Zbigniew Grande, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland

ON SOME REPRESENTATIONS OF A.E. CONTINUOUS FUNCTIONS

Abstract

It is proved that the following conditions are equivalent:

- (a) f is an almost everywhere continuous function.
- (b) f = g + h, where g, h are strongly quasi-continuous.
- (c) f = c + gh, where $c \in \mathbb{R}$ and g, h are s.q.c..

Let \mathbb{R} be the set of all reals and let $\mu_e(\mu)$ denote outer Lebesgue measure (Lebesgue measure) in \mathbb{R} . Denote by

$$d_u(A, x) = \limsup_{h \to 0} \mu_e(A \cap (x - h, x + h))/2h$$
$$(d_l(A, x) = \liminf_{h \to 0} \mu_e(A \cap (x - h, x + h))/2h)$$

the upper (lower) density of a set $A \subset \mathbb{R}$ at a point x. A point $x \in \mathbb{R}$ is called a density point of a set $A \subset \mathbb{R}$ if there exists a measurable (in the sense of Lebesgue) set $B \subset A$ such that $d_l(B, x) = 1$. The family $\mathcal{T}_d = \{A \subset \mathbb{R}; A \text{ is}$ measurable and every point $x \in A$ is a density point of $A\}$ is a topology called the density topology [1].

A function $f : \mathbb{R} \to \mathbb{R}$ is said to be strongly quasi-continuous (in short s.q.c.) at a point x if for every set $A \in \mathcal{T}_d$ containing x and for every positive real η there is an open interval I such that $I \cap A \neq \emptyset$ and $|f(t) - f(x)| < \eta$ for all $t \in A \cap I$ [2].

If there is an open set U such that $d_u(U, x) > 0$ and the restricted function $f|(U \cup \{x\})$ is continuous at x, then f is s.q.c. at x. [3].

By an elementary proof, we obtain the following observation.

Key Words: continuity, strong quasicontinuity, density topology, sums of functions, products of functions Mathematical Reviews subject classification: Primary: 26A15, Secondary: 54C08,

Mathematical Reviews subject classification: Primary: 26A15, Secondary: 54C08, 54C30 Received by the editors September 4, 1994

Remark 1 If all functions $f_n : \mathbb{R} \to \mathbb{R}$, n = 1, 2, ..., of some uniformly convergent sequence $(f_n)_n$ are s.q.c. at a point x, then its limit f is also s.q.c. at x.

It is known [2, 3] that every s.q.c. function f is almost everywhere (with respect to μ) continuous. So, the sum and the product of two s.q.c. functions are almost everywhere continuous.

We will prove the following assertion.

Theorem 1 If a function $f : \mathbb{R} \to \mathbb{R}$ is almost everywhere continuous, then there are two s.q.c. functions $g, h : \mathbb{R} \to \mathbb{R}$ such that f = g + h.

PROOF. Let cl denote the closure operation and let

$$B = \{ y \in \mathbb{R}; \mu(\operatorname{cl}(f^{-1}(y)) > 0 \}.$$

Since the function f is almost everywhere continuous, the set B is countable. Let E(B) be the linear space over the field \mathbb{Q} of all rationals generated by the set B. Since the set E(B) is countable, there is a positive number $c \in \mathbb{R} \setminus E(B)$. Denote by \mathbb{Z} the set of all integers and by \mathbb{N} the set of all positive integers. Fix $k \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $(2k-1)c/4^n \leq f(x) < (2k+1)c/4^n$, then we define $f_n(x) = (2k-1)c/4^n$. Observe that every function $f_n, n \in \mathbb{N}$, is almost everywhere continuous and if $D(f_n)$ denotes the set of all discontinuity points of f_n , then $D(f_n)$ is a closed set of measure zero. Moreover, $D(f_n) \subset D(f_{n+1})$ for $n \in \mathbb{N}$. Let $C(f_n), n \in \mathbb{N}$, be the set of all continuity points of the function f_n , i.e. $C(f_n) = \mathbb{R} \setminus D(f_n)$.

