Krzysztof Chris Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310 and Department of Radiology, MIPG, University of Pennsylvania, Blockley Hall - 4th Floor, 423 Guardian Drive, Philadelphia, PA 19104-6021, U.S.A. email: KCies@math.wvu.edu
Timothy Glatzer,* Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310. email: tglatzer@math.wvu.edu

FUNCTIONS CONTINUOUS ON TWICE DIFFERENTIABLE CURVES, DISCONTINUOUS ON LARGE SETS

Abstract

We provide a simple construction of a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ discontinuous on a perfect set P, while having continuous restrictions $F \upharpoonright C$ for all twice differentiable curves C. In particular, F is separately continuous and linearly continuous.

While it has been known that the projection $\pi[P]$ of any such set P onto a straight line must be meager, our construction allows $\pi[P]$ to have arbitrarily large measure. In particular, P can have arbitrarily large 1Hausdorff measure, which is the best possible result in this direction, since any such P has Hausdorff dimension at most 1 .

1 Introduction.

In this paper, a curve is understood as the range of a continuous injection $h=\left\langle h_{1}, h_{2}\right\rangle$ of an interval J into the plane \mathbb{R}^{2}. A curve C is said to be smooth (or \mathcal{C}^{1}), if the coordinate functions h_{1} and h_{2} are continuously differentiable (i.e., are \mathcal{C}^{1}) and $\left\langle h_{1}^{\prime}(t), h_{2}^{\prime}(t)\right\rangle \neq\langle 0,0\rangle$ for every $t \in J$; we say that C is twice differentiable (or D^{2}), when it is smooth (so, its derivative nowhere vanishes) and the coordinate functions are twice differentiable. It has been proved by Rosenthal [17] that

[^0](*) For any function $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$, if its restriction $G \upharpoonright C$ is continuous for every smooth curve C, then G is continuous. However, there exists a discontinuous function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $F \upharpoonright C$ continuous for all twice differentiable curves $C .{ }^{1}$

The function F constructed by Rosenthal was discontinuous at a single point. The function constructed in our Theorem 4 seems to be the first example of a function with continuous restrictions to all twice differentiable curves, which has uncountable set of points of discontinuity.

For a family \mathfrak{C} of curves C in the plane \mathbb{R}^{2}, we say that $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is \mathfrak{C}-continuous, provided its restriction $F \upharpoonright C$ is continuous for every $C \in \mathfrak{C}$. The \mathfrak{C}-continuous functions for different classes \mathfrak{C} of curves have been studied from the dawn of mathematical analysis. For the class \mathcal{L}_{0} of straight lines parallel to either of the axis, the \mathcal{L}_{0}-continuity coincides with separate continuity (referring to maps F with section functions $F(\cdot, y)$ and $F(x, \cdot)$ continuous for every $x, y \in \mathbb{R}$). Separately continuous functions have been investigated by many prominent mathematicians: Volterra (see Baire [2, p. 95]), Baire (1899, see [2]), Lebesgue (1905, see [13, pp. 201-202]), and Hahn (1919, see [9]). For the class \mathcal{L} of all straight lines, \mathcal{L}-continuity is known under the name linear continuity. It has been known by J. Thomae (1870, see [20, p. 15] or [11]) that linearly continuous function need not be continuous. A simple example of such a function, which can be traced to a 1884 treatise on calculus by Genocchi and Peano [10], is defined as $F(x, y)=\frac{x y^{2}}{x^{2}+y^{4}}$ for $\langle x, y\rangle \neq\langle 0,0\rangle$, and $F(0,0)=0$. Scheeffer (1890, see [18]) and Lebesgue (1905, see [13, pp. 199-200]) have also noticed that the continuity along all analytic curves does not implies continuity. The question for what classes \mathfrak{C} of curves does \mathfrak{C}-continuity imply continuity, apparently addressed in all works cited above, has been elegantly answered in 1955 by Rosenthal, as we stated in (*).

