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FUNCTIONS

Abstract

We prove that the Hausdorff dimension of the graph of a prevalent
continuous function is 2. We also indicate how our results can be ex-
tended to the space of continuous functions on [0, 1]d for d ∈ N and use
this to obtain results on the ‘horizon problem’ for fractal surfaces. We
begin with a survey of previous results on the dimension of a generic
continuous function.

1 Introduction.

We investigate the Hausdorff dimension of the graph of a prevalent continuous
function. For d ∈ N let

C[0, 1]d = {f : [0, 1]d → R | f is continuous}.

This is a Banach space when equipped with the infinity norm, ‖ · ‖∞. We
define the graph of a function, f ∈ C[0, 1]d, to be the set

Gf =
{

(x, f(x)) | x ∈ [0, 1]d
}
⊂ Rd+1.
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1.1 Dimensions of generic continuous functions.

Over the past 25 years several papers have investigated the question:

What is the ‘dimension’ of the graph of a ‘generic’ continuous function?
(1.1)

Here ‘dimension’ could mean any of the following dimensions used to study
fractal sets:

(1) Hausdorff dimension, denoted by dimH;

(2) lower box dimension, denoted by dimB;

(3) upper box dimension, denoted by dimB;

(4) lower modified box dimension, denoted by dimMB;

(5) upper modified box dimension, denoted by dimMB, or equivalently, pack-
ing dimension, denoted by dimP.

For definitions and basic properties of these dimensions see [7]. In particular,
note the following well-known proposition.

Proposition 1.1. For a bounded set F ⊂ Rd we have the following relation-
ships between the dimensions discussed above:

dimP F = dimMBF

6 6

0 6 dimH F 6 dimMBF dimBF 6 d.
6 6

dimBF

Also, there are different ways of interpreting the word ‘generic’ in question
(1.1). We will focus on the following possibilities:

(1) prevalent, i.e. ‘generic’ from a measure theoretical point of view;

(2) typical, i.e. ‘generic’ from a topological point of view.

In this paper we will complete the study of question (1.1) in the above contexts
and, in particular, show that a prevalent continuous function has a graph with
Hausdorff dimension 2. We will also consider dimensions of graphs of prevalent
functions in C[0, 1]d and the ‘horizon problem’ for prevalent surfaces.
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1.2 Prevalence.

‘Prevalence’ provides one way of describing the generic behavior of a class of
mathematical objects. In finite dimensional vector spaces Lebesgue measure
provides a natural tool for deciding if a property is ‘generic’. Namely, if the
set of elements which do not have some property is a Lebesgue null set, then
it is said that this property is ‘generic’ from a measure theoretical point of
view. However, when the space in question is infinite dimensional this ap-
proach breaks down because there is no useful analogue to Lebesgue measure
in the infinite dimensional setting. The theory of prevalence has been devel-
oped to solve this problem. It was first introduced in the general setting of
abelian Polish groups by Christensen in the 1970s [4, 5] and later rediscovered
by Hunt, Sauer and Yorke in 1992 [14]. Also, see the excellent survey paper
[24].

Since the space we are interested in, namely (C[0, 1], ‖ · ‖∞), is infinite dimen-
sional and we wish to say something about the behavior of a generic function
it is natural to appeal to the theory of prevalence. We will now give a brief
reminder of the definitions we will need.

Definition 1.2. A completely metrizable topological vector space is a vector
space, X, for which there exists a metric, d, on X such that (X, d) is complete
and the vector space operations are continuous with respect to the topology
induced by d.

Note that (C[0, 1], ‖ · ‖∞) is a completely metrizable topological vector space
with the topology induced by the norm.

Definition 1.3. Let X be a completely metrizable topological vector space. A
Borel set F ⊆ X is prevalent if there exists a Borel measure µ on X and a
compact set K ⊆ X such that 0 < µ(K) <∞ and

µ
(
X \ (F + x)

)
= 0

for all x ∈ X.

A non-Borel set F ⊆ X is prevalent if it contains a prevalent Borel set and
the complement of a prevalent set is called a shy set.

Shyness is a reasonable generalisation of Lebesgue measure zero to the infinite
dimensional setting. It enjoys many of the natural properties which one would
expect from such a generalization, for example, it is preserved under taking
countable unions, and, in particular, in Rd being shy is equivalent to having
Lebesgue measure zero. For more details see [24].
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1.3 Baire category.