Step 1. Since the set $D(f_1)$ is closed and of measure zero, for $k \in \mathbb{Z}$ and $j \in \mathbb{N}$ there are disjoint closed intervals $I_{1,k,j} = [a_{1,k,j}, b_{1,k,j}] \subset C(f_1)$, such that for every $k \in \mathbb{Z}$ and for every $x \in D(f_1)$ we have $d_u(\bigcup_{j \in \mathbb{N}} I_{1,k,j}, x) = 1$ and if there exists the limit $\lim_{l\to\infty} a_{1,k_l,j_l}$, then $\lim_{l\to\infty} a_{1,k_l,j_l} = \lim_{l\to\infty} b_{1,k_l,j_l} \in D(f_1)$. Let

$$g_1(x) = \begin{cases} (2k+1)c/4 & \text{if } x \in I_{1,2k,j}, \ j \in \mathbb{N} \\ f_1(x) & \text{otherwise} \end{cases}$$

and for $x \in \mathbb{R}$ let $h_1(x) = f_1(x) - g_1(x)$. Observe that the functions g_1 , h_1 are s.q.c. and $f_1 = g_1 + h_1$.

Step 2. First, we find disjoint sets $F_{2,2k,j,l} \subset \text{int}(I_{1,2k,j}) \setminus D(f_2), k \in \mathbb{Z}$, $j \in \mathbb{N}, l = 1, \ldots, 7$, being the unions of finite families of disjoint closed intervals and such that

• $\mu(F_{2,2k,j,l}) = \mu(I_{1,2k,j})/10$ for $k \in \mathbb{Z}, j \in \mathbb{N}, l = 1, \dots, 7;$

Moreover, we find a family of disjoint closed intervals $I_{2,k,j} = [a_{2,k,j}, b_{2,k,j}] \subset C(f_2) \setminus \bigcup_{k \in \mathbb{Z}; j \in \mathbb{N}; l \leq 7} F_{2,2k,j,l}, k \in \mathbb{Z}, j \in \mathbb{N}$ such that

• for every $k \in \mathbb{Z}$ and for every $x \in D(f_2)$ we have $d_u(\bigcup_{j \in \mathbb{N}} I_{2,k,j}, x) = 1$;

- if there exists the limits $\lim_{l\to\infty} a_{2,k_l,j_l}$, then $\lim_{l\to\infty} a_{2,k_l,j_l} = \lim_{2,k_l,j_l} b_{2,k_l,j_l} \in D(f_2)$;
- for all $k_1, k_2 \in \mathbb{Z}$ and $j_1, j_2 \in \mathbb{N}$ we have $I_{1,k_1,j_1} \cap I_{2,k_2,j_2} = \emptyset$ or $I_{2,k_2,j_2} \subset \inf (I_{1,k_1,j_1})$.

Let

$$g_2(x) = \begin{cases} f_2(x) & \text{if } x \in D(f_2) \\ g_1(x) + lc/16 & \text{if } x \in I_{2,l,j}, \ j \in \mathbb{N}, \ l = 1, \dots, 7 \\ g_1(x) + lc/16 & \text{if } x \in F_{2,2k,j,l}, \ k \in \mathbb{Z}, \ j \in \mathbb{N}, \ l \le 7 \\ g_1(x) & \text{otherwise} \end{cases}$$

and for $x \in \mathbb{R}$ let $h_2(x) = f_2(x) - g_2(x)$. Then the functions g_2 , h_2 are s.q.c. and $f_2 = g_2 + h_2$. Moreover, $|g_1 - g_2| \le c/2$ and $|h_1 - h_2| \le |f_1 - f_2| + |g_1 - g_2| \le c/2 + c/2 = c$.

