <∞. Then for any open set
G ⊂ Rn

lim
α→1−0

(1− α)p/q cap
(
G;Bαp,q

)
=

(
1

q

)p/q
cap(G;W 1

p ). (3.1)

Proof. Denote

Λ(α) = (1− α)1/q
[
cap(G;Bαp,q

)
]1/p, 0 < α < 1. (3.2)

First we shall show that

lim
α→1−0

Λ(α) ≤ q−1/q[cap(G;W 1
p )]1/p. (3.3)

We assume that cap(G;W 1
p ) < ∞. Let K ⊂ G be a compact set and let

0 < ε < 1. There exists a function f ∈ C∞0 (Rn) such that

n∑
k=1

||Dkf ||p < (cap(K;W 1
p ) + ε)1/p, (3.4)

0 ≤ f(x) ≤ 1 for all x ∈ Rn, and f(x) = 1 in some neighborhood of K. Set
Eε = {x : f(x) > ε}. By Lemma 2.7,

|Eε| ≤ cp,n

(
n∑
k=1

||Dkf ||p

)p∗
ε−p

∗
, p∗ =

np

n− p
.

Using (3.4) and taking into account that K ⊂ G, we obtain that

|Eε| ≤ Aε−p
∗
, (3.5)

where A ≡ A(n, p,G) = cp,n[cap(G;W 1
p )) + 1]p

∗/p. We emphasize that A
doesn’t depend on K.

There exists an open set H such that K ⊂ H and f(x) = 1 on H. Let ρ
be the distance from K to the boundary of H and let 0 < τ < ρ/2. Set

fε(x) =
1

1− ε
max(f(x)− ε, 0) and fε,τ (x) = (fε ∗ ϕτ )(x),

where ϕτ is defined by (2.21). Then fε ∈W 1
p (Rn) and

||Dkfε||p ≤
1

1− ε
||Dkf ||p (k = 1, ..., n).
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Furthermore, Dkfε,τ=(Dkfε) ∗ ϕτ . Thus, by (2.22) and Young inequality,

||Dkfε,τ ||p ≤ ||Dkfε||p ≤
1

1− ε
||Dkf ||p (k = 1, ..., n). (3.6)

It is clear that fε(x) = 0 if x 6∈ Eε and 0 ≤ fε(x) ≤ 1 for all x ∈ Rn. First, by
(2.22) and (3.5), this imply that

||fε,τ ||p ≤ ||fε||p ≤ |Eε|1/p ≤ (Aε−p
∗
)1/p, A = A(n, p,G). (3.7)

We have also that 0 ≤ fε,τ (x) ≤ 1 for all x ∈ Rn. Furthermore, fε(x) = 1 on
H. This yields that fε,τ (x) = 1 for all x such that dist(x,K) < τ. Indeed, if
dist(x,K) < τ and |y| ≤ τ , then x− y ∈ H and fε(x− y) = 1. Thus,

fε,τ (x) =

∫
Bτ

ϕτ (y)fε(x− y) dy = 1.

Observe also that fε,τ ∈ C∞0 (Rn). Taking into account these properties of fε,τ ,
we have that

cap
(
K;Bαp,q

)
≤ ||fε,τ ||pbαp,q . (3.8)

Applying Lemma 2.4 with T = 1, we obtain

(1− α)1/q||fε,τ ||bαp,q ≤
(

1

q

)1/q
[

n∑
k=1

||Dkfε,τ ||p + 2

(
1− α
α

)1/q

||fε,τ ||p

]
.

Using (3.6) and (3.4) and taking into account that K ⊂ G, we have

n∑
k=1

||Dkfε,τ ||p ≤
1

1− ε
[
cap(G;W 1

p ) + ε
]1/p

.