Prevalence is a measure theoretic approach to describing generic behavior.
One can also consider generic behavior from a topological point of view using
ideas from Baire category.

Let X be a complete metric space. A set M is called meagre if it can be
written as a countable union of nowhere dense sets. A property is called typi-
cal if the set of points which do not have the property is meagre. For a more
detailed account of Baire category the reader is referred to [25].

1.4 History.

Prevalence and Baire category have been used extensively in the literature to
study dimensional properties of generic continuous functions. For example:
multifractal analysis of Hölder exponents [1, 3, 2, 9, 16] (and the related study
of the local dimension spectrum of Borel probability measures [2]); dimensions
of graphs of Hölder continuous functions [6]; and the ‘horizon problem’ for
continuous surfaces [8]. For other examples, see [10, 17]. In particular, over
the past 25 years there has been considerable interest in answering question
(1.1). Indeed, this problem has been considered from a topological point of
view, i.e., using Baire category, in [13, 15, 19] and from a measure theoretical
point of view, i.e., using prevalence, in [8, 12, 20, 27]. In fact, the question can
be completely answered in the Baire category case by combining the results
in [13, 15].

Theorem 1.4 ([13, 15]). A typical function f ∈ C[0, 1] satisfies:

dimHGf = dimMBGf = dimBGf = 1 < 2 = dimPGf = dimMBGf = dimBGf .

Proof. In light of Proposition 1.1 it suffices to show that:

(1) The graph of a typical continuous function has lower box dimension 1;

(2) The graph of a typical continuous function has packing dimension 2.

Statement (1) was proved in [15] and statement (2) was proved in [13].

In the prevalence case the question has been partially answered. It was shown
in [20] that the packing dimension, and hence the upper box dimension, of
a prevalent continuous function is 2. More recently, it has been shown in
[8, 12, 27] that the lower box dimension of the graph of a prevalent continuous
function is also 2. We remark that this result was probably first obtained in
[27]. In fact, in [12] a more general result was proved. Namely, let X be a
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Banach space and let ∆ : X → R be a Borel measurable function such that
for all x, y ∈ X and Lebesgue almost all t ∈ R we have

∆(x− ty) > ∆(y). (1.2)

Then a prevalent element x ∈ X satisfies:

∆(x) = sup
y∈X

∆(y).

This result was then used to show that, among other things, the lower box
dimension of the graph of a prevalent function in C[0, 1] is as big as possible,
namely 2. Given that we want to show that the Hausdorff dimension of the
graph of a prevalent function is also as big as possible it is natural to examine
whether or not the function ∆H : C[0, 1] → R defined by ∆H(f) = dimHGf
satisfies condition (1.2). However, we have been unable to prove or disprove
this and so we pose the following question:

Question 1.5. Is it true that for all f, g ∈ C[0, 1] and for Lebesgue almost all
t ∈ R we have

dimHGf−tg > dimHGg?

Note that our methods do not rely on this approach.

2 Results.

2.1 Prevalent Hausdorff dimension.

Our main result is the following.

Theorem 2.1. The set

{f ∈ C[0, 1] | dimHGf = 2}

is a prevalent subset of C[0, 1].

The proof of this result is deferred to Section 4.1. The following corollary gives
a complete answer to question (1.1) for prevalence.

Corollary 2.2. A prevalent function f ∈ C[0, 1] satisfies:

dimHGf = dimMBGf = dimBGf = dimPGf = dimMBGf = dimBGf = 2.

Proof. This follows immediately from Theorem 2.1 and Proposition 1.1.
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This result should be compared with Theorem 1.4. In particular, the Hausdorff
dimension of the graph of a typical continuous function and that of a prevalent
continuous function are as different as possible. In fact, measure theoretic and
topological approaches often give contrasting answers to questions involving
generic behaviour. For example, the Lq-dimensions of a generic measure were
considered by Olsen from a topological point of view in [21, 22], and from
a measure theoretic point of view in [23], and starkly different results were
obtained.

