ON SOME REPRESENTATIONS OF A.E. CONTINUOUS FUNCTIONS

Abstract

It is proved that the following conditions are equivalent: (a) f is an almost everywhere continuous function. (b) $f=g+h$, where g, h are strongly quasi-continuous. (c) $f=c+g h$, where $c \in \mathbb{R}$ and g, h are s.q.c..

Let \mathbb{R} be the set of all reals and let $\mu_{e}(\mu)$ denote outer Lebesgue measure (Lebesgue measure) in \mathbb{R}. Denote by

$$
\begin{aligned}
& d_{u}(A, x)=\limsup _{h \rightarrow 0} \mu_{e}(A \cap(x-h, x+h)) / 2 h \\
& \left(d_{l}(A, x)=\liminf _{h \rightarrow 0} \mu_{e}(A \cap(x-h, x+h)) / 2 h\right)
\end{aligned}
$$

the upper (lower) density of a set $A \subset \mathbb{R}$ at a point x. A point $x \in \mathbb{R}$ is called a density point of a set $A \subset \mathbb{R}$ if there exists a measurable (in the sense of Lebesgue) set $B \subset A$ such that $d_{l}(B, x)=1$. The family $\mathcal{T}_{d}=\{A \subset \mathbb{R} ; A$ is measurable and every point $x \in A$ is a density point of $A\}$ is a topology called the density topology [1].

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be strongly quasi-continuous (in short s.q.c.) at a point x if for every set $A \in \mathcal{T}_{d}$ containing x and for every positive real η there is an open interval I such that $I \cap A \neq \emptyset$ and $|f(t)-f(x)|<\eta$ for all $t \in A \cap I$ [2].

If there is an open set U such that $d_{u}(U, x)>0$ and the restricted function $f \mid(U \cup\{x\})$ is continuous at x, then f is s.q.c. at x. [3].

By an elementary proof, we obtain the following observation.

[^0]Remark 1 If all functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}, n=1,2, \ldots$, of some uniformly convergent sequence $\left(f_{n}\right)_{n}$ are s.q.c. at a point x, then its limit f is also s.q.c. at x.

It is known [2, 3] that every s.q.c. function f is almost everywhere (with respect to μ) continuous. So, the sum and the product of two s.q.c. functions are almost everywhere continuous.

We will prove the following assertion.
Theorem 1 If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is almost everywhere continuous, then there are two s.q.c. functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=g+h$.

Proof. Let cl denote the closure operation and let

$$
B=\left\{y \in \mathbb{R} ; \mu\left(\operatorname{cl}\left(f^{-1}(y)\right)>0\right\}\right.
$$

Since the function f is almost everywhere continuous, the set B is countable. Let $E(B)$ be the linear space over the field \mathbb{Q} of all rationals generated by the set B. Since the set $E(B)$ is countable, there is a positive number $c \in \mathbb{R} \backslash E(B)$. Denote by \mathbb{Z} the set of all integers and by \mathbb{N} the set of all positive integers. Fix $k \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $(2 k-1) c / 4^{n} \leq f(x)<(2 k+1) c / 4^{n}$, then we define $f_{n}(x)=(2 k-1) c / 4^{n}$. Observe that every function $f_{n}, n \in \mathbb{N}$, is almost everywhere continuous and if $D\left(f_{n}\right)$ denotes the set of all discontinuity points of f_{n}, then $D\left(f_{n}\right)$ is a closed set of measure zero. Moreover, $D\left(f_{n}\right) \subset D\left(f_{n+1}\right)$ for $n \in \mathbb{N}$. Let $C\left(f_{n}\right), n \in \mathbb{N}$, be the set of all continuity points of the function f_{n}, i.e. $C\left(f_{n}\right)=\mathbb{R} \backslash D\left(f_{n}\right)$.

Step 1. Since the set $D\left(f_{1}\right)$ is closed and of measure zero, for $k \in \mathbb{Z}$ and $j \in \mathbb{N}$ there are disjoint closed intervals $I_{1, k, j}=\left[a_{1, k, j}, b_{1, k, j}\right] \subset C\left(f_{1}\right)$, such that for every $k \in \mathbb{Z}$ and for every $x \in D\left(f_{1}\right)$ we have $d_{u}\left(\cup_{j \in \mathbb{N}} I_{1, k, j}, x\right)=1$ and if there exists the limit $\lim _{l \rightarrow \infty} a_{1, k_{l}, j_{l}}$, then $\lim _{l \rightarrow \infty} a_{1, k_{l}, j_{l}}=\lim _{l \rightarrow \infty} b_{1, k_{l}, j_{l}} \in$ $D\left(f_{1}\right)$. Let