The last two inequalities, together with (3.7) and (3.8), yield that

(1− α)1/q[cap
(
K;Bαp,q

)
]1/p

≤ 1

q1/q(1− ε)
[cap(G;W 1

p ) + ε]1/p +A′
(

1− α
αq

)1/q

ε−p
∗/p,

where A′ = 2A(n, p,G)1/p doesn’t depend on K. Taking supremum over all
compact sets K ⊂ G and using notation (3.2), we get

Λ(α) ≤ 1

q1/q(1− ε)
[cap(G;W 1

p ) + ε]1/p +A′
(

1− α
αq

)1/q

ε−p
∗/p.
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It follows that

lim
α→1−0

Λ(α) ≤ 1

q1/q(1− ε)
[cap(G;W 1

p ) + ε]1/p.

Since ε ∈ (0, 1) is arbitrary, this implies (3.3).
Now we shall prove that

lim
α→1−0

Λ(α) ≥ q−1/q[cap(G;W 1
p )]1/p. (3.9)

Let K ⊂ G be a compact set. Choose τ > 0 such that

Kτ = {x ∈ Rn : dist(x,K) ≤ 2τ} ⊂ G. (3.10)

Then Kτ is compact.
We assume that limα→1−0 Λ(α) <∞. There exists an increasing sequence

{αν} of numbers αν ∈ (0, 1) such that αν → 1 and

lim
ν→∞

Λ(αν) = lim
α→1−0

Λ(α). (3.11)

We assume also that

Λ(αν) ≤ lim
α→1−0

Λ(α) + 1 (ν ∈ N). (3.12)

For any ν ∈ N there exists a function fν ∈ C∞0 (Rn) such that 0 ≤ fν(x) ≤ 1
for all x ∈ Rn, fν(x) = 1 for all x ∈ Kτ , and

‖fν‖bανp,q ≤ cap
(
Kτ ;Bαp,q

)1/p
+

1

ν
.

Since Kτ ⊂ G, then cap
(
Kτ ;Bαp,q

)
≤ cap

(
G;Bαp,q

)
, and we have

(1− αν)1/q ‖fν‖bανp,q ≤ Λ(αν) +
1

ν
. (3.13)

We shall estimate ωj(fν ; δ)p. Using (3.13) and Lemma 2.6 with θ = ∞, we
obtain that

Λ(αν) +
1

ν
≥ q−1/q 1 + αν

2
δ−ανq

n∑
j=1

ωj(fν ; δ)p (3.14)

for any δ > 0 and any ν ∈ N. In particular, (3.14) and (3.12) yield that

n∑
k=1

ωk(fν ; δ)p ≤ Aδαν , δ > 0, (3.15)
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where A = 2q1/q(limα→1−0 Λ(α) + 2) depends only on p, q, n, and G. To get
also a control of Lp−norms, we apply truncation to the functions fν . Let
0 < ε < 1/2. Set

Eν,ε = {x ∈ Rn : fν(x) > ε}.

Let p∗ = np/(n− p) and pν = np/(n− ανp); then pν < p∗. By Lemma 2.8,

|Eν,ε| ≤ (2pν)pνε−pν ||fν ||pνbανp,∞ ≤ (2p∗)p
∗
ε−p

∗
||fν ||pνbανp,∞ .

Thus, using (3.15), we obtain

|Eν,ε| ≤ A′ε−p
∗

(ν ∈ N), (3.16)

where A′ depends only on p, q, n, and G, A′ = (2p∗A)p
∗
. Set now

fν,ε(x) =
1

1− ε
max(fν(x)− ε, 0).

It is easily seen that

ωj(fν,ε; δ)p ≤
1

1− ε
ωj(fν ; δ)p, δ ≥ 0 (j = 1, ..., n). (3.17)

Moreover, 0 ≤ fν,ε(x) ≤ 1 for all x ∈ Rn, fν,ε(x) = 1 for all x ∈ Kτ , and
fν,ε(x) = 0 for x 6∈ Eν,ε. Applying (3.16), we get

||fν,ε||pp ≤ |Eν,ε| ≤ A′ε−p
∗

(ν ∈ N). (3.18)