There seems to be a ‘general principle’ which says that typicality favors diver-
gence. For example, in Theorem 1.4 the dimensions defined in terms of lower
limits are as small as possible and those defined in terms of upper limits are
as big as possible. Since, in a Baire space, a set being co-meagre is equiva-
lent to it containing a dense Gδ set, see [25] Theorem 9.2, the fundamental
reason that typicality favors divergence can be explained in the following way.
Suppose we are in a Baire space, X, and we have a function Ψ : X × N → R
and wish to consider the typical limiting behaviour of Ψ(x, n) as n→∞. Let
s ∈ R and observe that{

x ∈ X : lim inf
n→∞

Ψ(x, n) 6 s
}

=
⋂
n∈N

{
x ∈ X : there exists m > n such that Ψ(x,m) 6 s+ 1

n

}
=
⋂
n∈N

Λs,n,

say, and{
x ∈ X : lim sup

n→∞
Ψ(x, n) > s

}
=
⋂
n∈N

{
x ∈ X : there exists m > n such that Ψ(x,m) > s− 1

n

}
=
⋂
n∈N

Γs,n,

say. Provided they are non-empty, the sets {Λn}n and {Γn}n are open and
dense for many natural choices of Ψ. This forces the typical upper and lower
limits to be as far away from each other as possible. For a more detailed
discussion of this phenomenon, see [11]. Although in many settings prevalence
seems to favor convergence, it is a more subtle notion than typicality and does
not seem to be so affected by the difference between lower and upper limits.
Although a prevalent function, f ∈ C[0, 1], satisfies dimHGf = 2, it follows
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immediately from Fubini’s Theorem that H2(Gf ) = 0 for all f ∈ C[0, 1],
where H2 denotes 2-dimensional Hausdorff measure. In light of this it may be
interesting to investigate the Hausdorff dimension of the graph of a prevalent
continuous function using different gauge functions. For example, it may be
true that the graph of a prevalent continuous function has positive and finite
Hh-measure for a gauge function something like

h(t) = t2 log log(1/t)

thus indicating that the graph of a prevalent continuous function has dimen-
sion ‘logarithmically smaller’ than 2. For more details on this finer approach
to Hausdorff dimension see [7, 26].

We also obtain the following higher dimensional analogue of Theorem 2.1.

Theorem 2.3. Let d ∈ N. The set

{f ∈ C[0, 1]d | dimHGf = d+ 1}

is a prevalent subset of C[0, 1]d.

The proof of this is very similar to the proof of Theorem 2.1 and, therefore,
we only give a sketch proof in Section 4.2.

2.2 The horizon problem

The ‘horizon problem’ is the study of the relationship between the dimension
of the graph of a fractal surface, f ∈ C[0, 1]2, and the dimension of the graph
of its horizon.

Definition 2.4. Let f ∈ C[0, 1]2. The horizon function, H(f) ∈ C[0, 1], of f
is defined by

H(f)(x) = sup
y∈[0,1]

f(x, y).

A ‘rule of thumb’ is that the dimension of the horizon should be one less than
the dimension of the surface. In this case we will say that the surface satisfies
the ‘horizon property’. Note that the horizon property clearly does not hold
in general.

The horizon problem was considered from a generic point of view in [8]. In par-
ticular, it was shown that a prevalent function in C[0, 1]2 satisfies the horizon
property for box dimension. Here we obtain the following result.
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Theorem 2.5. The set

{f ∈ C[0, 1]2 | dimHGf = 3 and dimHGH(f) = 2}

is a prevalent subset of C[0, 1]2. In particular, a prevalent function satisfies
the horizon property for Hausdorff dimension (and packing dimension).

The proof of this is deferred to Section 4.3.

Since a prevalent surface has Hausdorff dimension as big as possible, namely
3, this does not give us any information about the horizon dimensions of sur-
faces with Hausdorff dimension strictly less than 3. In [8] this problem was
overcome by considering subspaces of C[0, 1]2 indexed by α ∈ [2, 3] defined by

Cα[0, 1]2 = {f ∈ C[0, 1]2 | dimBGf 6 α}.

It was shown that the subset of Cα[0, 1]2 consisting of functions which satisfy
the horizon property (for box dimension) is not prevalent. In our case this
generalisation is not possible because the set

{f ∈ C[0, 1]2 | dimHGf 6 α}

is not a vector space for α < 3 since it is not closed under addition. To see this,
note that it was shown in [19] that the graph of a typical function, f ∈ C[0, 1],
has Hausdorff dimension 1 and a trivial modification of the arguments used
gives that that the graph of a typical function, f ∈ C[0, 1]2, has Hausdorff
dimension 2 (also as low as possible). From this it follows that every function
f ∈ C[0, 1]2, can be written as the sum of two functions whose graphs have
Hausdorff dimension 2. Hence, for all α < 3, we can find two functions whose
graphs have Hausdorff dimension 2 but such that their sum is not in the set
given above. For more details on this see [8] and the references therein.