$$
g_{1}(x)= \begin{cases}(2 k+1) c / 4 & \text { if } x \in I_{1,2 k, j}, j \in \mathbb{N} \\ f_{1}(x) & \text { otherwise }\end{cases}
$$

and for $x \in \mathbb{R}$ let $h_{1}(x)=f_{1}(x)-g_{1}(x)$. Observe that the functions g_{1}, h_{1} are s.q.c. and $f_{1}=g_{1}+h_{1}$.

Step 2. First, we find disjoint sets $F_{2,2 k, j, l} \subset \operatorname{int}\left(I_{1,2 k, j}\right) \backslash D\left(f_{2}\right), k \in \mathbb{Z}$, $j \in \mathbb{N}, l=1, \ldots, 7$, being the unions of finite families of disjoint closed intervals and such that

- $\mu\left(F_{2,2 k, j, l}\right)=\mu\left(I_{1,2 k, j}\right) / 10$ for $k \in Z, j \in \mathbb{N}, l=1, \ldots, 7$;

Moreover, we find a family of disjoint closed intervals $I_{2, k, j}=\left[a_{2, k, j}, b_{2, k, j}\right]$ $\subset C\left(f_{2}\right) \backslash \cup_{k \in \mathbb{Z} ; j \in \mathbb{N} ; l \leq 7} F_{2,2 k, j, l}, k \in \mathbb{Z}, j \in \mathbb{N}$ such that

- for every $k \in \mathbb{Z}$ and for every $x \in D\left(f_{2}\right)$ we have $d_{u}\left(\bigcup_{j \in \mathbb{N}} I_{2, k, j}, x\right)=1$;
- if there exists the limits $\lim _{l \rightarrow \infty} a_{2, k_{l}, j_{l}}$, then $\lim _{l \rightarrow \infty} a_{2, k_{l}, j_{l}}=\lim _{2, k_{l}, j_{l}} b_{2, k_{l}, j_{l}}$ $\in D\left(f_{2}\right)$;
- for all $k_{1}, k_{2} \in \mathbb{Z}$ and $j_{1}, j_{2} \in \mathbb{N}$ we have $I_{1, k_{1}, j_{1}} \cap I_{2, k_{2}, j_{2}}=\emptyset$ or $I_{2, k_{2}, j_{2}} \subset$ $\operatorname{int}\left(I_{1, k_{1}, j_{1}}\right)$.
Let

$$
g_{2}(x)= \begin{cases}f_{2}(x) & \text { if } x \in D\left(f_{2}\right) \\ g_{1}(x)+l c / 16 & \text { if } x \in I_{2, l, j}, j \in \mathbb{N}, l=1, \ldots, 7 \\ g_{1}(x)+l c / 16 & \text { if } x \in F_{2,2 k, j, l}, k \in \mathbb{Z}, j \in \mathbb{N}, l \leq 7 \\ g_{1}(x) & \text { otherwise }\end{cases}
$$

and for $x \in \mathbb{R}$ let $h_{2}(x)=f_{2}(x)-g_{2}(x)$. Then the functions g_{2}, h_{2} are s.q.c. and $f_{2}=g_{2}+h_{2}$. Moreover, $\left|g_{1}-g_{2}\right| \leq c / 2$ and $\left|h_{1}-h_{2}\right| \leq\left|f_{1}-f_{2}\right|+\left|g_{1}-g_{2}\right| \leq$ $c / 2+c / 2=c$.

Step $n(n>2)$. There are s.q.c. functions g_{n-1}, h_{n-1} such that

- $g_{n-1}+h_{n-1}=f_{n-1}$ and
- $g_{n-1}(\mathbb{R}) \cup h_{n-1}(\mathbb{R}) \subset\left\{k c / 4^{n-1} ; k \in \mathbb{Z}\right\}$.