A next natural question, in this line of research, is about the structure of the sets $D(F)$ of points of discontinuity of \mathfrak{C}-continuous functions F for different classes \mathfrak{C} of curves. Of course, every set $D(F)$ must be F_{σ}. This follows from a well known result (see [14, thm. 7.1]) that, for arbitrary $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$, $D(F)$ is a union of the closed sets $D_{n}(F)=\left\{z \in \mathbb{R}^{2}: \omega_{F}(z) \geq 2^{-n}\right\}$, where $\omega_{F}(z)=\lim _{\delta \rightarrow 0^{+}} \sup \{|F(z)-F(w)|:\|z-w\|<\delta\}$ is the oscillation of F at z.

The structure of sets $D(F)$ for separately continuous functions (i.e., for $\mathfrak{C}=\mathcal{L}_{0}$) was examined by Young and Young (1910, see [21]) and was fully

[^1]described in 1943 by Kershner [12] (compare also [4]), who showed that a set $D \subset \mathbb{R}^{2}$ is equal to $D(F)$ for a separately continuous $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ if and only if D is F_{σ} and the projection of D onto each axis is meager. More precisely, the characterization follows from the fact that a bounded set $D \subset \mathbb{R}^{2}$ is equal to the set $D_{n}(F)=\left\{z \in \mathbb{R}^{2}: \omega_{F}(z) \geq 2^{-n}\right\}$ for a separately continuous $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ if and only if D is closed and its projection onto each axis is nowhere dense. Notice, that this characterization implies, in particular, that a set of points of discontinuity a separately continuous $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ can have full planar measure.

The structure of sets $D(F)$ for linearly continuous functions $F: \mathbb{R}^{2} \rightarrow$ \mathbb{R} is considerable more restrictive, as can be seen by the following result of Slobodnik [19]. More on separate continuity can be found in [7, 15, 16].

Proposition 1. If D is the set of points of discontinuity of a linearly continuous function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then
$(\bullet) D$ is a union of sets $D_{n}, n=1,2,3, \ldots$, where each D_{n} is a rotation of a graph $h_{n} \upharpoonright P_{n}$ of a Lipschitz function $h_{n}: \mathbb{R} \rightarrow \mathbb{R}$ restricted to a compact nowhere dense set P_{n}.

Since the graph of a Lipschitz function has Hausdorff dimension 1 (see e.g. [8, sec. 3.2]), this means that so does any set of points of discontinuity of a linearly continuous function. We have recently shown [5] that the condition (\bullet) is actually quite close to the full characterization of sets $D(F)$ for linearly continuous functions F, by proving that: if D is as in (\bullet), where each function h_{n} is either convex or \mathcal{C}^{2}, then D is equal to the set of points of discontinuity of some linearly continuous function. This new result implies, in particular, that any meager F_{σ} subset of a line is the set of points of discontinuity of some linearly continuous function; so such a set may have positive 1-Hausdorff measure.

The main goal of this paper is to show that a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with continuous restrictions to all twice differentiable curves can also have a set of points of discontinuity with large 1-Hausdorff measure.

Notice, that any smooth curve C, with associated injection $h=\left\langle h_{1}, h_{2}\right\rangle$, is locally (at a neighborhood of an arbitrary point $\left\langle h_{1}(t), h_{2}(t)\right\rangle$) a function of either variable x (when $h_{1}^{\prime}(t) \neq 0$) or of variable y (when $h_{2}^{\prime}(t) \neq 0$). Thus, $\mathfrak{C}\left(\mathcal{C}^{1}\right)$-continuity with respect to the class $\mathfrak{C}\left(\mathcal{C}^{1}\right)$ of all smooth curves is the same as the $\mathcal{C}^{1} \cup\left(\mathcal{C}^{1}\right)^{-1}$-continuity, where \mathcal{C}^{1} is the class of all continuously differentiable functions $g: \mathbb{R} \rightarrow \mathbb{R}$, and $\left(\mathcal{C}^{1}\right)^{-1}=\left\{g^{-1}: g \in \mathcal{C}^{1}\right\}$, with g^{-1} understood as an inverse relation, that is, as $g^{-1}=\{\langle g(y), y\rangle: y \in \mathbb{R}\}$. Similarly, $\mathfrak{C}\left(D^{2}\right)$-continuity, where $\mathfrak{C}\left(D^{2}\right)$ is the class of all (smooth) twice differentiable curves, coincides with $D^{2} \cup\left(D^{2}\right)^{-1}$-continuity.

