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EXTENDABILITY AND ALMOST
CONTINUITY

Sometimes it’s as easy to prove a stronger result . . .
Kenneth R. Kellum

Abstract

Every function f : [0, 1] → [−1, 1] can be expressed as the sum of
three extendable functions, as the maximum of two minimums of extend-
able functions and as the limit of a transfinite sequence of extendable
functions.

Let us establish some terminology to be used. Let I = [0, 1] and let X, Y
be topological spaces. A function f : X → Y is:

• Darboux if it maps connected sets onto connected sets,

• almost continuous if every open neighborhood of f in X × Y contains a
continuous function from X into Y ,

• connectivity if the restriction f |C : C → Y is a connected subset of X×Y
whenever C is a connected subset of X,

• extendable if there is a connectivity function F : X × I → Y such that
F (x, 0) = f(x) when x ∈ X.

For X = Y = I we have the following chain of proper inclusions ([15], [12]):

continuous ⊂ extendable ⊂ almost continuous ⊂ connectivity ⊂ Darboux

It is known that a function F : I × I → R is connectivity iff it is
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• peripherally continuous, i.e., if for every x ∈ I2 and all open neighbor-
hoods U of x and V of F (x), there exists an open neighborhood W of x
in U such that F (bdW ) ⊂ V [6].

Let K denote a class of functions from I into I and let g ∈ K. A set M ⊂ I
is called g-negligible with respect to K if f ∈ K whenever f : I → I and f = g
on I \M ([1], see also [13]). This is the same as saying that every function
f : I → I obtained by arbitrarily redefining g on M is still a member of K.

Many theorems on representations of real functions as sums, products,
maximums and minimums, or limits of sequences of almost continuous (and
therefore also of connectivity and Darboux) functions can be proved using the
Kellum & Garret’s method of intersecting of blocking sets ([9], see also [11]).
The analogous method does not work in the case of extendable functions.
However, the latest results of Rosen on negligible sets with respect to the
class of extendable functions can be applied to obtain some related results.
Rosen showed how to express an arbitrary real function f : I → I as the
pointwise limit of a sequence of extendable functions and an arbitrary g : I →
[−1, 1] as the sum of an infinite series of extendable functions [13]. We shall
prove that every function f : [0, 1] → [−1, 1] can be expressed as the sum of
three extendable functions, as the maximum of two minimums of extendable
functions and as the limit of a transfinite sequence of extendable functions.

We need several lemmas. The first of them is obvious. (See e.g. [7].)

Lemma 1 Assume that X, Y and Z are topological spaces, h : X → Y is a
homeomorphism and f : Y → Z is connectivity. Then f ◦ h is a connectivity
function.

Corollary 1 If a function f : I → I is extendable and h : I → I is a homeo-
morphism, then f ◦ h is extendable.

Lemma 2 Assume that J is a compact interval, g : I → J is an extendable
function, h : I → I is a homeomorphism, and A is a g-negligible set with
respect to the class of extendable functions. Then h−1(A) is (g ◦ h)-negligible.

Proof. Assume that g1 = g ◦ h and [f1 6= g1] ⊂ h−1(A) for some f1 : I → J .
Put f = f1 ◦h−1. Then [f 6= g] ⊂ A. Indeed, if x 6∈ A, then h−1(x) 6∈ h−1(A).
Therefore f1(h−1(x)) = g1(h−1(x)), so f(x) = g(x). Thus f is extendable to
a connectivity function and f1 = f ◦ h is extendable, too. �

Lemma 3 Assume that A,B ⊂ (0, 1) are of the first category. Then there
exists a homeomorphism h : I → I such that B ∩ h(A) = ∅.
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Proof. We may assume that A and B are Fσ sets and A =
⋃∞
n=1 Fn, where

Fn is closed and Fn ⊂ Fn+1 for n ∈ N. Moreover, we may assume that each
x ∈ Fn is a point of bilateral accumulation of Fn+1, and |J0| ≤ |J |/2 whenever
J is a component of the set I\Fn and J0 is a component of J\Fn+1 (|J | denotes
the length of an interval J). For every k ∈ N let (Ik,n)n be a sequence of all
components of the set I \ Fk.