If $\left(g_{n-1}\right)^{-1}\left(k c / 4^{n-1}\right) \neq \emptyset$ for some $k \in \mathbb{Z}$, then for there are disjoint closed intervals $I_{n, k, l, j} \subset \operatorname{int}\left(\left(g_{n-1}\right)^{-1}\left(k c / 4^{n-1}\right)\right) \cap C\left(f_{n}\right), l, j \in \mathbb{N}$, such that

- for every $l \in \mathbb{N}$ and for every $x \in D\left(f_{n}\right) \cap\left(g_{n-1}\right)^{-1}\left(k c / 4^{n-1}\right)$ we have $d_{u}\left(\bigcup_{j \in \mathbb{N}} I_{n, k, l, j}, x\right)>0$ and
- if a sequence of points $x_{i}, i \in \mathbb{N}$, belonging to different intervals $I_{n, k, l_{i}, j_{i}}$ converges to a point x, then $x \in D\left(f_{n}\right)$.
Let

$$
g_{n}(x)= \begin{cases}f_{n}(x) & \text { if } x \in D\left(f_{n}\right) \\ g_{n-1}(x)+l c / 4^{n} & \text { if } x \in I_{n, k, l, j}, j \in \mathbb{N}, k \in Z, l=1, \ldots, 7 \\ g_{n-1}(x) & \text { otherwise }\end{cases}
$$

and let $h_{n}(x)=f_{n}(x)-g_{n}(x), \quad x \in \mathbb{R}$. Then the functions g_{n}, h_{n} are s.q.c. and $f_{n}=g_{n}+h_{n}$. Moreover, $\left|g_{n}-g_{n-1}\right| \leq 2 c / 4^{n-1}$ and $\left|h_{n}-h_{n-1}\right| \leq c / 4^{n-2}$. The sequences $\left(g_{n}\right)_{n}$ and $\left(h_{n}\right)_{n}$ uniformly converge to some functions g and h respectively, which are, by Remark 1, s.q.c.. Moreover,

$$
g+h \lim _{n \rightarrow \infty} g_{n}+\lim _{n \rightarrow \infty} h_{n}=\lim _{n \rightarrow \infty}\left(g_{n}+h_{n}\right)=\lim _{n \rightarrow \infty} f_{n}=f
$$

This finishes the proof.
Remark 2 If the function from Theorem 1 is of Baire α class $(\alpha>0)$, then the functions g and h can be the same.

Remark 3 From the proof of Theorem 1 it follows immediately that if I is an open interval and if $f: I \rightarrow \mathbb{R}$ is an almost everywhere continuous function, then there are two s.q.c. functions $g, h: I \rightarrow \mathbb{R}$ such that $f=g+h$.

Now we will examine the products of s.q.c. functions.
Theorem 2 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an almost everywhere continuous function such that $\mu\left(\operatorname{cl}\left(f^{-1}(0)\right) \backslash \operatorname{int}\left(f^{-1}(0)\right)\right)=0$. Then there are two s.q.c. functions g, h such that $f=g h$.

Proof. Denote by A the set $\{x ; f(x)>0\}$, by B the set $\{x ; f(x)<0\}$ and observe that $\mu\left(\mathbb{R} \backslash \operatorname{int}(A) \backslash \operatorname{int}(B) \backslash \operatorname{int}\left(f^{-1}(0)\right)\right)=0$. If I is a component of the set $\operatorname{int}(A)$, then the function $x \rightarrow \ln (f(x))$ for $x \in I$, is an almost everywhere continuous function, and by Remark 3 , there are two s.q.c. functions g_{I}, h_{I} : $I \rightarrow \mathbb{R}$ such that $\ln (f(x))=g_{I}(x)+h_{I}(x)$ for $x \in I$. Consequently, the reduced function $f \mid I=\left(e^{\ln (f)}\right) / I=e^{g_{I}} e^{h_{I}}$ is the product of two s.q.c. functions. Analogously, if J is a component of the set int (B), then the function $-f \mid J$ is the product of two s.q.c. functions and consequently, the function $f \mid J$ is also the product of two s.q.c. functions. So, there are two s.q.c. functions $g_{1}, h_{1}:(\operatorname{int}(A) \cup \operatorname{int}(B)) \rightarrow \mathbb{R}$ such that $f \mid(\operatorname{int}(A) \cup \operatorname{int}(B))=g_{1} h_{1}$. Let F be the set of all points $x \in \operatorname{cl}\left(\operatorname{int}\left(f^{-1}(0)\right)\right)$ at which $d_{l}\left(\operatorname{int}\left(f^{-1}(0)\right), x\right)=1$ and $f(x) \neq 0$. There are families of closed intervals $I_{k, n}=\left[a_{k, n}, b_{k, n}\right] \subset$ $\operatorname{int}\left(f^{-1}(0)\right), k, n \in \mathbb{N}$, such that