Besides, by (3.15) and (3.17),

ω(fν,ε; δ)p ≤ 2A′δα1 , δ ∈ [0, 1], ν ∈ N. (3.19)

By virtue of (3.18), (3.19), and the compactness criterion (see [8, p. 111]), for
any compact set Q ⊂ Rn there exists a subsequence of {fν,ε} that converges
in Lp(Q). Therefore, by Riesz’s theorem, for any compact set Q ⊂ Rn there
exists a subsequence of {fν,ε} that converges almost everywhere on Q. Let
Qs = [−s, s]n, s ∈ N. A successive extraction of subsequences gives strictly

increasing sequences {ν(s)
m } (s = 1, 2, ...) of natural numbers such that

{ν(1)
m } ⊃ {ν(2)

m } ⊃ ... ⊃ {ν(s)
m } ⊃ ...

and for each s ∈ N the subsequence {f
ν
(s)
m ,ε
} converges almost everywhere on

Qs. Then the diagonal subsequence {f
ν
(s)
s ,ε
} converges almost everywhere on
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Rn. For simplicity, we assume that {fν,ε} itself converges almost everywhere
on Rn. Let

fε(x) = lim
ν→∞

fν,ε(x).

Since fν,ε(x) = 1 on Kτ for any ν ∈ N, then

fε(x) = 1 for all x ∈ Kτ . (3.20)

We have also that 0 ≤ fε(x) ≤ 1 almost everywhere on Rn. Further, by Fatou’s
lemma and (3.18)

||fε||pp ≤ A′ε−p
∗
. (3.21)

Fatou’s lemma yields also that for any h > 0 and any j = 1, ..., n∫
Rn
|fε(x+ hej)− fε(x)|p dx ≤ lim

ν→∞

∫
Rn
|fν,ε(x+ hej)− fν,ε(x)|p dx.

Thus,
ωj(fε; δ)p ≤ lim

ν→∞
ωj(fν,ε; δ)p, δ ≥ 0 (j = 1, ..., n). (3.22)

Let ϕτ be the mollifier defined by (2.21). Set fε,τ = fε ∗ ϕτ . Clearly,
0 ≤ fε,τ (x) ≤ 1 for all x ∈ Rn and, by (2.22) and (3.20),

fε,τ (x) = 1 if dist(x,K) < τ. (3.23)

Besides, by Young inequality and (2.22),

ωj(fε,τ ; δ)p ≤ ωj(fε; δ)p, δ ≥ 0 (j = 1, ..., n). (3.24)

Applying inequalities (3.14) and (3.17), we obtain

Λ(αν) +
1

ν
≥ (1 + αν)(1− ε)

2q1/q
δ−αν

n∑
j=1

ωj(fν,ε; δ)p.

By (3.11), (3.22), and (3.24), this implies that

lim
α→1−0

Λ(α) ≥ 1− ε
q1/q

n∑
j=1

ωj(fε,τ ; δ)p
δ

(3.25)

for any δ > 0. Taking into account (3.21), we have fε,τ ∈ Lp(Rn) ∩ C∞(Rn).
Making δ tend to zero and applying Lemma 2.2, we obtain

lim
α→1−0

Λ(α) ≥ 1− ε
q1/q

n∑
j=1

||Djfε,τ ||p. (3.26)
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Let η be the cutoff function defined by (2.23)). Set g(x) = fε,τ (x)η(γx), γ > 0.
Then g ∈ C∞0 (Rn) and 0 ≤ g(x) ≤ 1 for all x ∈ Rn. If γ is sufficiently small,
then, by virtue of (3.23), g(x) = 1 if dist(x,K) < τ. Moreover, γ can be chosen
so small that (see (2.24))

||Djg||p < ||Djfε,τ ||p +
ε

n
(j = 1, ..., n).

Since
n∑
j=1

||Djg||p ≥ cap(K;W 1
p )1/p,

inequality (3.26) yields that

lim
α→1−0

Λ(α) ≥ 1− ε
q1/q

[cap(K;W 1
p )1/p − ε].

