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CONVERGENCE AND KOLMOGOROV
DIMENSION

Abstract

It is shown that under simple restrictions a series converges provided
it’s set of terms has Kolmogorov dimension strictly smaller than 1

2
.

1 Introduction

This paper is concerned with the relation between the convergence of an in-
finite series and the Kolmogorov dimension of its set of terms. For positive
series (under a simple assumption), the cutoff occurs at dimension 1

2 . As might
be expected from the situation with the ratio and root tests, at dimension 1

2
a series may converge or diverge.

The restriction to nonnegative real series is required to get something
definitive. Of course, terms must (eventually) be distinct as well, if one is
to say much from knowledge of the set of terms.

The definition of Kolmogorov dimension that will be used is the diameter
form.

Let X be a totally bounded metric space, and let N(ε) be the smallest N
for which X can be covered by N sets of diameter ≤ ε. Let I = {d ≥ 0 :
∃Cd > 0 with N(ε) ≤ Cdε

−d for ε sufficiently small}. Then I is either empty
(Kolmogorov dimension∞), or I is a semi-infinite interval whose left endpoint
(inf I) is the Kolmogorov dimension. I may be open or closed. It suffices to
check the inequality N(ε) ≤ Cdε

−d on a sequence εn ↘ 0, provided εn/εn+1

is bounded above. Suppose K ≥ εn/εn+1, for all n. Then for ε ≤ ε1 one can
choose n with εn−1 ≥ ε > εn, so that εn ≥ ε/K. Hence N(ε) ≤ N(εn) ≤
Cdε

−d
n ≤ CdK

dε−d. The Kolmogorov dimension of X is denoted by dimK(X).
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It should be noted that the Kolmogorov dimension can also be character-
ized in terms of ε-nets. Suppose N ′(ε) is the minimal size of an ε-net; i.e.
a set such that each point is < ε away from a point in the ε-net. Then X
is a union of N ′(ε) balls of radius ε, so N ′(ε) ≥ N(2ε). On the other hand,
N ′(ε) ≤ N(.9ε) by taking a point in each covering set.

The above, with an argument like that involving the εn’s, shows that N(ε)
and N ′(ε) have the same asymptotic behavior as ε↘ 0. The definition involv-
ing N ′(ε) goes by a number of names: Kolmogorov dimension, Kolmogorov
capacity, limit capacity, and entropy to name four. We prefer the first, as it ac-
tually is a dimension. (It is also the form really used to find fractal dimensions
in many applied situations, e.g. coastlines and mountains [1].)

2 The Theorem

Let 〈an〉 be a sequence of real numbers. We assume that an > 0 and an > an+1,
for n sufficiently large. Also assume that an → 0. Let A = {a1, a2, a3, . . . }.
We are concerned with the relation between dimK(A) and the convergence of
Σan. To this end an additional condition is imposed.

Definition 1 Let 〈an〉 be a sequence satisfying the conditions above. Then
an → 0 regularly provided an − an+1 ≥ an+1 − an+2 for n sufficiently large.

The main theorem is as follows.

Theorem 1 Let 〈an〉 be as above and let A = {a1, a2, a3, . . . }.

a) If Σan converges, then dimK(A) ≤ 1
2 .

b) If dimK(A) < 1
2 and an → 0 regularly, then Σan converges.

Discussion: In [2], it is shown that, with an = n−p and A = {a1, a2, a3, . . . },
then dimK(A) = 1

p+1 . This paper basically arose from investigating the fact

that the cutoff for convergence occurs at dimension 1
2 . In the next section,

some examples will be given. In particular, it will be shown with examples
that for dimK(A) = 1

2 the series may converge or may diverge. Also it will
be shown in Section 4 that for dimK(A) < 1

2 an extra condition, like an → 0
regularly is required. The problem is that convergence of Σan measures how
much the terms accumulate at 0, while dimK(A) measures how much the terms
accumulate around each other.

Proof. By deleting a finite set, we may assume without loss of generality
that an > an+1 for all n (and, in case (b), that an − an+1 ≥ an+1 − an+2). In
particular, an > 0 also.
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(a) Suppose s = Σan < ∞, and suppose ε > 0 is given. Let m = [1 +
1√
ε

]

Set S = {n : an ≥ mε}. Then |S|·mε ≤
∑|S|

n=1 an ≤ s; so |S| ≤ s
mε . Now

A can be covered with |S| sets of the form {an}, n ≤ m, together with m
sets of the form [(k−1)ε, kε] for k = 1, . . . ,m. Hence N(ε) ≤ m+s/mε.