2 The main result.

Our example will be constructed using the following simple, but general result on \mathfrak{C}-continuous functions. Recall that the support of a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$, denoted as $\operatorname{supp}(F)$, is defined as the closure of the set $\left\{x \in \mathbb{R}^{2}: f(x) \neq 0\right\}$. Symbol ω will be used here to denote the first infinite ordinal number, which is identified with the set of all natural numbers, $\omega=\{0,1,2, \ldots\}$.

Lemma 2. Let \mathfrak{C} be a family of curves in \mathbb{R}^{2} and let $\left\{D_{j} \subset \mathbb{R}^{2}: j<\omega\right\}$ be a pointwise finite family of open sets such that
(F) the set $\left\{j<\omega: D_{j} \cap C \neq \emptyset\right\}$ is finite for every $C \in \mathfrak{C}$.

Then for every sequence $\left\langle F_{j}: j<\omega\right\rangle$ of continuous functions from \mathbb{R}^{2} into \mathbb{R} such that $\operatorname{supp}\left(F_{i}\right) \subset D_{i}$ for all $i<\omega$, the function $F \stackrel{\text { def }}{=} \sum_{j<\omega} F_{j}$ is \mathfrak{C}-continuous. Moreover, if

- the diameters of the sets D_{j} go to 0 , as $j \rightarrow \infty$,
- \hat{P} is the set of all $z \in \mathbb{R}^{2}$ for which every open $U \ni z$ intersects infinitely many sets D_{j}, and
- each function F_{j} is onto $[0,1]$,
then $\hat{P}=D(F)=\left\{z \in \mathbb{R}^{2}: \omega_{F}(z)=1\right\}$.
Proof. The first part is obvious. The second follows easily from the fact, that, for any $z \in \hat{P}$, every open $U \ni z$ contains infinitely many sets D_{j}.

Lemma 2 will be used with $\hat{P}=h \upharpoonright P$, the graph of h restricted to P, where h and P are from the proposition below.

Proposition 3. For every $M \in[0,1)$ there exists a \mathcal{C}^{1} function $h: \mathbb{R} \rightarrow \mathbb{R}$ and a nowhere dense perfect $P \subset(0,1)$ of measure M such that for every $\hat{x} \in P$:

$$
\begin{equation*}
h^{\prime}(\hat{x})=0 \text { and } \lim _{x \rightarrow \hat{x}} \frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^{2}}=\infty \tag{1}
\end{equation*}
$$

We will postpone the proof of Proposition 3 till the next section. However, we like to notice here, that the limit $\lim _{x \rightarrow \hat{x}} \frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^{2}}$ is a variant of the limit $\lim _{x \rightarrow \hat{x}} 2 \frac{h(x)-h(\hat{x})}{(x-\hat{x})^{2}}$, which constitutes a generalized second derivative (related to Peano derivative) of h at \hat{x}. Indeed, if $h^{\prime \prime}(\hat{x})$ exists, finite or infinite, then, by l'Hôpital's Rule, $\lim _{x \rightarrow \hat{x}} 2 \frac{h(x)-h(\hat{x})}{(x-\hat{x})^{2}}=\lim _{x \rightarrow \hat{x}} 2 \frac{h^{\prime}(x)-0}{2(x-\hat{x})}=\lim _{x \rightarrow \hat{x}} \frac{h^{\prime}(x)-h^{\prime}(\hat{x})}{x-\hat{x}}=$ $h^{\prime \prime}(\hat{x})$. We need Proposition 3 in its current form, since there is no \mathcal{C}^{1} function
h having an infinite second derivative on set of positive measure. ${ }^{2}$ But see also remarks at the end of this section.

Theorem 4. Let h and P be as in Proposition 3. Then $\hat{P}=h \upharpoonright P$ is the set of points of discontinuity of a D^{2}-continuous function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Moreover, F has oscillation equal 1 at every point from \hat{P}.