- $I_{k_{1}, n_{1}} \cap I_{k_{2}, n_{2}}=\emptyset$ if $\left(k_{1}, n_{1}\right) \neq\left(k_{2}, n_{2}\right), k_{1}, k_{2}, n_{1}, n_{2} \in \mathbb{N}$,
- if \exists the limit $\lim _{l \rightarrow \infty} a_{k_{l}, n_{l}}$, then $\lim _{l \rightarrow \infty} a_{k_{l} . n_{l}}=\lim _{l \rightarrow \infty} b_{k_{l}, n_{l}} \in \operatorname{cl}(F)$,
- for every point $x \in F$ and for every $k \in \mathbb{N}$ we have $d_{u}\left(\bigcup_{n} I_{k, n}, x\right)>0$.

Next, enumerate all non zero rationals in a sequence $w_{1}, \ldots, w_{k}, \ldots$ such that $w_{i} \neq w_{j}$ for $i \neq j, i, j \in \mathbb{N}$, and let $H=\mathbb{R} \backslash \operatorname{int}(A) \backslash \operatorname{int}(B) \backslash \operatorname{int}\left(f^{-1}(0)\right) \backslash F$. There are disjoint closed intervals $J_{k, n}=\left[c_{k, n}, d_{k, n}\right] \subset \operatorname{int}(A) \cup \operatorname{int}(B), k, n \in$ \mathbb{N}, such that

- the functions g_{1}, h_{1} are continuous at all points $c_{k, n}$ and $d_{k, n}, k, n \in \mathbb{N}$,
- if there exist the $\operatorname{limit} \lim _{l \rightarrow \infty} c_{k_{l}, n_{l}}$, then $\lim _{l \rightarrow \infty} c_{k_{l}, n_{l}}=\lim _{l \rightarrow \infty} d_{k_{l}, n_{l}} \in$ $\operatorname{cl}(H)$,
- for every point $x \in H$ and for every $k \in \mathbb{N}$ we have $d_{u}\left(\bigcup_{n} J_{k, n}, x\right)>0$.

Since the function g_{1} is almost everywhere continuous on its domain, for every interval $\operatorname{int}\left(J_{k, n}\right), k, n \in \mathbb{N}$, there are a positive real $r(k, n)$ and a finite family of disjoint closed intervals $K_{k, n, i} \subset \operatorname{int}\left(J_{k, n}\right), i=1, \ldots, i(k, n)$, such that

- $\left|g_{1}(x)\right|>r(k, n)$ for $x \in K_{k, n, i}, k, n \in \mathbb{N}, i=1, \ldots . i(k, n)$,
- osc $K_{k, n, i} g_{1}<r(k, n) / n w_{k}$ for $k, n \in \mathbb{N}, i=1, \ldots, i(k, n)$,
- for every point $x \in H$ and for every $k \in \mathbb{N}$ we have $d_{u}\left(\bigcup_{n \in \mathbb{N} ; i \leq i(k, n)} K_{k, n, i}, x\right)$ >0.
In every interval $\operatorname{int}\left(K_{k, n, i}\right), k, n \in \mathbb{N}, i=1, \ldots, i(k, n)$, fix a point $x_{k, n, i}$.

Put

$$
g(x)= \begin{cases}w_{k} & \text { if } x \in I_{2 k, n}, k, n \in \mathbb{N} \\ 0 & \text { if } x \in I_{2 k-1, n}, k, n \in \mathbb{N} \\ 0 & \text { otherwise on } f^{-1}(0) \\ g_{1}(x) w_{k} / g_{1}\left(x_{2 k, n, i}\right) & \text { if } x \in K_{2 k, n, i}, k, n \in \mathbb{N}, i \leq i(k, n) \\ g_{1}(x) & \text { otherwise on int }(A) \cup \operatorname{int}(B) \\ g_{1}(x) h_{1}(x) & \text { if } x \in F \cup H\end{cases}
$$

and

$$
h(x)= \begin{cases}0 & \text { if } x \in I_{2 k, n}, k, n \in \mathbb{N} \\ 1 & \text { if } x \in I_{2 k-1, n}, k, n \in \mathbb{N} \\ 0 & \text { otherwise on } f^{-1}(0) \\ h_{1}(x) g_{1}\left(x_{2 k, n, i}\right) / w_{k} & \text { if } x \in K_{2 k, n, i}, k, n \in \mathbb{N}, i \leq i(k, n) \\ h_{1}(x) & \text { otherwise on } \operatorname{int}(A) \cup \operatorname{int}(B) \\ 1 & \text { if } x \in F \cup H .\end{cases}
$$