3 Preliminary results and notation.

In Sections 3.1-3.4 we will introduce various concepts and notation that we
will use in Section 4 when proving Theorems 2.1, 2.3 and 2.5.

3.1 Potential theoretic approach.

Potential theoretic methods provide a powerful tool for finding lower bounds
for Hausdorff dimension. Let s > 0 and let µ be a probability measure on Rd.
The s-energy of µ is defined by

Is(µ) =

∫∫
dµ(x) dµ(y)

|x− y|s
.
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The following theorem relates the Hausdorff dimension of a set, F , to the
s-energy of probability measures supported on F .

Theorem 3.1. Let F ⊂ Rd be a Borel set. If there exists a Borel probability
measure µ on F with Is(µ) <∞, then Hs(F ) =∞ and therefore dimH F > s.

For a proof of this result see [7].

3.2 The fat Cantor set F and the measure ν.

In this section we will construct a ‘Cantor like’ subset of [0, 1] which we will
call F . In Section 3.3 we will use F to construct a compact set of continuous
functions whose graphs ‘almost surely’ have Hausdorff dimension 2. We will
write L1 to denote 1-dimensional Lebesgue measure. Let E0 = [0, 1] and let
(Ek)∞k=1 be a decreasing sequence of sets and (ck)∞k=1 be a decreasing sequence
of positive real numbers converging to 0 such that:

(1) [0, 1] = E0 ⊃ E1 ⊃ E2 . . . ;

(2) For all k > 0 we have {0, 1} ⊂ Ek;

(3) For all k > 1 we have Ek =
⋃
I∈Ik I where Ik = {Ik,1, Ik,2, . . . , Ik,33k } is

a collection of 33k disjoint closed intervals, each of length ck;

(4) Each construction interval, Ik,l ∈ Ik, contains equally many ‘children’
from Ik+1;

(5) For each interval, Ik,l ∈ Ik, its ‘children’ are equally spaced within it
and the end points of Ik,l are contained in the union of its children;

(6) For all k > 1 we have 1 > L1(Ek) = 33kck and, as k → ∞, we have

33kck ↘ λ for some λ > 0.

Finally, let

F =
⋂
k

Ek

and observe that L1(F ) = λ > 0. Let ν = 1
λ L

1|F and note that ν is a Borel
probability measure supported on F which satisfies

I1−ε(ν) <∞ (3.1)

for all ε ∈ (0, 1].
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Let I =
⋃
k>1 Ik denote the set of all construction intervals for F and code

the points in F in the usual way, i.e., for x ∈ F , write

x = (i1(x), i2(x), i3(x), . . . )

where ik(x) ∈ {1, . . . , 33k} is such that x ∈ Ik,ik(x) and write i0(x) = 1 for all
x ∈ F . Also, for each pair x, y ∈ F with x 6= y, let

n(x, y) = max{k | ik(x) = ik(y)},

i.e., n(x, y) is the last integer k > 0 such that x and y are in the same interval
of Ek.

Lemma 3.2. Let x, y ∈ F be such that x 6= y and n(x, y) > 1. Then

n(x, y) 6 log log |x− y|−1.

Proof. Let x, y ∈ F be such that x 6= y and n(x, y) > 1. Since x, y ∈ In(x,y),l

for some l and 1 > 33n(x,y)

cn(x,y), it follows that

|x− y| 6 cn(x,y) 6 3−3n(x,y)

and taking logarithms gives the result.

It follows from Lemma 3.2 that for all ε > 0 we can choose a positive constant
Cε such that for all x, y ∈ F we have

2n(x,y) 6 Cε |x− y|−
ε
2 . (3.2)

3.3 The probability space (Ω,F ,P), the compact set K and the mea-
sure µ.

In this section we will construct a Borel probability measure µ supported by a
compact set K ⊂ C[0, 1] which we will use to witness the prevalence of func-
tions whose graph has Hausdorff dimension 2. The basic idea is to construct
the compact set K such that, given x, y ∈ [0, 1], it is ‘likely’ (with respect to
µ) that the images of x and y under a function in K are relatively far apart
compared to |x− y|.