Step n (n > 2). There are s.q.c. functions g_{n-1} , h_{n-1} such that

- $g_{n-1} + h_{n-1} = f_{n-1}$ and
- $g_{n-1}(\mathbb{R}) \cup h_{n-1}(\mathbb{R}) \subset \{kc/4^{n-1}; k \in \mathbb{Z}\}.$

If $(g_{n-1})^{-1}(kc/4^{n-1}) \neq \emptyset$ for some $k \in \mathbb{Z}$, then for there are disjoint closed intervals $I_{n,k,l,j} \subset \operatorname{int} ((g_{n-1})^{-1}(kc/4^{n-1})) \cap C(f_n), l, j \in \mathbb{N}$, such that

- for every $l \in \mathbb{N}$ and for every $x \in D(f_n) \cap (g_{n-1})^{-1}(kc/4^{n-1})$ we have $d_u(\bigcup_{i \in \mathbb{N}} I_{n,k,l,j}, x) > 0$ and
- if a sequence of points x_i , $i \in \mathbb{N}$, belonging to different intervals I_{n,k,l_i,j_i} converges to a point x, then $x \in D(f_n)$.

Let

$$g_n(x) = \begin{cases} f_n(x) & \text{if } x \in D(f_n) \\ g_{n-1}(x) + lc/4^n & \text{if } x \in I_{n,k,l,j}, \ j \in \mathbb{N}, \ k \in Z, \ l = 1, \dots, 7 \\ g_{n-1}(x) & \text{otherwise} \end{cases}$$

and let $h_n(x) = f_n(x) - g_n(x)$, $x \in \mathbb{R}$. Then the functions g_n , h_n are s.q.c. and $f_n = g_n + h_n$. Moreover, $|g_n - g_{n-1}| \le 2c/4^{n-1}$ and $|h_n - h_{n-1}| \le c/4^{n-2}$. The sequences $(g_n)_n$ and $(h_n)_n$ uniformly converge to some functions g and hrespectively, which are, by Remark 1, s.q.c.. Moreover,

$$g + h \lim_{n \to \infty} g_n + \lim_{n \to \infty} h_n = \lim_{n \to \infty} (g_n + h_n) = \lim_{n \to \infty} f_n = f.$$

This finishes the proof.

Remark 2 If the function f from Theorem 1 is of Baire α class ($\alpha > 0$), then the functions g and h can be the same.

Remark 3 From the proof of Theorem 1 it follows immediately that if I is an open interval and if $f: I \to \mathbb{R}$ is an almost everywhere continuous function, then there are two s.q.c. functions $g, h: I \to \mathbb{R}$ such that f = g + h.

Now we will examine the products of s.q.c. functions.

Theorem 2 Let $f : \mathbb{R} \to \mathbb{R}$ be an almost everywhere continuous function such that $\mu(\operatorname{cl}(f^{-1}(0)) \setminus \operatorname{int}(f^{-1}(0))) = 0$. Then there are two s.q.c. functions g, h such that f = gh.

PROOF. Denote by A the set $\{x; f(x) > 0\}$, by B the set $\{x; f(x) < 0\}$ and observe that $\mu(\mathbb{R}\setminus \operatorname{int}(A)\setminus \operatorname{int}(B)\setminus \operatorname{int}(f^{-1}(0))) = 0$. If I is a component of the set int (A), then the function $x \to \ln(f(x))$ for $x \in I$, is an almost everywhere continuous function, and by Remark 3, there are two s.q.c. functions $g_I, h_I :$ $I \to \mathbb{R}$ such that $\ln(f(x)) = g_I(x) + h_I(x)$ for $x \in I$. Consequently, the reduced function $f|I = (e^{\ln(f)})/I = e^{g_I}e^{h_I}$ is the product of two s.q.c. functions. Analogously, if J is a component of the set int (B), then the function -f|Jis the product of two s.q.c. functions. So, there are two s.q.c. functions $g_1, h_1 : (\operatorname{int}(A) \cup \operatorname{int}(B)) \to \mathbb{R}$ such that $f|(\operatorname{int}(A) \cup \operatorname{int}(B)) = g_1h_1$. Let F be the set of all points $x \in \operatorname{cl}(\operatorname{int}(f^{-1}(0)))$ at which $d_l(\operatorname{int}(f^{-1}(0)), x) = 1$ and $f(x) \neq 0$. There are families of closed intervals $I_{k,n} = [a_{k,n}, b_{k,n}] \subset$ $\operatorname{int}(f^{-1}(0)), k, n \in \mathbb{N}$, such that

- $I_{k_1,n_1} \cap I_{k_2,n_2} = \emptyset$ if $(k_1,n_1) \neq (k_2,n_2), k_1,k_2,n_1,n_2 \in \mathbb{N}$,
- if \exists the limit $\lim_{l\to\infty} a_{k_l,n_l}$, then $\lim_{l\to\infty} a_{k_l,n_l} = \lim_{l\to\infty} b_{k_l,n_l} \in \operatorname{cl}(F)$,
- for every point $x \in F$ and for every $k \in \mathbb{N}$ we have $d_u(\bigcup_n I_{k,n}, x) > 0$.