Then
1√
ε
< m ≤ 1√

ε
+ 1; so

N(ε) ≤ m+
s

mε
≤ 1√

ε
+ 1 +

s

ε−1/2 · ε
= 1 + (1 + s)ε−1/2.

(b) Fix p with dimK(A) < p < 1
2 . For k ∈ N the set A can be covered by

≤ C · 2kp sets of diameter ≤ 2−k for a number C independent of k. Set
nk = max{n : an−an+1 > 2−k}. Then an−an+1 > 2−k for n ≤ nk, and
an − an+1 ≤ 2−k for n > nk. Further, n1 ≤ n2 ≤ n3 · · · and nk →∞.

Now, if n ≤ nk, then no set of diameter ≤ 2−k which contains an can
contain any other am. So any cover of A by sets of diameter ≤ 2−k must have
at least nk members. Hence nk ≤ C · 2kp.

Further, the set {an : n > nk} has no gaps wider than 2−k. Thus if this
set is minimally covered by N sets of diameter ≤ 2−k, then

i) these sets may be replaced without loss of generality by closed intervals
[bj , bj + 2−k], with bj < bj+1 for all j, j = 1, . . . , N ;

ii) b1 = 0 since an → 0; and

iii) bj+1 ≤ (bj + 2−k) + 2−k due to the lack of gaps.

Hence by induction, bj ≤ (j−1)·21−k. Thus bN+2−k ≤ (2N−1)2−k < 2N2−k.
But N ≤ C · 2kp; so for n > nk,

an ≤ bN + 2−k ≤ 2C · 2kp · 2−k = 2C · 2k(p−1).

Combine the above to get

nk+1∑
n=nk+1

an ≤ nk+1 · 2C · 2k(p−1)

≤ C · 2(k+1)p · 2C · 2kp−k

= 21+pC2 · 2k(2p−1).

Hence
∑∞

n=n1
an ≤ 21+pC2

∑∞
k=1 2k(2p−1) <∞, since 2p− 1 < 0. �



Convergence and Kolmogorov Dimension 267

3 Some Examples

First, a theorem that computes Kolmogorov dimension.

Theorem 2 Let an ↘ 0, and let A = {an : n ∈ N}. Suppose c, p, and q are
positive.

a) If an ≤ c/np for n sufficiently large, then dimK(A) ≤ 1
p+1 .

b) If an − an+1 ≥ c/(n+ 1)q for n sufficiently large, then dimK(A) ≥ 1
q .

Proof. Without loss of generality assume the inequalities hold for all n.

a) Without loss of generality suppose c is a positive integer. Set εn =
1/np+1. Then εn/εn+1 → 1. So it suffices to consider these ε’s. Now
{an, an+1, . . . } ⊂ ∪cnk=1

[
k−1
np+1 ,

k
np+1

]
while {a1, . . . , an−1} is covered by

the sets {aj} for j = 1, 2, . . . , n− 1. Hence

N(εn) < (c+ 1)n = (c+ 1)ε−1/(p+1)
n .

b) Set εm = c/mq. n+ 1 < m⇒ an − an+1 ≥ c/(n+ 1)q > c/mq. Hence
any two points in {a1, . . . , am−1} are more than εm units apart. So given
any cover of A (and hence of {a1, . . . , am−1}) by sets of diameter ≤ εm,
each set can contain at most one an with n < m. Hence N(εm) is at
least m − 1, i.e., N(εm) ≥ m − 1. Now N(εm) ≤ kε−dm , m sufficiently
large ⇒ m − 1 ≤ kε−dm = kc−d ·mqd all m sufficiently large ⇒ qd ≥ 1,
i.e., d ≥ 1/q. �

Corollary 1 Under the same hypothesis as in Theorem 1, if an = f(n), f :
[1,∞)→ R, and if −f ′(x) ≥ cx−q, then dimK(A) ≥ 1/q.

Proof. By the Mean Value Theorem, there is a ζn between n and n + 1 so
that an − an+1 = f(n)− f(n+ 1) = −f ′(ζn) ≥ cζ−qn ≥ c(n+ 1)−q. �

Example 1 Let an = 1
n(1+logn)2 and let A = {an : n ∈ N}. (It will be shown

in the next section that an → 0 regularly.) Since an ≤ 1
n ,dimK(A) ≤ 1

2 . But

if q > 2, then f(x) =
1

x(1 + log x)2
gives

−xqf ′(x) =
xq

x2(1 + log x)4
·
(

(1 + log x)2 + x · 2(1 + log x)
1

x

)
= xq−2 · 3 + log x

(1 + log x)3
→∞.
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Hence ∃ c > 0 with −xqf ′(x) ≥ c. Thus q > 2 ⇒ Kolmogorov dimension is
≥ 1

q . Letting q ↘ 2 gives Kolmogorov dimension 1
2 .