Let
Ω =

{
ω | I → {0, 1}

}
= {0, 1}I

be the set of all labellings of the construction intervals by 0s and 1s and equip
it with the product topology, T . Also, let F = σ(T ) be the Borel σ-algebra
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generated by T . We construct a probability measure on (Ω,F) in the natural
way. For I ∈ I and i ∈ {0, 1} define the 1-cylinder, ΩI,i, by

ΩI,i =
{
ω ∈ Ω | ω(I) = i

}
and define a k-cylinder to be any non-empty intersection of k distinct 1-
cylinders. Finally, let P0 be the natural mass distribution on the set of k-
cylinders which assigns each k-cylinder mass 2−k. By Kolmogorov’s Consis-
tency Theorem P0 extends uniquely to a probability measure P on (Ω,F).

To each ω ∈ Ω we will associate a function φω ∈ C[0, 1]. This function is
defined as follows. If x ∈ F let

φω(x) =

∞∑
k=1

2−kω
(
Ik,ik(x)

)
and to extend φω to a function on [0, 1] we interpolate linearly on the end
points of the complimentary intervals in the construction of F . In particular,
if x ∈ [0, 1] \ F , then x ∈ (a, b) ⊆ [0, 1] \ F for unique a, b ∈ F and we set

φω(x) =
1

b− a

(
(b− x)φω(a) + (x− a)φω(b)

)
.

Let Φ : Ω→ C[0, 1] be defined by Φ(ω) = φω and observe that it is a continu-
ous map. Finally, let

K = Φ(Ω)

and
µ = P ◦ Φ−1.

Lemma 3.3. The set K is a compact subset of (C[0, 1], ‖ · ‖∞) and µ is a
Borel measure on C[0, 1] which is supported by K.

Proof. Observe that P is a Borel measure on (Ω,F) and also that Ω is com-
pact by Tychonoff’s Theorem and, therefore, the result follows immediately
by the continuity of Φ.

3.4 The measures νω,f

For f ∈ C[0, 1] and ω ∈ Ω we will define a Borel measure νω,f on R2, with
support Gφω+f , by ‘lifting’ the measure ν supported on the fat Cantor set F .

Let f ∈ C[0, 1] and ω ∈ Ω and define the map Fω,f : [0, 1] → R2 by
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Fω,f (x) =
(
x, φω(x) + f(x)

)
and observe that it is continuous. We may there-

fore define a Borel probability measure, νω,f , on R2, with support Gφω+f ,
by

νω,f = ν ◦ F−1
ω,f .

In Section 4 we will show that the Hausdorff dimension of Gφω+f is P-almost
surely (and hence µ-almost surely) 2 by considering the expectation of the
energy of the measures νω,f .

4 Proofs.

4.1 Proof of Theorem 2.1.

In this section we will prove Theorem 2.1. The proof of this will be straight-
forward once we have proved Lemma 4.3. We will use the potential theoretic
methods introduced in Section 3.1. Before proving Lemma 4.3 we will provide
the two key integral estimates (Lemmas 4.1-4.2).

Lemma 4.1. For all p, q ∈ (0, 1], r ∈ R and ε ∈ (0, 1/4) we have∫ p

0

∫ p

0

dα dβ(
q2 + |α− β + r|2

)1−ε 6
6p

q1−ε .

Proof. We have∫ p

0

∫ p

0

dα dβ(
q2 + |α− β + r|2

)1−ε =

∫ 1

0

∫ 1

0

p2dα dβ(
q2 + p2|α− β + p−1r|2

)1−ε

6 p2

∫ 1

0

dα(
q2 + p2|α− 1

2 |2
)1−ε

6 2p2

∫ 1/2

0

dα(
max

{
q2, p2α2

})1−ε

= 2p2

∫ q/p

0

dα

q2−2ε
+ 2p2

∫ 1/2

q/p

dα

p2−2εα2−2ε

6
6p

q1−ε

where the last inequality is obtained by calculating the previous integrals ex-
plicitly.
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In the remainder of this section we will write E to denote expectation with
respect to P, that is, if X : Ω→ R is an integrable random variable on Ω, then
we will write

E
(
X(ω)

)
=

∫
Ω

X(ω) dP(ω).