Since the set I \(B∪{0, 1}) is a dense Gδ subset of I, there exists a Cantor
set E1 ⊂ I \ (B ∪ {0, 1}) such that |J | ≤ 1/2 for each component J of the
complement of I \ E1. Let h1 : I → I be an increasing homeomorphism such
that

• h1(F1) = E1 (hence h1(F1) ∩B = ∅),

• h1 is linear on each I1,n,

• |h1(I1,n)| ≤ 1/2 for every n ∈ N.

For each n ∈ N let J1,n = h1(I1,n) and let h2,n : I1,n → J1,n be an increasing
homeomorphism such that

• h2,n(I1,n ∩ F2) ∩B = ∅,

• h2,n(bd I1,n) = h1,n(bd I1,n),

• h2,n is linear on the closure of every component of I1,n \ F2,

• |h2,n(J)| ≤ |J1,n|/2 for every component J of I1,n \ F2.

Note that h2 =
⋃
n h2,n is an increasing homeomorphism of I onto I and

E2 = h2(F2) is disjoint from B. Assume that for k ∈ N we have defined
an increasing homeomorphism hk : I → I such that Ek = hk(Fk) is disjoint
from B. For each n ∈ N let Jk,n = hk(Ik,n) and let hk+1,n : Ik,n → Jk,n be an
increasing homeomorphism such that

• hk+1,n(Ik,n ∩ Fk+1) ∩B = ∅,

• hk+1,n(bd Ik,n) = hk,n(bd Ik,n),

• hk+1,n is linear on the closure of every component of Ik,n \ Fk+1,

• |hk+1,n(J)| ≤ |Jk,n|/2 for every component J of Ik,n \ Fk+1. n

Let hk+1 =
⋃
n hk+1,n and Ek+1 = hk+1(Fk+1). Observe that the function

h̃ =
⋃
k(hk|Fk) is increasing, the set A is dense in I, and for each x ∈ I we

can define h(x) = limt→x h̃(t). Then h is an increasing homeomorphism from
I onto I. Moreover, h(A) ∩B = ∅. �
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Theorem 1 For every function f : I → [−1, 1] there exist three extendable
functions fi : I → [−1, 1], i = 0, 1, 2, such that f = f0 + f1 + f2.1

Proof. Let F : I2 → I be a connectivity function such that for some x0 ∈
I the restriction d = F |(I × {x0}) is a connectivity function whose graph
is dense in I × {x0} × I; see [12, Example 2]. (Such functions have been
constructed in fact in [2] and [4].) Obviously d is an extendable function, so
there exists a dense extendable function g : I → [−1, 1] (cf, [13]). There exists
a first category set A ⊂ I such that I \ A is g-negligible [13, Theorem 1(iii)].
Since every nowhere dense subset of I is g-negligible [13, Theorem 1(i)], we
can assume that A ⊂ (0, 1). By Lemma 3, there exist: a homeomorphism
h1 : I → I such that h1(A) ∩ A = ∅, and a homeomorphism h2 : I → I such
that h2(A) ∩ (A ∪ h1(A)) = ∅. By Corollary 1, the functions gi = g ◦ h−1

i ,
i = 1, 2, are extendable. Define fi : I → [−1, 1] for i = 0, 1, 2 by

f0(x) =

 g(x) for x ∈ A,
−g1(x) for x ∈ h1(A),
f(x) for x 6∈ A ∪ h1(A),

f1(x) =


−g(x) for x ∈ A,
g1(x) for x ∈ h1(A),
−g2(x) for x ∈ h2(A),

0 for x 6∈ A ∪ h1(A) ∪ h2(A),

f2(x) =

 f(x) for x ∈ A ∪ h1(A),
g2(x) for x ∈ h2(A),

0 for x 6∈ A ∪ h1(A) ∪ h2(A).