Since $g\left(K_{k, n, i}\right) \subset\left(w_{k}-1 / n, w_{k}+1 / n\right)$ for all $k, n \in \mathbb{N}, i=1, \ldots, i(k, n)$, and $d_{u}\left(\bigcup_{n \in \mathbb{N}, i \leq i(k, n)} K_{k, n, i}, x\right)>0$ for each $x \in H$ and for each $k \in \mathbb{N}$, the function g is s.q.c. at every point $x \in H$. Evidently, it is also s.q.c. otherwise on \mathbb{R}. Analogously, h is a s.q.c. function. Obviously, $f=g h$ and the proof is completed.

Theorem 3 If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an almost everywhere continuous function, then there are a constant $c \in \mathbb{R}$ and two s.q.c. functions g, h such that $f=c+g h$.

Proof. Let $c \in \mathbb{R}$ be a number such that $\mu\left(\operatorname{cl}\left(f^{-1}(c)\right)\right)=0$. Then the function $f_{1}=f-c$ satisfies the suppositions of Theorem 2 and consequently, there are two s.q.c. functions g, h such that $f_{1}=g h$. So, $f=c+g h$ and the proof is completed.

Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is quasi-continuous (cliquish) at a point x if for every positive η and for every open set U containing x there is a nonempty open set $V \subset U$ such that $|f(t)-f(x)|<\eta$ for all $t \in V\left(\operatorname{osc}_{V} f<\eta\right)$ [6].

Remark 4 Since for every cliquish function $f: \mathbb{R} \rightarrow \mathbb{R}$ there is a homeomorphism $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \circ h$ is almost everywhere continuous, by Theorems 1 and 3 we obtain immediately that for every cliquish function f there are a constant $c \in \mathbb{R}$ and quasi-continuous functions $f_{1}, f_{2}, f_{3}, f_{4}$ such that $f=f_{1}+f_{2}$ and $f=c+f_{3} f_{4}$.

Remark 5 If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the product of a finite family of s.q.c. functions $g_{k}, k=1, \ldots, n$, then it satisfies the following condition:
(H) if $A \subset \operatorname{cl}\left(f^{-1}(0)\right)-f^{-1}(0)$ is such that $d_{l}\left(f^{-1}(0), x\right)=1$ for every $x \in A$, then A is nowhere dense in $f^{-1}(0)$.

Proof. Denote by B the set of all density points of the set $f^{-1}(0)$ belonging to $f^{-1}(0)$. If $B \neq \emptyset$ and A is not nowhere dense in $f^{-1}(0)$, then there is a point $x \in A$ and a positive integer $i \leq n$ such that x is a density point of the set $\left(f_{i}\right)^{-1}(0)$. Since $f_{i}(x) \neq 0$ and f_{i} is a s.q.c. function, we obtain a contradiction. If $B=\emptyset$, then A is the same. This completes the proof.

Remark 6 There is almost everywhere continuous functions which are not the products of finite families of s.q.c. functions.
Proof. Such as, for example, the function

$$
f(x)= \begin{cases}1 / n & \text { if } x=w_{n}, n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

(see also $[4,5]$), since it does not satisfy condition (H) in Remark 5.

Problems

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an almost everywhere continuous function. Is the function f the sum of two Darboux s.q.c. functions?
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an almost everywhere continuous function satisfying the condition (H) from Remark 5. Is f the product of two s.q.c. functions?
3. Characterize the products of two Darboux s.q.c. functions.

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math., 659 (1978), Springer-Verlag.
[2] Z. Grande, Measurability, quasicontinuity and cliquishness of functions of two variables, Real Analysis Exchange 20 No. 2 (1994-95), 744-752.
[3] Z. Grande, On strong quasi-continuity of functions of two variables, Real Analysis Exchange 21 No. 1 (1995-96).
[4] Z. Grande, Sur les fonctions cliquish, Cas. Pest. Mat., 110 (1985), 225236.
[5] T. Natkaniec, Products of quasi-continuous functions, Math. Slovaca, 40 (1990), 401-405.
[6] T. Neubrunn, Quasi-continuity, Real Analysis Exchange, 14 No. 2 (198889), 259-306.

[^0]: Key Words: continuity, strong quasicontinuity, density topology, sums of functions, products of functions

 Mathematical Reviews subject classification: Primary: 26A15, Secondary: 54C08, 54C30

 Received by the editors September 4, 1994