Lemma 4.2. For all x, y ∈ F , f ∈ C[0, 1] and ε ∈ (0, 1/4) we have

E
((
|x− y|2 + |φω(x) + f(x)− φω(y)− f(y)|2

)ε−1
)

6
6Cε

|x− y|1−
ε
2

where Cε is the constant, depending only on ε, introduced at the end of Section
3.2.

Proof. Let x, y ∈ F , f ∈ C[0, 1] and ε ∈ (0, 1/4). In order to simplify nota-
tion let c = f(x)− f(y).

Since ω(ik(x)) = ω(ik(y)) for all k 6 n(x, y) we have

φω(x)− φω(y) =

∞∑
k=1

2−k ω
(
Ik,ik(x)

)
−
∞∑
k=1

2−k ω
(
Ik,ik(y)

)
=

∞∑
k=n(x,y)+1

2−k ω
(
Ik,ik(x)

)
−

∞∑
k=n(x,y)+1

2−k ω
(
Ik,ik(y)

)
= X(ω)− Y (ω)

where X and Y are two independent random variables on (Ω,F ,P) with uni-
form distribution on the interval [0, 2−n(x,y)]. It follows that taking the ex-
pectation of any expression involving X or Y is equivalent to integrating over
the interval [0, 2−n(x,y)] with respect to Lebesgue measure scaled by 2n(x,y).
Therefore

E
((
|x− y|2 + |φω(x)− φω(y) + c|2

)ε−1
)

= E
((
|x− y|2 + |X(ω)− Y (ω) + c|2

)ε−1
)

= 4n(x,y)

∫ 2−n(x,y)

0

∫ 2−n(x,y)

0

dα dβ(
|x− y|2 + |α− β + c|2

)1−ε
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and, by applying Lemma 4.1 with p = 2−n(x,y), q = |x − y| and r = c =
f(x)− f(y) combined with the estimate (3.2), we obtain

E
((
|x− y|2 + |φω(x)− φω(y) + c|2

)ε−1
)

6 6
2n(x,y)

|x− y|1−ε
6 6

Cε|x− y|−
ε
2

|x− y|1−ε
=

6Cε

|x− y|1−
ε
2

completing the proof.

Lemma 4.3. Let f ∈ C[0, 1]. For µ-almost all φ ∈ K we have

dimHGφ+f = 2.

Proof. Fix f ∈ C[0, 1] and let ε ∈ (0, 1/4). It suffices to show that for
P-almost all ω ∈ Ω the measure νω,f has finite (2− 2ε)-energy, i.e.,

I2−2ε(νω,f ) <∞.

Let ω ∈ Ω and note that we have the following expression for I2−2ε(νω,f ).

I2−2ε(νω,f ) =

∫
x∈Gφω+f

∫
y∈Gφω+f

dνω,f (x) dνω,f (y)

|x− y|2−2ε

=

∫
x∈Gφω+f

∫
y∈Gφω+f

d
(
ν ◦ F−1

ω,f

)
(x) d

(
ν ◦ F−1

ω,f

)
(y)(∣∣∣F−1

ω,f (x)− F−1
ω,f (y)

∣∣∣2 +
∣∣∣(φω + f)

(
F−1
ω,f (x)

)
− (φω + f)

(
F−1
ω,f (y)

)∣∣∣2)1−ε

=

∫ 1

0

∫ 1

0

dν(x) dν(y)(
|x− y|2 + |(φω + f)(x)− (φω + f)(y)|2

)1−ε

=

∫
F

∫
F

dν(x) dν(y)(
|x− y|2 + |φω(x) + f(x)− φω(y)− f(y)|2

)1−ε . (4.1)
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It follows from Lemma 4.2 and (3.1) that∫
F

∫
F

E
((
|x− y|2 + |φω(x) + f(x)− φω(y)− f(y)|2

)ε−1
)
dν(x) dν(y)

6
∫
F

∫
F

6Cε

|x− y|1−
ε
2

dν(x) dν(y)

= 6Cε I1− ε2
(ν)

<∞. (4.2)

Finally, we have

E
(
I2−2ε(νω,f )

)

= E

(∫
F

∫
F

dν(x) dν(y)(
|x− y|2 + |φω(x) + f(x)− φω(y)− f(y)|2

)1−ε

)

=

∫
F

∫
F

E
((
|x− y|2 + |φω(x) + f(x)− φω(y)− f(y)|2

)ε−1
)
dν(x) dν(y)

<∞

where the first equality is due to (4.1); the second equality is due to Fubini’s
Theorem; and the fact that the final integral is finite is due to (4.2). Note
that we may apply Fubini’s Theorem here because P and ν are finite measures
and the final integral is finite. It follows that for P-almost all ω ∈ Ω we
have I2−2ε(νω,f ) < ∞. This, combined with Theorem 3.1 and the fact that
ε ∈ (0, 1/4) was arbitrary, proves the result.

