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ON FUBINI-TYPE THEOREMS

Abstract

We discuss some questions concerning the strengthened version of
the Kuratowski-Ulam theorem obtained by Ceder. In particular, we
refute Ceder’s conjecture that the measure analogue of his result holds.
Further we consider mixed product σ-ideals K×L and L×K in R2 where
K and L denote the families of meager and of Lebesgue null sets in R.
For a set A ∈ K × L (or A ∈ L × K) we find large sets P and Q such
that P ×Q misses A. The proof is based on similar properties of K×K
and L× L obtained by Ceder, Brodskĭi and Eggleston. A parametrized
version of a Fubini-type theorem is also given.

Ceder [C, Th. 12] presents the following strengthened form of the Kura-
towski-Ulam theorem (see [O]). (For A ⊆ X × Y , Ax = {y : 〈x, y〉 ∈ A} and
Ay = {x : 〈x, y〉 ∈ A}.)

Theorem 1 If A ⊆ R2 is a meager set, then there exists a residual Gδ set
B ⊆ R such that for each set P ⊆ B of type Fσ the set

⋃
x∈P

Ax is meager.

Ceder asks whether the Fσ requirement here is essential. The following
example shows that it is.

Example 1. Let A be the graph of the projection from R2 to R, i.e., A =
{〈〈y, z〉, y〉 ∈ R2×R : y, z ∈ R}. Then A is meager in R2×R. Given a residual
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Gδ set B ⊆ R2 we can find a meager Gδ set P ⊆ B such that
⋃

〈y,z〉∈P
A〈y,z〉 is

residual. Indeed, since B is residual in R2 there exists z ∈ R with Bz residual.
Let P = Bz×{z}. Clearly P ⊆ B and P is a meager Gδ subset of R2. However⋃

〈y,t〉∈P

A〈y,t〉 =
⋃
y∈Bz

A〈y,z〉 = Bz

is residual in R.
To get an example in R×R rather than in R2 ×R proceed as follows. Let

f : R2 → R be a Borel isomorphism such that for all X ⊆ R, X is meager
in R iff f−1[X] is meager in R2. There exist residual Gδ sets G ⊆ R2 and
H ⊆ R such that f restricted to G is a homeomorphism of G and H. Let
A = {〈f(y, z), y〉 : y, z ∈ R}. Then A is a Borel subset of R2 such that for
all x ∈ R, Ax is a singleton. Hence A is meager. Given a residual Gδ set
B ⊆ R, C = f−1[B ∩H] is a residual Gδ subset of R2, so there exists z ∈ R
with Cz residual in R. The set Cz × {z} is a meager Gδ subset of R2, so
P = f [Cz × {z}] is a meager Gδ subset of B. However⋃

x∈P
Ax =

⋃
y∈Cz

Af(y,z) = Cz

is residual in R.

The next example shows that we cannot claim the set B in Theorem 1 to
be open, even for A closed with all vertical sections null (hence also nowhere
dense).

Example 2. Talagrand [T] shows that for every perfect set E ⊆ R and every
interval I there is a perfect null set P ⊆ I such that E+P contains an interval.
(Here E + P = {x+ y : x ∈ E, y ∈ P}.)

Now, fix a perfect null set E ⊆ R. Obviously, it is nowhere dense. Let
A = {〈x, y〉 : y − x ∈ E}. Then A is nowhere dense null since it is closed and
for each x ∈ R the section Ax = E + x is nowhere dense null. In any fixed
interval I we can choose a perfect null set P ⊆ I such that E +P contains an
interval. We have ⋃

x∈P
Ax =

⋃
x∈P

(E + x) = E + P.

Hence
⋃
x∈P

Ax contains an interval.

In view of the well known duality between measure and category, Ceder
conjectured the following.
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Conjecture 1 ([C, p. 284]) If A ⊆ R2 is a null set, then there exists an Fσ
set B ⊆ R of full measure such that for each null set P ⊆ B of type Gδ, the
set

⋃
x∈P

Ax is null.

Our next example refutes this conjecture.

Example 3. Let f : R2 → R be a Borel isomorphism such that for all X ⊆ R,
X is null in R iff f−1[X] is null in R2. Let A = {〈f(y, z), y〉 : y, z ∈ R}. Then
A is a Borel subset of R2 such that for all x ∈ R, Ax is a singleton. Hence A
is null. Given a set B ⊆ R of full measure, C = f−1[B] has full measure in
R2, so there exists z ∈ R such that Cz has full measure in R. Let D ⊆ Cz

be compact of positive measure such that f(·, z) is continuous on D. The set
D × {z} is null in R2, so P = f [D × {z}] is compact and null in R. However⋃

x∈P
Ax =

⋃
y∈D

Af(y,z) = D

has positive measure in R.