Taking into account that ε ∈ (0, 1) and a compact set K ⊂ G are arbitrary,
we obtain inequality (3.9). Together with (3.3), this gives (3.1).

Remark 3.2. The statement of Theorem 3.1 fails to hold for compact sets.
To show it, we use a theorem on capacity of a Cantor set [2, Section 5.3]. Let
1 < p < n, p = q, and let 0 < α < 1. It is known that in this case the
Bαp−capacity is equivalent to the Bessel capacity Cα,p [2, p. 107]. Set

lk = ((k + 4)22−kn)1/(n−p) (k = 0, 1, ...).

Then lk+1 < lk/2 for all k ≥ 0. Further,

∞∑
k=0

2−knlp−nk <∞ and

∞∑
k=0

2−knlαp−nk =∞

for any 0 < α < 1. Let E be the Cantor set corresponding to the sequence
{lk} defined in [2, (5.3.1)]. It follows by [2, Theorem 5.3.2] that

cap(E;W 1
p ) > 0 and cap(E;Bαp ) = 0

for any 0 < α < 1. Thus, equality (3.1) does not hold.

Remark 3.3. We observe that if n < p < ∞, n ∈ N, or p = n ≥ 2, then
equality (3.1) is trivially true. It is closely related to the fact that in these
cases the Sobolev capacity of a ball in Rn is equal to zero (see [20, p. 148]).
For completeness, we give the corresponding arguments in detail.
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First, let n < p < ∞. We consider the ball Br, r > 0. Let η be the
cutoff function defined by (2.23). Set fγ(x) = η(γx), where 0 < γ < 1/r.
Then fγ ∈ C∞0 (Rn), 0 ≤ fγ(x) ≤ 1 for all x ∈ Rn, and fγ(x) = 1 in some
neighborhood of Br. Further,

||Dkfγ ||p = γ1−n/p||Dkη||p (k = 1, ..., n). (3.27)

This implies that cap(Br;W 1
p ) = 0. Moreover, if n/p < α < 1, then we have

also that

cap(Br;Bαp,q) = 0 (3.28)

for any 1 ≤ q <∞. Indeed,

cap(Br;Bαp,q) ≤ ||fγ ||
p
bαp,q

.

Thus, applying Lemma 2.4 and (3.27), we obtain

||fγ ||bαp,q;k ≤ q
−1/q

[
(1− α)−1/qT 1−α||Dkfγ ||p + 2α−1/qT−α||fγ ||p

]
≤ ((1− α)q)−1/q||Dkη||pT 1−αγ1−n/p + 2(αq)−1/q||η||pT−αγ−n/p

for any T > 0 and any 1 ≤ k ≤ n. Setting T = 1/γ, we get

||fγ ||bαp,q;k ≤
[
((1− α)q)−1/q||Dkη||p + 2(αq)−1/q||η||p

]
γα−n/p.

Since 0 < γ < 1/r is arbitrary and α > n/p, this implies (3.28). Thus, if
p > n, then for any open set G ⊂ Rn both the capacities in relation (3.1) are
equal to 0.

Let now p = n ≥ 2. We have cap(Br;W 1
n) = 0 (r > 0) [20, p. 148]). At the

same time, it follows from Lemma 2.8 and inequality (2.9) that cap(Br;Bαn,q) >
0 for any 0 < α < 1 and any 1 ≤ q <∞. Nevertheless, we shall show that

lim
α→0

(1− α)n/q cap(Br;Bαn,q) = 0 (r > 0). (3.29)

Let σ = (n− 1)/(2n) and set

f0(x) =

{
| ln |x||σ if |x| ≤ 1

0 if |x| > 1.

It is easy to see that f ∈W 1
n(Rn). Let ε > 0. Set f1(x) = min(εf0(x), 1). Since

f0(x) → +∞ as x → 0, there exists a closed ball Uε centered at the origin
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such that f1(x) = 1 for all x ∈ Uε. There is γ > 0 such that γx ∈ Uε for all
x ∈ Br+1. Set f2(x) = f1(γx). Then

||Dkf2||n = ||Dkf1||n ≤ ε||Dkf0||n (k = 1, ..., n)

and

||f2||n =
||f1||n
γ
≤ ε||f0||n

γ
.