Proof. Let $\left\{J_{j}: j<\omega\right\}$ be an enumeration, without repetitions, of bounded connected components of $\mathbb{R} \backslash P$. For every $j<\omega$ let the I_{j} be the open middle third subinterval of J_{j} and let F_{j} be a continuous function from \mathbb{R}^{2} onto $[0,1]$ with $\operatorname{supp}\left(F_{j}\right)$ contained in $D_{j}=\left\{\langle x, y\rangle \in \mathbb{R}^{2}: x \in I_{j} \&|y-h(x)|<\left|I_{j}\right|^{3}\right\}$, where $\left|I_{j}\right|$ is the length of I_{j}. We will show that the function $F=\sum_{j<\omega} F_{j}$ is as required.

It is enough to show that sets D_{j} satisfy property (F) for $\mathfrak{C}=D^{2} \cup\left(D^{2}\right)^{-1}$, since all other assumptions of Lemma 2 are clearly satisfied. To see this, fix a D^{2} function $g: \mathbb{R} \rightarrow \mathbb{R}$. We need to prove that both g and g^{-1} intersect only finitely many sets D_{j}.

To see that g intersects only finitely many sets D_{j}, by way of contradiction, assume that there is an infinite set $\left\{j_{n}: n<\omega\right\}$ such that $g \cap D_{j_{n}} \neq \emptyset$. For $n<\omega$ choose $\left\langle x_{n}, y_{n}\right\rangle \in g \cap D_{j_{n}}$. Then $g\left(x_{n}\right)=y_{n}$ for all $n<\omega$. Choosing a subsequence, if necessary, we can assume that $\lim _{n \rightarrow \infty} x_{n}=\hat{x} \in P$. Then, by the definition of sets D_{j}, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(y_{n}-h\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} \frac{y_{n}-h\left(x_{n}\right)}{x_{n}-\hat{x}}=\lim _{n \rightarrow \infty} \frac{y_{n}-h\left(x_{n}\right)}{\left(x_{n}-\hat{x}\right)^{2}}=0 \tag{2}
\end{equation*}
$$

as $\lim _{n \rightarrow \infty}\left|\frac{y_{n}-h\left(x_{n}\right)}{\left(x_{n}-\hat{x}\right)^{2}}\right| \leq \lim _{n \rightarrow \infty} \frac{\left|y_{n}-h\left(x_{n}\right)\right|}{\left|I_{j_{n}}\right|^{2}} \leq \lim _{n \rightarrow \infty}\left|I_{j_{n}}\right|=0$. In particular,

$$
g(\hat{x})=\lim _{n \rightarrow \infty} g\left(x_{n}\right)=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty}\left(y_{n}-h\left(x_{n}\right)\right)+\lim _{n \rightarrow \infty} h\left(x_{n}\right)=h(\hat{x})
$$

and
$g^{\prime}(\hat{x})=\lim _{n \rightarrow \infty} \frac{y_{n}-h(\hat{x})}{x_{n}-\hat{x}}=\lim _{n \rightarrow \infty} \frac{y_{n}-h\left(x_{n}\right)}{x_{n}-\hat{x}}+\lim _{n \rightarrow \infty} \frac{h\left(x_{n}\right)-h(\hat{x})}{x_{n}-\hat{x}}=h^{\prime}(\hat{x})=0$.
Hence, by l'Hôpital's Rule, $\lim _{x \rightarrow \hat{x}} \frac{g(x)-g(\hat{x})}{(x-\hat{x})^{2}}=\lim _{x \rightarrow \hat{x}} \frac{g^{\prime}(x)-0}{2(x-\hat{x})}=\frac{1}{2} g^{\prime \prime}(\hat{x})$ and, using (2) once more,

$$
\lim _{n \rightarrow \infty} \frac{h\left(x_{n}\right)-h(\hat{x})}{\left(x_{n}-\hat{x}\right)^{2}}=\lim _{n \rightarrow \infty} \frac{h\left(x_{n}\right)-y_{n}}{\left(x_{n}-\hat{x}\right)^{2}}+\lim _{n \rightarrow \infty} \frac{g\left(x_{n}\right)-g(\hat{x})}{\left(x_{n}-\hat{x}\right)^{2}}=\frac{1}{2} g^{\prime \prime}(\hat{x})
$$

[^2]where the first equation is justified by $y_{n}=g\left(x_{n}\right)$ and $h(\hat{x})=g(\hat{x})$. But this contradicts the assumption on h that $\lim _{x \rightarrow \hat{x}} \frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^{2}}=\infty$.