Next, enumerate all non zero rationals in a sequence w_1, \ldots, w_k, \ldots such that $w_i \neq w_j$ for $i \neq j, i, j \in \mathbb{N}$, and let $H = \mathbb{R} \setminus \operatorname{int} (A) \setminus \operatorname{int} (B) \setminus \operatorname{int} (f^{-1}(0)) \setminus F$. There are disjoint closed intervals $J_{k,n} = [c_{k,n}, d_{k,n}] \subset \operatorname{int} (A) \cup \operatorname{int} (B), k, n \in \mathbb{N}$, such that

- the functions g_1, h_1 are continuous at all points $c_{k,n}$ and $d_{k,n}, k, n \in \mathbb{N}$,
- if there exist the limit $\lim_{l\to\infty} c_{k_l,n_l}$, then $\lim_{l\to\infty} c_{k_l,n_l} = \lim_{l\to\infty} d_{k_l,n_l} \in cl(H)$,
- for every point $x \in H$ and for every $k \in \mathbb{N}$ we have $d_u(\bigcup_n J_{k,n}, x) > 0$.

Since the function g_1 is almost everywhere continuous on its domain, for every interval int $(J_{k,n})$, $k, n \in \mathbb{N}$, there are a positive real r(k, n) and a finite family of disjoint closed intervals $K_{k,n,i} \subset \operatorname{int} (J_{k,n})$, $i = 1, \ldots, i(k, n)$, such that

- $|g_1(x)| > r(k,n)$ for $x \in K_{k,n,i}, k, n \in \mathbb{N}, i = 1, \dots, i(k,n),$
- osc $_{K_{k,n,i}}g_1 < r(k,n)/nw_k$ for $k, n \in \mathbb{N}, i = 1, \dots, i(k,n),$
- for every point $x \in H$ and for every $k \in \mathbb{N}$ we have $d_u(\bigcup_{n \in \mathbb{N}; i \leq i(k,n)} K_{k,n,i}, x) > 0$.

In every interval int $(K_{k,n,i}), k, n \in \mathbb{N}, i = 1, \dots, i(k, n)$, fix a point $x_{k,n,i}$.

Put

$$g(x) = \begin{cases} w_k & \text{if } x \in I_{2k,n}, \ k,n \in \mathbb{N} \\ 0 & \text{if } x \in I_{2k-1,n}, \ k,n \in \mathbb{N} \\ 0 & \text{otherwise on } f^{-1}(0) \\ g_1(x)w_k/g_1(x_{2k,n,i}) & \text{if } x \in K_{2k,n,i}, \ k,n \in \mathbb{N}, \ i \le i(k,n) \\ g_1(x) & \text{otherwise on int } (A) \cup \text{int } (B) \\ g_1(x)h_1(x) & \text{if } x \in F \cup H \end{cases}$$

and

$$h(x) = \begin{cases} 0 & \text{if } x \in I_{2k,n}, \ k,n \in \mathbb{N} \\ 1 & \text{if } x \in I_{2k-1,n}, \ k,n \in \mathbb{N} \\ 0 & \text{otherwise on } f^{-1}(0) \\ h_1(x)g_1(x_{2k,n,i})/w_k & \text{if } x \in K_{2k,n,i}, \ k,n \in \mathbb{N}, \ i \le i(k,n) \\ h_1(x) & \text{otherwise on int } (A) \cup \text{int } (B) \\ 1 & \text{if } x \in F \cup H. \end{cases}$$