Finally, we define f = f2 ∗ ϕ1/2 (see (2.21)). Then f ∈ C∞0 (Rn), f(x) = 1 in
Br+1/2, and 0 ≤ f(x) ≤ 1 for all x ∈ Rn. Moreover,

||Dkf ||n ≤ ε||Dkf0||n (k = 1, ..., n) (3.30)

and

||f ||n ≤
ε||f0||n
γ

. (3.31)

First, this shows that cap(Br;W 1
n) = 0. Further, applying Lemma 2.4 with

T = 1 and using (3.30) and (3.31), we obtain

(1− α)1/q||f ||bαn,q;k ≤ q
−1/q

(
||Dkf ||n + 2

(
1− α
α

)1/q

||f ||n

)

≤ εq−1/q

(
||Dkf0||n +

2

γ

(
1− α
α

)1/q

||f0||n

)
.

Since cap
(
Br;Bαn,q

)
≤ ||fγ ||nbαn,q , this implies that

lim
α→0

(1− α)1/q cap(Br;Bαn,q)1/n ≤ εq−1/q
n∑
k=1

||Dkf0||n.

By view of the arbitrariness of ε > 0, we obtain (3.29). Thus, for p = n ≥ 2
(3.1) also is trivially true.

Remark 3.4. The remaining case p = n = 1 is also ”degenerate”. First,
if a set E consists of one point, E = {x0}, then cap(E;W 1

1 ) ≥ 2. Indeed, if
f ∈ C∞0 (R) and f(x0) = 1, then

−
∫ ∞
x0

f ′(x) dx =

∫ x0

−∞
f ′(x) dx = 1.

Thus, ||f ′||1 ≥ 2. Further, let K ⊂ R be an arbitrary compact set, K ⊂
[−a, a] (a > 0). Set

fa(x) =

{
1 if |x| ≤ a
(a/x)2 if |x| > a.

(3.32)
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Then fa ∈ W 1
1 (R) and ||f ′a||1 = 2. We obtain that cap(K;W 1

1 ) = 2 for any
compact set K 6= ∅, and therefore cap(G;W 1

1 ) = 2 for any non-empty open
set G ⊂ R.

Now we observe that for any f ∈ L1(R) and any h > 0∫ ∞
0

|f(x)− f(x+ h)| dx

≥
∫ ∞

0

|f(x)| dx−
∫ ∞

0

|f(x+ h)| dx =

∫ h

0

|f(x)| dx,

and similarly ∫ 0

−∞
|f(x)− f(x+ h)| dx ≥

∫ h

0

|f(x)| dx.

Thus,

ω(f ;h)1 ≥ 2

∫ h

0

|f(x)| dx (h > 0). (3.33)

Let I = [−h0, h0] (h0 > 0). Let f ∈ L1(R) and f(x) = 1 on I. Then, by
(3.33), ω(f ;h)1 ≥ 2h for all 0 ≤ h ≤ h0. Thus, for any 1 ≤ q <∞

(1− α)||f ||qbα1,q ≥ (1− α)

∫ h0

0

h−αqω(f ;h)q1
dh

h

≥ 2q(1− α)

∫ h0

0

h(1−α)q dh

h
=

2q

q
h

(1−α)q
0 .

This implies that

lim
α→1−

(1− α)1/q cap(G;Bα1,q) ≥ 2q−1/q

for any open set G ⊂ R. On the other hand, assume that G ⊂ [−a, a] (a > 0).
Applying Lemma 2.4 to the function (3.32), we have

(1− α)1/q||fa||bα1,q ≤ q
−1/q||f ′a||1 + 2

(
1− α
αq

)1/q

||fa||1

= q−1/q

[
2 + 8a

(
1− α
α

)1/q
]
.