Example 2 Let an = 1
1+logn and let A = {an : n ∈ N}. If q > 1, f(x) =

(1 + log x)−1, then −xqf ′(x) = xq−1(1 + log x)−2 →∞, so again ∃ c > 0 with
−xqf ′(x) ≥ c. Hence dimK(A) ≥ 1

q . Letting q ↘ 1 gives dimK(A) = 1. It can
get that large.

4 Regular Decrease

In both examples above it is assumed that the sequences tend to 0 regularly;
that is, an+1 − an ≥ an+2 − an+1. That they do tend to 0 regularly can be
established using that there is a twice differentiable function, f : (1−δ,∞)→ R
with an = f(n) such that f(x) > 0, f ′(x) < 0 and limx→∞ f(x) = 0. These
properties imply that an > 0, an > an+1 and limn→∞ an = 0. Further, if f ′

has only finitely many roots, then f(x) > 0 and f(x)→ 0 implies f ′(x) < 0 for
large x, since f ′(x) > 0 is untenable for large x. Similarly, an → 0 regularly
provided −f ′(x) decreases, i.e., f ′′(x) > 0. Finally, if f ′ and f ′′ have only
finitely many roots, then f(x) > 0 and f(x) → 0 implies f ′′(x) > 0 for large
x, since f ′′(x) < 0 is untenable for large x. (f ′′(x) < 0 would imply −f ′(x)
increases, i.e., an−an+1 increases [and is positive; see above on why f ′(x) < 0
for large x], contradicting an − an+1 → 0.)

So the following theorem results.

Theorem 3 Let δ > 0 and let f : (1 − δ,∞) → R be twice differentiable.
Suppose for each x ∈ (1− δ,∞) we have f(x) > 0, f(x) → 0, and f ′ and f ′′

have only finitely many roots. Then f(n)→ 0 regularly.

For example, generalized rational functions (with any nonnegative real
exponent allowed) of x and log(x) satisfy the conditions of Theorem 3, since
eventually one term will dominate in the numerator (and denominator), giving
constant sign. Consequently, the sequences in Examples 1 and 2 do go to zero
regularly.

Example 3 There is a sequence an ↘ 0 with A = {an : n ∈ N} having
Kolmogorov dimension zero, while Σan diverges. Needless to say, an does not
go to zero regularly.

For n = 2k + j, 0 ≤ j < 2k set an = 2−k + (2k − j − 1) · 2−k · 2−2k .
a1 = 1, a2 = 1

2 + 1
8 , a3 = 1

2 , a4 = 1
4 + 3

64 , a5 = 1
4 + 2

64 , a6 = 1
4 + 1

64 ,
a7 = 1

4 , a8 = 1
8 + 7

2048 , . . . .
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Note that

i) an ≥ 2−k. Thus
∑2k+1−1

n=2k an ≥ 1. Hence
∑∞

n=1 an diverges.

ii) an decreases for 2k ≤ n ≤ 2k+1 − 1 and

a2k+1 = 2−(k+1) + (2k+1 − 1)2−(k+1) · 2−2
k+1

< 2−k · 1

2
+ 2−2

k+1

= 2−k · (1

2
+ 2k−2

k+1

)

< 2−k = a2k+1−1,

since 1
2 + 2k−2

k+1

< 1; i.e., 2k−2
k+1

< 1
2 ; i.e., k − 2k+1 < −1; i.e.,

k + 1 < 2k+1.

Claim: A = {an : n ∈ N} has Kolmogorov dimension zero.

Proof of Claim. Set εl = 2−l. Divide A into three parts:

i) If n = 2k + j as above, and k > l, then an < a2l+1−1 = 2−l = εl. Hence
an ∈ [0, 2−l]. That’s one set.

ii) If log2 l ≤ k ≤ l, then by the formula, an ∈ [2−k, 2−k + 2−2
k

], which has

length 2−2
k ≤ 2−2

log2 l

= 2−l = εl. That’s at most l more sets.

iii) If k < log2 l, then an ∈ {an}. Now k < log2 l ⇒ 2k < l ⇒ n < 2l − 1.
That’s at most 2l − 2 more sets.

Combining, N(εl) ≤ 3l − 1. Hence, for any d > 0, there is a Cd with
N(εl) ≤ Cdε

−d
l .
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