To see that g^{-1} intersects only finitely many sets D_{j}, by way of contradiction, assume that there is an infinite set $\left\{j_{n}: n<\omega\right\}$ such that $g^{-1} \cap D_{j_{n}} \neq \emptyset$. For $n<\omega$ choose $\left\langle x_{n}, y_{n}\right\rangle \in g^{-1} \cap D_{j_{n}}$. Then $g\left(y_{n}\right)=x_{n}$ for all $n<\omega$. Choosing a subsequence, if necessary, we can assume that $\lim _{n \rightarrow \infty} x_{n}=\hat{x} \in P$. Then, $\hat{y} \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty}\left(y_{n}-h\left(x_{n}\right)\right)+\lim _{n \rightarrow \infty} h\left(x_{n}\right)=h(\hat{x})$ and also $g(\hat{y})=\lim _{n \rightarrow \infty} g\left(y_{n}\right)=\lim _{n \rightarrow \infty} x_{n}=\hat{x}$. Since, by the assumptions from Proposition $3, h^{\prime}(\hat{x})=0$ we obtain

$$
\begin{aligned}
1 & =\lim _{n \rightarrow \infty} \frac{g\left(y_{n}\right)-g(\hat{y})}{y_{n}-\hat{y}} \cdot \frac{y_{n}-\hat{y}}{g\left(y_{n}\right)-g(\hat{y})} \\
& =\lim _{n \rightarrow \infty} \frac{g\left(y_{n}\right)-g(\hat{y})}{y_{n}-\hat{y}} \cdot \lim _{n \rightarrow \infty} \frac{y_{n}-h(\hat{x})}{x_{n}-\hat{x}} \\
& =g^{\prime}(\hat{y}) \cdot h^{\prime}(\hat{x})=g^{\prime}(\hat{y}) \cdot 0=0,
\end{aligned}
$$

a contradiction.
It is also worth to notice here, that if $h: \mathbb{R} \rightarrow \mathbb{R}$ is a \mathcal{C}^{1} homeomorphism and P is a perfect set such that $h^{\prime \prime}(\hat{x})=\lim _{x \rightarrow \hat{x}} \frac{h^{\prime}(x)-h^{\prime}(\hat{x})}{x-\hat{x}}=\infty$ for every $\hat{x} \in P$, then a small modification of the above proof gives a D^{2} continuous function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $D(F)=h \upharpoonright P$. This remark is of interest here, since such an h is easily constructed with standard calculus tools, see e.g. [6, Example 4.5.1]. However, as mentioned above, for such an h, neither can P have positive measure, nor can we have $h^{\prime}(x)=0$ for more than finitely many points x from P. So, in the modified argument for g, the fraction $\frac{h\left(x_{n}\right)-h(\hat{x})}{\left(x_{n}-\hat{x}\right)^{2}}$ would need to be replaced with $\frac{h\left(x_{n}\right)-\left[h^{\prime}(\hat{x})\left(x_{n}-\hat{x}\right)+h(\hat{x})\right]}{\left(x_{n}-\hat{x}\right)^{2}}$. Moreover, the same argument that we used to show that $g \notin D^{2}$ would need to be repeated for g^{-1}, however, this would require more restrictions in the definition of the sets D_{j} to allow for the reversed role of the variables x and y.

3 Proof of Proposition 3

Function h described below is a minor modification of a map f from $[1$, thm. 18].