Theorem 1 yields the following folklore fact.

Theorem 2 If A ⊆ R2 is meager, then there exist a c-dense Fσ set P ⊆ R
and a residual Gδ set Q ⊆ R such that P ×Q pmisses A.

The measure analogue is a theorem of Brodskĭi [Br] and Eggleston [E].

Theorem 3 If A ⊆ R2 is a null set, then there exist a c-dense Fσ set P ⊆ R
and an Fσ set Q ⊆ R of full measure such that P ×Q pmisses A.

Remarks.
(1) Theorems 1 and 2 are of course true for a wide class of spaces, in

particular they are true if R2 is replaced by T ×R, where T is a perfect subset
of R considered with the relative topology.

(2) The Lebesgue measure can be defined for the classical Cantor set C
(e.g., via the Cantor function from C onto [0, 1] which is one-to-one when the
end-points of connected components of [0, 1] \ C are ignored). Similarly, for
an arbitrary perfect set T ⊆ R, we can define a natural “Lebesgue measure”
on T . Then Theorem 3 holds when R2 is replaced by T ×R with the product
measure.

Theorems 2 and 3 are also true for mixed product ideals in R2. Let K be
the σ-ideal of meager subsets of R, L — the σ-ideal of Lebesgue null subsets
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of R.
For I,J ∈ {K,L}, let

I × J = {E ⊆ R2 :
(
∃ Borel B ⊆ R2

)
(E ⊆ B & {x ∈ R : Bx /∈ J } ∈ I)}

The family I×J is called the Fubini product of ideals I and J . By the Fubini
theorem and the Kuratowski-Ulam theorem (see [O]), L × L and K × K are
exactly the σ-ideals of Lebesgue null and of meager sets in R2. The families
K×L and L×K also form σ-ideals. They were studied in [Me, G, CP, F, BH].
Note that there is no inclusion between any two of the families K×K, L×L,
K× L, L×K (cf. [Me]).

Theorem 4 If A ⊆ R2 is in K× L, then there exist a c-dense Fσ set P ⊆ R
and an Fσ set Q ⊆ R of full measure such that P ×Q misses A.

Proof. Without loss of generality we can assume that A is Borel. Let D ⊆ R
be a meager set such that for all x ∈ R \ D, Ax is null. Fix a countable
base {Un}∞n=1 of nonempty open sets in R and choose a sequence {Tn}∞n=1 of
pairwise disjoint nowhere dense perfect sets such that Tn ⊆ Un \D for every n.
Now, for every n, apply the version of Theorem 3 discribed in Remark (2) to
the set An = A ∩ (Tn ×R) in the space Tn ×R with the appriopriate product
measure. Then we can find a perfect set Pn ⊆ Tn and a set Qn ⊆ R of full
measure such that Pn ×Qn misses An. Put P =

⋃
n
Pn and Q =

⋂
n
Qn. �

Theorem 5 If A ⊆ R2 is in L×K, then there exist a c-dense Fσ set P ⊆ R
and a residual Gδ set Q ⊆ R such that pP ×Q misses A.

The proof is analogous to that of Theorem 4.
Finally, we give a parametrized Fubini-type theorem for K × L, L × K,

L× L and K×K (see [Mi] for similar versions of other known theorems).

Theorem 6 Let I,J ∈ {K,L}. Assume that E ⊆ R3 is a Borel set and
T ⊆ R is a perfect set such that Et ∈ I × J for each t ∈ T . Then there
exists a perfect set P ⊆ T and a set H ∈ I such that E〈t,x〉 ∈ J for each
〈t, x〉 ∈ P × (R \H).

Proof. The set
A = {〈t, x〉 ∈ T × R : E〈t,x〉 /∈ J }

is Borel (see e.g. [G, Th. 2.1, 2.2]) and At = {x ∈ R : E〈t,x〉 /∈ J } ∈ I for
each t ∈ T . By Theorems 2 and 3 (where T × R is considered instead of R2),
we find a perfect set P ⊆ T and a set H ∈ I such that P × (R \H) misses A.
Then for each 〈t, x〉 ∈ P × (R \H) we have E〈t,x〉 ∈ J . �
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[Br] M. L. Brodskĭi, On some properties of sets of positive measure, Uspehi
Mat. Nauk, 4 No. 3(31) (1949), 136–138.

[C] J. Ceder, On globs, Acta Math. Hung., 43 (1984), 273–286.
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