Alois Kufner, Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha, Czech Republic, e-mail: kufner@@earn.cvut.cz

A PROPERTY OF GREEN'S FUNCTION

For k a positive integer, let

$$M_i \subset \{0, 1, \dots, k-1\}, \quad i = 0, 1$$

with $M_i \neq \emptyset$ (i.e. $\#M_i > 0$) and

$$\#M_0 + \#M_1 = k,$$

where $\#M_i$ is the cardinality of M_i .

Suppose that the solution u = u(x) of the simple boundary value problem

$$u^{(k)} = f \quad \text{in} \quad (0,1),$$
 (1)

$$u^{(i)}(0) = 0 \quad \text{for} \quad i \in M_0,$$
 (2)

$$u^{(j)}(1) = 0 \quad \text{for} \quad j \in M_1$$

with f not changing sign in (0, 1) can be expressed uniquely in the form

$$u(x) = \int_0^x K_1(x,t)f(t)dt + \int_x^1 K_2(x,t)f(t)dt.$$

Problem: Prove that there exist positive constants c_1 , c_2 , and nonnegative integers α_1 , α_2 , β_1 , β_2 , γ_1 , γ_2 , δ_1 , δ_2 , such that the following estimates hold:

$$c_1 \le \frac{K_i(x,t)}{x^{\alpha_i}(1-x)^{\beta_i}t^{\gamma_i}(1-t)^{\delta_i}} \le c_2$$

for 0 < t < x < 1 if i = 1 and for 0 < x < t < 1 if i = 2, and determine the values of $\alpha_1, \ldots, \delta_2$.

Key Words: Green's function, Hardy's inequality

Mathematical Reviews subject classification: Primary: 34B27; Secondary: 26D10 Received by the editors Aug 9, 1995

³⁸⁰

A PROPERTY OF GREEN'S FUNCTION

Remarks:

(i) The problem is solved in [1] under the additional assumption

 $M_0 \cap M_1 = \emptyset$ (i.e. $M_1 = \{0, 1, \dots, k-1\} \setminus M_0$).

(ii) The solution of this problem allows one to formulate necessary and sufficient conditions for the validity of the k-th order Hardy inequality

$$\left(\int_0^1 |u(t)|^q w_0(t) dt\right)^{1/q} \le C \left(\int_0^1 |u^{(k)}(t)|^p w_k(t) dt\right)^{1/p}$$

for functions u satisfying condition (2).

References

 A. Kufner, *Higher order Hardy inequalities*, Bayreuth. Math. Schriften, 44 (1993), 105–146.