Let $\varepsilon \in(0,1)$ be such that $M<1-\varepsilon$ and let K be a symmetrically defined Cantor-like subset of $[0,1]$ of measure $1-\varepsilon$. More precisely, the set K is defined as $K=\bigcap_{n<\omega} \bigcup_{s \in 2^{n}} I_{s}=[0,1] \backslash \bigcup_{s \in 2^{<\omega}} J_{s}$, where: 2^{n} denotes the set of all sequences from $n=\{0,1, \ldots, n-1\}$ into $2=\{0,1\} ; 2^{<\omega}=\bigcup_{n<\omega} 2^{n}$
is the set of all finite $0-1$ sequences; $I_{\emptyset}=[0,1]$, and, for any $s \in 2^{n}, J_{s}$ is an open interval of length $\frac{\varepsilon}{3^{n+1}}$ sharing the center with I_{s}, while $I_{s^{\wedge} 0}$ and $I_{s^{\wedge} 1}$ are the left and right component intervals of $I_{s} \backslash J_{s}$, respectively. Note that $\left|J_{s}\right|=\frac{\varepsilon}{3^{n+1}}<\frac{1}{3^{n+1}}<\left|I_{s}\right| \leq \frac{1}{2^{n}}$ for every $s \in 2^{n}$, so the choice of J_{s} is always possible. Clearly the set K has the desired measure of $1-\sum_{s \in 2^{<\omega}}\left|J_{s}\right|=$ $1-\sum_{n<\omega} 2^{n} \frac{\varepsilon}{3^{n+1}}=1-\varepsilon$.

For every $s \in 2^{n}$ let f_{s} be a function from \mathbb{R} onto $[0,1 /(n+1)]$ defined as $f_{s}(x)=\frac{2}{(n+1)\left|J_{s}\right|} \operatorname{dist}\left(x, \mathbb{R} \backslash J_{s}\right)$, where $\operatorname{dist}(x, T)=\inf \{|x-t|: t \in T\}$ denotes the distance from x to T. Then, the function $h_{0}=\sum_{s \in 2^{<\omega}} f_{s}: \mathbb{R} \rightarrow[0,1]$ is continuous and our \mathcal{C}^{1} function $h: \mathbb{R} \rightarrow \mathbb{R}$ is defined as $h(x)=\int_{0}^{x} h_{0}(t) d t$. Note that h is strictly increasing on $[0,1]$.

Let P be an arbitrary perfect subset of K of measure M, which is disjoint with the set of all endpoints of the intervals $J_{s}, s \in 2^{<\omega}$. We will show that h and P are as required.

Clearly, for every $\hat{x} \in P \subset K$ we have $h^{\prime}(\hat{x})=h_{0}(\hat{x})=0$. To see the other condition, first notice that for $n>1 / \ln (4 / 3)$

$$
\begin{equation*}
\text { if } \hat{x}, x_{0} \in K \cap I_{s} \text { for } s \in 2^{n} \text { and } \hat{x} \neq x_{0} \text {, then } \frac{\left|h\left(x_{0}\right)-h(\hat{x})\right|}{\left(x_{0}-\hat{x}\right)^{2}} \geq \frac{\varepsilon}{6} \frac{(4 / 3)^{n}}{(n+1)} . \tag{3}
\end{equation*}
$$

To argue for (3), choose the largest $m<\omega$ such that $\hat{x}, x_{0} \in I_{t}$ for some $t \in 2^{m}$. Then $m \geq n, \hat{x}$ and x_{0} are separated by the interval J_{t}, and
$\frac{\left|h\left(x_{0}\right)-h(\hat{x})\right|}{\left(x_{0}-\hat{x}\right)^{2}}=\frac{\left|\int_{\hat{x}}^{x_{0}} h_{0}(t) d t\right|}{\left(x_{0}-\hat{x}\right)^{2}} \geq \frac{\left|\int_{J_{t}} h_{0}(t) d t\right|}{\left|I_{t}\right|^{2}}=\frac{\frac{1}{2}\left|J_{t}\right| \frac{1}{(m+1)}}{\left|I_{t}\right|^{2}} \geq \frac{\frac{1}{2} \frac{\varepsilon}{3^{m+1}} \frac{1}{(m+1)}}{\left(1 / 2^{m}\right)^{2}}$.
Hence, $\frac{\left|h\left(x_{0}\right)-h(\hat{x})\right|}{\left(x_{0}-\hat{x}\right)^{2}} \geq \frac{\frac{1}{2} \frac{\varepsilon}{3^{m+1} \frac{1}{m+1)}}}{\left(1 / 2^{m}\right)^{2}}=\frac{\varepsilon}{6} \frac{(4 / 3)^{m}}{(m+1)} \geq \frac{\varepsilon}{6} \frac{(4 / 3)^{n}}{(n+1)}$, as required, where the last inequality holds, since the function $f(x)=\frac{(4 / 3)^{x}}{x+1}$ is increasing for $x>1 / \ln (4 / 3)$, having derivative $f^{\prime}(x)=\frac{(4 / 3)^{x}[\ln (4 / 3)(x+1)-1]}{(x+1)^{2}}$.