It follows that
lim
α→1−

(1− α)1/q cap(G;Bα1,q) ≤ 2q−1/q.

Thus, for any open bounded set G ⊂ R

lim
α→1−

(1− α)1/q cap(G;Bα1,q) = q−1/q cap(G;W 1
1 ) = 2q−1/q.
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4 The Limit as α→ 0.

In this section we study the behaviour of Bαp,q−capacities as α→ 0 (cf. (1.6)
and Remark 4.3 below).

Theorem 4.1. Let 1 ≤ p < ∞ and 1 ≤ q < ∞. Then for any compact set
K ⊂ Rn

lim
α→0+

αp/qcap(K;Bαp,q) = 2np
(

1

q

)p/q
|K|. (4.1)

Proof. Denote

Λ(α) = α1/q
[
cap(K;Bαp,q

)
]1/p, 0 < α < 1.

First we prove that

lim
α→0+

Λ(α) ≥ n21/pq−1/q|K|1/p. (4.2)

We assume that |K| > 0. It is clear that limα→0+ Λ(α) < ∞. There exists a
decreasing sequence {αν} of numbers αν ∈ (0, 1/2] with α1 = min(1, n/p)/2
such that αν → 0 and

lim
ν→∞

Λ(αν) = lim
α→0+

Λ(α). (4.3)

We emphasize that αν < n/p for all ν ∈ N. We may assume that

Λ(αν) ≤ lim
α→0+

Λ(α) + 1 (ν ∈ N). (4.4)

For any ν ∈ N there exists a function fν ∈ C∞0 (Rn) such that 0 ≤ fν(x) ≤ 1
for all x ∈ Rn, fν(x) = 1 for all x ∈ K, and

Λ(αν) ≥ α1/q
ν ||fν ||bανp,q −

1

ν
.

Applying Lemma 2.5 for θ =∞, we obtain that

Λ(αν) +
1

ν
≥ q−1/qt−αν

n∑
j=1

ωj(fν ; t)p (4.5)

for any t > 0 and any ν ∈ N. In particular, by (4.4) and (4.5),

n∑
j=1

ωj(fν ; t)p ≤ Atαν , t > 0, (4.6)
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where A depends only on p, q, n, and K.
Let 0 < ε < 1. Set

Eν,ε = {x ∈ Rn : fν(x) > ε}.

Denote pν = np/(n− ανp). Then pν ≤ p1. By Lemma 2.8,

|Eν,ε| ≤ (2pν)pνε−pν ||fν ||pνbανp,∞ ≤ (2p1)p1ε−p1 ||fν ||pνbανp,∞ .

Thus, using (4.6), we obtain that

|Eν,ε| ≤ A′ε−p1 (ν ∈ N), (4.7)

where A′ depends only on p, q, n, and K.
Since |K| > 0, there exists a number λ(K) > 0 such that

mesn−1 Πj(K) ≥ λ(K) for all 1 ≤ j ≤ n.

Further, K ⊂ Eν,ε, and thus

mesn−1 Πj(Eν,ε) ≥ λ(K) (ν ∈ N, j = 1, ..., n).

Now we apply Lemma 2.9 with µ = A′ε−p1 , λ = λ(K), and η = ε|K|. Set
H = 2µ2n/(λη). By Lemma 2.9, for any ν ∈ N there exists hν ∈ (0, H] such
that

n∑
j=1

|{x ∈ Eν,ε : x+ hνej ∈ Eν,ε}| < ε|K|. (4.8)

We emphasize that H doesn’t depend on ν. Denote

K
(ν)
j = {x ∈ Rn : x+ hνej ∈ K}.