We obtain the following corollary.

Corollary 4.4. For µ-almost all φ ∈ K we have

dimHGφ = 2.
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Proof. This follows immediately by applying Lemma 4.3 with f ≡ 0.

The proof of Theorem 2.1 now follows easily. We begin with a technical lemma.

Lemma 4.5. The set

{f ∈ C[0, 1] | dimHGf = 2}

is a Borel subset of (C[0, 1], ‖ · ‖∞).

Proof. Let K(Rd) denote the set consisting of all non-empty compact subsets
of Rd and equip this space with the Hausdorff metric, dH. It was shown in
[18] that the function ∆d,H : (K(Rd), dH)→ R defined by

∆d,H(K) = dimHK

is of Baire class 2, and, in particular, Borel measurable. Define a map Γ :
(C[0, 1], ‖ · ‖∞)→ (K(R2), dH) by

Γ(f) = Gf .

It is easily shown that Γ is continuous, and therefore Borel, and hence the
composition ∆2,H ◦ Γ is Borel measurable. It follows that

(∆2,H ◦ Γ)−1({2}) = {f ∈ C[0, 1] | dimHGf = 2}

is a Borel set.

Theorem 2.1 now follows immediately from Lemma 4.5, Lemma 3.3 and Lemma
4.3 since, writing A = {f ∈ C[0, 1] : dimHGf = 2}, we have, for all f ∈ C[0, 1]

µ
(
C[0, 1] \ (A+ f)

)
= µ

(
{φ ∈ K | dimHGφ−f < 2}

)
= 0.

4.2 Sketch proof of Theorem 2.3.

Let d ∈ N, ω ∈ Ω and define a function φd,ω : [0, 1]d → R by

φd,ω(x1, . . . , xd) = φω(x1).

Also, define a map Φd : Ω→ C[0, 1]d by

Φd(ω) = φd,ω

and note that it is continuous. Finally, let Kd = Φd(Ω) and µd = P ◦ Φ−1
d .

Using Kd and µd in place of K and µ, Theorem 2.3 can now be proved in
a very similar way to Theorem 2.1. In particular, we obtain the following
analogue of Lemma 4.3.

Lemma 4.6. Let f ∈ C[0, 1]d. For µd-almost all φ ∈ Kd we have

dimHGφ+f = d+ 1.
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4.3 Proof of Theorem 2.5.

Write

B = {f ∈ C[0, 1]2 | dimHGf = 3 and dimHGH(f) = 2} = B1 ∩B2

where
B1 = {f ∈ C[0, 1]2 | dimHGf = 3}

and
B2 = {f ∈ C[0, 1]2 | dimHGH(f) = 2}.

Note that B1 is prevalent by Theorem 2.3 and so, since the intersection of two
prevalent sets is prevalent, it suffices to show that B2 is prevalent. Let K2

and µ2 be the compact set and Borel probability measure described in Section
4.2 and let f ∈ C[0, 1]2. Note that, for all φ2,ω ∈ K2 and f ∈ C[0, 1]2, since
φ2,ω(x, y) is independent of y, we have

H(f + φ2,ω)(x) = sup
y∈[0,1]

(f + φ2,ω)(x, y) = sup
y∈[0,1]

(
f(x, y) + φ2,ω(x, y)

)
= sup

y∈[0,1]

(
f(x, y)

)
+H(φ2,ω)(x)

= H(f)(x) + φω(x). (4.3)

It follows that for all f ∈ C[0, 1]2 we have

µ2

(
C[0, 1]2 \ (B2 + f)

)
= µ2

(
K2 \ (B2 + f)

)
=

(
P ◦ Φ−1

2

)(
{φ ∈ K2 : dimHGH(φ−f) < 2}

)
= P

(
{ω ∈ Ω | dimHGφω−H(f) < 2}

)
= 0

where the third equality is due to (4.3) and the final equality is due to Lemma
4.3.
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