Since $g(K_{k,n,i}) \subset (w_k - 1/n, w_k + 1/n)$ for all $k, n \in \mathbb{N}$, $i = 1, \ldots, i(k, n)$, and $d_u(\bigcup_{n \in \mathbb{N}, i \leq i(k,n)} K_{k,n,i}, x) > 0$ for each $x \in H$ and for each $k \in \mathbb{N}$, the function g is s.q.c. at every point $x \in H$. Evidently, it is also s.q.c. otherwise on \mathbb{R} . Analogously, h is a s.q.c. function. Obviously, f = gh and the proof is completed. \Box

Theorem 3 If $f : \mathbb{R} \to \mathbb{R}$ is an almost everywhere continuous function, then there are a constant $c \in \mathbb{R}$ and two s.q.c. functions g, h such that f = c + gh.

PROOF. Let $c \in \mathbb{R}$ be a number such that $\mu(\operatorname{cl}(f^{-1}(c))) = 0$. Then the function $f_1 = f - c$ satisfies the suppositions of Theorem 2 and consequently, there are two s.q.c. functions g, h such that $f_1 = gh$. So, f = c + gh and the proof is completed.

Recall that a function $f : \mathbb{R} \to \mathbb{R}$ is quasi-continuous (cliquish) at a point x if for every positive η and for every open set U containing x there is a nonempty open set $V \subset U$ such that $|f(t) - f(x)| < \eta$ for all $t \in V$ (osc $V f < \eta$) [6].

Remark 4 Since for every cliquish function $f : \mathbb{R} \to \mathbb{R}$ there is a homeomorphism $h : \mathbb{R} \to \mathbb{R}$ such that $f \circ h$ is almost everywhere continuous, by Theorems 1 and 3 we obtain immediately that for every cliquish function fthere are a constant $c \in \mathbb{R}$ and quasi-continuous functions f_1, f_2, f_3, f_4 such that $f = f_1 + f_2$ and $f = c + f_3 f_4$.

Remark 5 If a function $f : \mathbb{R} \to \mathbb{R}$ is the product of a finite family of s.q.c. functions g_k , k = 1, ..., n, then it satisfies the following condition:

(H) if $A \subset cl(f^{-1}(0)) - f^{-1}(0)$ is such that $d_l(f^{-1}(0), x) = 1$ for every $x \in A$, then A is nowhere dense in $f^{-1}(0)$.

PROOF. Denote by B the set of all density points of the set $f^{-1}(0)$ belonging to $f^{-1}(0)$. If $B \neq \emptyset$ and A is not nowhere dense in $f^{-1}(0)$, then there is a point $x \in A$ and a positive integer $i \leq n$ such that x is a density point of the set $(f_i)^{-1}(0)$. Since $f_i(x) \neq 0$ and f_i is a s.q.c. function, we obtain a contradiction. If $B = \emptyset$, then A is the same. This completes the proof. \Box

Remark 6 There is almost everywhere continuous functions which are not the products of finite families of s.q.c. functions.

PROOF. Such as, for example, the function

$$f(x) = \begin{cases} 1/n & \text{if } x = w_n, \ n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

(see also [4, 5]), since it does not satisfy condition (H) in Remark 5.

Problems

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be an almost everywhere continuous function. Is the function f the sum of two Darboux s.q.c. functions?
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be an almost everywhere continuous function satisfying the condition (H) from Remark 5. Is f the product of two s.q.c. functions?
- 3. Characterize the products of two Darboux s.q.c. functions.

References

- A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math., 659 (1978), Springer-Verlag.
- [2] Z. Grande, Measurability, quasicontinuity and cliquishness of functions of two variables, Real Analysis Exchange 20 No. 2 (1994–95), 744–752.
- [3] Z. Grande, On strong quasi-continuity of functions of two variables, Real Analysis Exchange 21 No. 1 (1995–96).
- [4] Z. Grande, Sur les fonctions cliquish, Cas. Pest. Mat., 110 (1985), 225– 236.
- [5] T. Natkaniec, Products of quasi-continuous functions, Math. Slovaca, 40 (1990), 401–405.
- [6] T. Neubrunn, Quasi-continuity, Real Analysis Exchange, 14 No. 2 (1988– 89), 259–306.