Since K ⊂ Eν,ε (ν ∈ N), we derive from (4.8) that for any ν ∈ N and any
j = 1, ..., n

|{x ∈ K : fν(x+ hνej) ≤ ε}| > (1− ε)|K|,

|{x ∈ K(ν)
j : fν(x) ≤ ε}| > (1− ε)|K|,

and |K ∩ K(ν)
j | < ε|K|. Thus, taking into account that 0 ≤ fν(x) ≤ 1 and

fν(x) = 1 on K, we obtain

ωj(fν ;H)pp ≥
∫
K

|fν(x)− fν(x+ hνej)|p dx

+

∫
K

(ν)
j

|fν(x)− fν(x+ hνej)|p dx− ε|K| ≥ 2(1− ε)p+1|K| − ε|K|
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for all 1 ≤ j ≤ n. From here and (4.5),

Λ(αν) +
1

ν
≥ q−1/qH−αν

n∑
j=1

ωj(fν ;H)p

≥ nq−1/qH−αν [(2(1− ε)p+1 − ε)|K|]1/p.

By (4.3), this implies that

lim
α→0+

Λ(α) ≥ nq−1/q[(2(1− ε)p+1 − ε)|K|]1/p.

Since ε ∈ (0, 1) is arbitrary, this yields (4.2).
Now we shall prove that

lim
α→0+

Λ(α) ≤ n21/pq−1/q|K|1/p. (4.9)

Set for τ > 0
Kτ = {x ∈ Rn : dist(x,K) ≤ 2τ}. (4.10)

Fix 0 < ε < 1 and choose τ > 0 such that

|Kτ | < |K|+ ε. (4.11)

Let ϕτ be the standard mollifier defined by (2.20). Set

fτ = χτ ∗ ϕτ ,

where χτ is the characteristic function of the set Kτ . Then fτ ∈ C∞0 (Rn),
0 ≤ fτ (x) ≤ 1 for all x ∈ Rn, and fτ (x) = 1 for all x such that dist(x,K) ≤ τ.
Thus,

cap(K;Bαp,q) ≤ ||fτ ||
p
bαp,q

. (4.12)

Using (2.6) and (2.22), we have

ωj(fτ ; t)p ≤ ωj(χτ ; t)p ≤ (2|Kτ |)1/p ≤ [2(|K|+ ε)]1/p. (4.13)

Applying (2.7) and (4.13), we obtain

α1/q||fτ ||bαp,q = α1/q
n∑
j=1

(∫ ∞
0

t−αqωj(fτ ; t)qp
dt

t

)1/q

≤ α1/q
n∑
j=1

[
||Djfτ ||p

(∫ 1

0

t(1−α)q dt

t

)1/q

+

(∫ ∞
1

t−αqωj(fτ ; t)qp
dt

t

)1/q
]

≤
(

α

(1− α)q

)1/q n∑
j=1

||Djfτ ||p + n21/pq−1/q(|K|+ ε)1/p.
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This estimate and (4.12) imply that

Λ(α) ≤
(

α

(1− α)q

)1/q n∑
j=1

||Djfτ ||p + 21/pq−1/qn(|K|+ ε)1/p.

It follows that
lim
α→0+

Λ(α) ≤ n21/pq−1/q(|K|+ ε)1/p.

Since ε ∈ (0, 1) is arbitrary, this implies (4.9). Inequalities (4.2) and (4.9)
yield (4.1).

Remark 4.2. Generally, Theorem 4.1 fails to hold for open sets. As in Section
3, we shall show it using Cantor sets [2, Section 5.3].

Let f ∈ Bαp (Rn) an let δλf(x) = f(λx) (λ > 0) be a dilation of f . It is
easily seen that

||δλf ||pbαp = λαp−n||f ||pbαp . (4.14)

Assume that p > 1 and 0 < α < min(1, n/p). Recall that in this case the
Bαp -capacity is equivalent to the Bessel capacity Cα,p [2, p. 107]. There exists
k0 = k0(α) such that the sequence

lk = (2−kn(k + k0)2)1/(n−αp)

satisfies the condition lk+1 ≤ lk/2 (k = 0, 1, ...). Moreover,

∞∑
k=0

2−knlαp−nk <∞.