By Lemma 2, the functions fi, i = 0, 1, 2, are extendable. Moreover,
f = f0 + f1 + f2. �

Theorem 2 For every function f : I → I there exist four extendable functions
fi, i = 0, 1, 2, 3, such that f = max(min(f0, f1),min(f2, f3)).2

Proof. Let g : I → I be a dense extendable function and let A be a first
category set such that I\A is g-negligible. Let h1 : I → I be a homeomorphism
such that h1(A) ∩ A = ∅. Let h2 : I → I be a homeomorphism such that
h2(A) ∩ (A ∪ h1(A)) = ∅. Let h3 : I → I be a homeomorphism such that

1The analogous result for almost continuous functions is proved in [3].
2The analogous result on almost continuous functions is proved in [10].
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h3(A) ∩ (A ∪ h1(A) ∪ h2(A)) = ∅. Moreover, let h0 = id I and let gi = g ◦ h−1
i

for i = 0, 1, 2, 3. By Corollary 1, the functions gi are extendable. Define

fi(x) =

{
gi(x) for x ∈ hi(A),
f(x) for x 6∈ hi(A).

By Lemma 2, all functions fi are extendable. It is easy to verify that f =
max(min(f0, f1),min(f2, f3)). �

Recall that a function f : I → I is a discrete limit of a net (fσ)σ∈Σ, where
(Σ,�) is a directed set, if for each x ∈ I there exists σ0 ∈ Σ such that
fσ(x) = f(x) whenever σ0 ≺ σ. Moreover, if Σ = ω1, then f is called the limit
of a transfinite sequence (fα)α<ω1

[14].
Let add (K) denote the additivity of the ideal of all first category sets in I,

i.e., the least cardinal κ for which there exists a family F of first category sets
such that card (F) = κ and the set

⋃
F is of the second category.

Theorem 3 Assume that (Σ,�) is a directed set with card (Σ) ≤ add (K).
Then each function f : I → I is the discrete limit of a net (fσ)σ∈Σ of extendable
functions.3

Proof. Let g : I → I be a dense extendable function and let A be a first
category set such that I \ A is g-negligible. Put h0 = id I . By Lemma 3, for
every ordinal α < κ = card (Σ) there exists a homeomorphism hα : I → I such
that hα(A) ∩

⋃
β<α hβ(A) = ∅. By Corollary 1, all functions gα = g ◦ h−1

α

are extendable. Let ϕ : Σ → κ be a bijection. By Lemma 2, the following
functions are extendable:

fσ(x) =

{
gϕ(σ)(x) for x ∈ hϕ(σ)(A),

f(x) for x 6∈ hϕ(σ)(A).

It is easy to verify that f is the discrete limit of (fσ)σ∈Σ. �
In particular, if Σ = ω0, we obtain Theorem 3 of [13].

Corollary 2 Each function f : I → I is the pointwise limit of a sequence of
extendable functions fn : I → I.

For Σ = ω1 we have the following corollary.

Corollary 3 Each function f : I → I is the transfinite limit of a sequence of
extendable functions fα : I → I, α < ω1.4

3The analogous result on almost continuous functions is proved in [11].
4The analogous result for almost continuous functions is proved in [5].
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Remark There is only one problem to obtain analogous results for any func-
tion f : I → R: we are unable to construct an extendable connectivity function
g which is dense in I × R. Added in the proof.

(1) I was recently informed by Marek Balcerzak that Lemma 3 in my paper
follows easily from Lemma 2 in The homeomorphic transformation of
c-sets into d-sets by W. J. Gorman III (Proc. Amer. Math. Soc., 17
(1966), 825–830).

(2) Chris Ciesielski informed me during the latest Summer Symposium in
Real Analysis, Erice, June 1995, that he with Irek Rec law and, indepen-
dently, Harvey Rosen had constructed an extendable function which is
dense in I × R.
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[14] W. Sierpiński, Sur les suites transfinies convergentes de fonctions de
Baire, Fund. Math., 1 (1920), 132–141.

[15] J. R. Stallings, Fixed point theorems for connectivity maps, Fund.
Math., 47 (1959), 249–263.