Next, notice that
if $s \in 2^{n}, x \in J_{s}$, and x_{0} is an endpoint of J_{s}, then $\frac{\left|h(x)-h\left(x_{0}\right)\right|}{\left(x-x_{0}\right)^{2}} \geq \frac{3^{n+1}}{4(n+1) \varepsilon}$.
To argue for (4), let x_{1} be the midpoint between x_{0} and x. Then h_{0} is linear on the interval between x_{0} and x_{1} with the slope $\pm \frac{2}{(n+1)\left|J_{s}\right|}$. Hence, indeed,

$$
\frac{\left|h(x)-h\left(x_{0}\right)\right|}{\left(x-x_{0}\right)^{2}}>\frac{\left|h\left(x_{1}\right)-h\left(x_{0}\right)\right|}{4\left(x_{1}-x_{0}\right)^{2}}=\frac{\frac{1}{2}\left(x_{1}-x_{0}\right)^{2} \frac{2}{(n+1)\left|J_{s}\right|}}{4\left(x_{1}-x_{0}\right)^{2}}=\frac{3^{n+1}}{4(n+1) \varepsilon}
$$

Finally, fix an $\hat{x} \in P$. We need to show that $\lim _{x \rightarrow \hat{x}} \frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^{2}}=\infty$. For this, we fix an arbitrarily large N and show that $\frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^{2}} \geq N$ for the points x close enough to \hat{x}.

Let n_{0} be such that $\min \left\{\frac{\varepsilon}{6} \frac{(4 / 3)^{n}}{(n+1)}, \frac{3^{n+1}}{4(n+1) \varepsilon}\right\} \geq 4 N$ for all $n \geq n_{0}$ and let $s \in 2^{n_{0}}$ be such that $\hat{x} \in I_{s}$. Notice that \hat{x} belongs to the interior U of I_{s}, as $\hat{x} \in P$. Hence, it is enough to show that $\frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^{2}} \geq N$ for every $x \neq \hat{x}$ from U. So, fix such an x.

If $x \in K$, then $\frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^{2}} \geq N$ follows immediately from (3). So, assume that $x \notin K$. Then $x \in J_{t}$ for some $t \supset s$. Let x_{0} be the end point of J_{t} between x and \hat{x}. Notice, that $x_{0} \neq \hat{x}$, since $\hat{x} \in P$. Then, since h is increasing on $[0,1]$, properties (3) and (4) imply

$$
\begin{aligned}
\frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^{2}} & =\frac{\left|h(x)-h\left(x_{0}\right)\right|}{\left(x-x_{0}\right)^{2}} \frac{\left(x-x_{0}\right)^{2}}{(x-\hat{x})^{2}}+\frac{\left|h\left(x_{0}\right)-h(\hat{x})\right|}{\left(x_{0}-\hat{x}\right)^{2}} \frac{\left(x_{0}-\hat{x}\right)^{2}}{(x-\hat{x})^{2}} \\
& \geq 4 N \frac{\left(x-x_{0}\right)^{2}}{(x-\hat{x})^{2}}+4 N \frac{\left(x_{0}-\hat{x}\right)^{2}}{(x-\hat{x})^{2}} \geq N
\end{aligned}
$$

finishing the proof.