Let Kα be the Cantor set corresponding to the sequence {lk}, defined in [2,
(5.3.1)]. Then |Kα| = 0 and by [2, Theorem 5.3.2], cap(Kα;Bαp ) > 0. For
λ > 0, set

Kα,λ = {x ∈ Rn :
x

λ
∈ Kα}.

There exists a function fα,λ ∈ C∞0 such that 0 ≤ fα,λ(x) ≤ 1 for all x ∈ Rn,
fα,λ(x) = 1 in some neighborhood of Kα,λ, and

||fα,λ||pbαp ≤ cap(Kα,λ;Bαp ) + 1.

Set gα,λ(x) = fα,λ(λx). Then gα,λ(x) = 1 in some neighborhood of Kα. Thus,
using (4.14), we obtain

cap(Kα;Bαp ) ≤ ||gα,λ||pbαp = λαp−n||fα,λ||pbαp
≤ λαp−n(cap(Kα,λ;Bαp ) + 1).
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From here,
cap(Kα,λ;Bαp ) ≥ λn−αp cap(Kα;Bαp )− 1.

Since cap(Kα;Bαp ) > 0, we can choose such λ(α) > 0 that

α cap(Kα,λ(α);B
α
p ) > 1.

Thus, for any 0 < α < min(1, n/p) there exists a compact set Eα such that

|Eα| = 0 and α cap(Eα;Bαp ) > 1.

Let j0 = [(min(1, n/p))−1] + 1. Set E∗j = E1/j , j ≥ j0. Then

α cap(E∗j ;Bαp ) > 1 for α =
1

j
(j ≥ j0).

Further, set E = ∪∞j=j0E
∗
j . Then |E| = 0. Let 0 < ε < 1. There exists an open

set G such that E ⊂ G and |G| < ε. We have

α cap(G;Bαp ) ≥ α cap(E∗j ;Bαp ) > 1 for α =
1

j
(j ≥ j0).

Thus,
lim
α→0

α cap(G;Bαp ) ≥ 1,

and equality (4.1) does not hold for the set G.

Remark 4.3. Our final remark concerns limiting relation (1.6). This relation
was proved in [21] for the seminorm(∫

Rn

∫
Rn

|f(x+ h)− f(x)|p

|h|n+αp
dxdh.

)1/p

.

It is well known that this seminorm is equivalent to ||f ||bαp . We shall briefly
discuss the limiting behaviour of α||f ||bαp .

Assume that a function f belongs to Bα0
p,q(Rn) for some 0 < α0 < 1. Then

f ∈ Bαp,q(Rn) for any 0 < α ≤ α0. Moreover, it follows immediately from [10,
Lemma 1] that

lim
α→0

α1/q‖f‖bαp,q = q−1/q
n∑
j=1

ωj(f ; +∞)p. (4.15)

It is also easily seen that

lim
h→∞

∫
Rn
|f(x+ hej)− f(x)|p dx = 2||f ||pp (j = 1, ..., n).
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This equality and (2.5) imply that for a nonnegative f

ωj(f ; +∞) = 21/p||f ||p (j = 1, ..., n) (4.16)

and thus by (4.15)

lim
α→0

α1/q‖f‖bαp,q = q−1/q21/pn||f ||p if f ≥ 0. (4.17)

However, equalities (4.16) and (4.17) fail to hold in a general case. We consider
the following simple example for n = 1. Let Ik = [k, k + 1) (k = 0, 1, ..., 2ν).
Set

fν(x) =

2ν∑
k=0

(−1)kχIk(x).

Then ||fν ||p = (2ν + 1)1/p. Further,∫
R
|fν(x+ 1)− fν(x)|p dx

≥
2ν−1∑
k=0

∫
Ik

|fν(x+ 1)− fν(x)|p dx = 2p+1ν.

Thus,

ω(fν ; 1)p ≥ 2

(
2ν

2ν + 1

)1/p

||fν ||p.

It shows that the constant 2 on the right-hand side of (2.4) is optimal, and
thus (4.16) and (4.17) may not be true.
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