References

[1] S. Agronsky, A. M. Bruckner, M. Laczkovich, and D. Preiss, Convexity conditions and intersections with smooth functions, Trans. Amer. Math. Soc. 289 (1985), 659-677.
[2] R. Baire, Sur les fonctions des variables réelles, Annali di Matematica Pura ed Applicata 3 (1899), 1-122.
[3] J. Boman, Differentiability of a function and of its compositions with functions of one variable, Math. Scand. 20 (1967), 249-268.
[4] J.C. Breckenridge and T. Nishiura, Partial Continuity, QuasiContinuity, and Baire Spaces, Bull. Inst. Math. Acad. Sinica 4 (1976), 191-203.
[5] K. Ciesielski and T. Glatzer, On linearly continuous functions, manuscript in preparation.
[6] K. Ciesielski and J. Pawlikowski, Covering Property Axiom CPA. A combinatorial core of the iterated perfect set model, Cambridge Tracts in Mathematics 164, Cambridge Univ. Press, 2004.
[7] J.P. Dalbec, When does restricted continuity on continuous function graphs imply joint continuity?, Proc. Amer. Math. Soc. 118(2) (1993), 669-674.
[8] K.J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, 1985.
[9] H. Hahn, Über Funktionen mehrerer Veränderlichen, die nach jeder einzelnen Veränderlichen stetig sind, Math Zeit. 4 (1919) 306-313.
[10] A. Genocchi and G. Peano, Calcolo differentiale e principii di Calcolo, Torino, 1884.
[11] M. Jarnicki and P. Pflug, Directional Regularity vs. Joint Regularity, Notices Amer. Math. Soc. 58(7) (2011), 896-904,
[12] R. Kershner, The continuity of functions of many variables, Trans. Amer. Math. Soc. 53 (1943), 83-100.
[13] H. Lebesgue, Sur les fonctions représentable analytiquement, J. Math. Pure Appl. 6 (1905), 139-212.
[14] J. Oxtoby, Measure and Category, Springer, New York, 1971.
[15] Z. Piotrowski, Separate and joint continuity, Real Anal. Exchange 11 (1985/86), 293-322.
[16] Z. Piotrowski, Topics in Separate versus Joint Continuity, book in preparation.
[17] A. Rosenthal, On the Continuity of Functions of Several Variables, Math. Zeitschr. 63 (1955), 31-38.
[18] L. Scheeffer, Theorie der Maxima und Minima einer Function von zwei Variabeln, Math. Ann. 35 (1890), 541-567.
[19] S.G. Slobodnik, An Expanding System of Linearly Closed Sets, Mat. Zametki 19 (1976) 67-84; English translation Math. Notes 19 (1976), 39-48.
[20] J. Thomae, Abriss einer Theorie der complexen Funktionen, Halle, 1873. (First edition published in 1870.)
[21] W.H. Young and G.C. Young, Discontinuous functions continuous with respect to every straight line, Quart. J. Math. Oxford Series 41 (1910), 87-93.
K. C. Ciesielski, T. Glatzer

[^0]: Mathematical Reviews subject classification: Primary: 26B05; Secondary: 58C07, 58C05
 Key words: separate continuity, discontinuity sets, smooth curves
 Received by the editors June 2, 2011
 Communicated by: Ireneusz Recław
 *This paper will be a part of Ph.D. thesis of the second author.

[^1]: ${ }^{1}$ Clearly, for any such F, the composition $F \circ h$ is continuous, whenever $h=\left\langle h_{1}, h_{2}\right\rangle$ is a coordinate system for a D^{2} curve. In fact, a little care in constructing such an F (e.g. by using \mathcal{C}^{∞} functions h_{n} in Proposition 1) insures that $F \circ h$ is also D^{2}. However, it is important here, that the derivative h^{\prime} never vanishes, as it has been proved by Boman [3] (see also [11]), that if $F \circ\left\langle h_{1}, h_{2}\right\rangle$ is \mathcal{C}^{1} for any \mathcal{C}^{∞} functions h_{1}, h_{2}, then F is continuous.

[^2]: ${ }^{2}$ This follows, for example, from [1, thm. 19] (used with $f=h^{\prime}$) which says that: for any real-valued continuous function f defined on a set $P \subset \mathbb{R}$ of positive measure there exists a \mathcal{C}^{1} function $g: \mathbb{R} \rightarrow \mathbb{R}$ which agrees with f on an uncountable set.

