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WHEN ARE CONTINUOUS ISOTONE
BIJECTIONS ORDER AUTOMORPHISMS?

Abstract

The purpose of this paper is to study weakly continuous isotone bi-
jections on a lattice of residuated maps (e.g. the space of probability
distribution functions). We investigate the connection between weakly
continuous isotone bijections and order automorphisms. Our final re-
sult gives necessary and sufficient conditions for a continuous isotone
bijection to be an order automorphism.

1 Introduction

In this paper we study weakly continuous bijections on lattices of residuated
maps. We employ certain lattice theoretic methods which were developed by
the first author in [6, 7]. In these papers order automorphisms and certain
residuated mappings on such lattices were studied and it was shown that these
mappings essentially act by left and right composition. This representation
for order automorphisms was used to show that they are weakly continuous
functions. We are guided by the comparison of these mappings with monotone
functions on real intervals, and we show how the lack of a total order has some
interesting consequences, by giving an example of a class of weakly continuous
isotone bijections whose inverses are not order preserving. Next, we briefly
drop the assumption of continuity and prove some facts about isotone bijec-
tions. Our main result, Theorem 3.3, is a description of all the continuous
bijections that are, in fact, order automorphisms. This leads to Corollary 3.8,
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our final result, where we give necessary and sufficient conditions for a weakly
continuous isotone bijection to be an order automorphism. We conclude with
some remarks and open problems.

This paper is divided into three sections, Section 1 being this introduction.
In Section 2 we introduce the relevant notation and some preliminary results,
and Section 3 contains our main results.

2 Preliminaries

In this section we introduce some necessary notation and basic results to keep
this paper reasonably self-contained. For details we refer the reader to [1, 2,
6, 7].

A mapping between two complete lattices is residuated (respectively, resid-
ual) if it preserves arbitrary suprema (respectively, arbitrary infima). For
example, if [p, q] and [r, s] are (possibly extended) nondegenerate real inter-
vals then φ : [p, q] → [r, s] is residuated if φ is monotone nondecreasing, left-
continuous and φ(p) = r. We let ∆∗ denote the set of all residuated mappings
from [p, q] into [r, s]. One possibility for ∆∗ is the set of all left-continuous, cu-
mulative probability distribution functions of non-negative random variables,
see [4, 8]. Under the usual pointwise partial ordering of functions,

φ1 ≤ φ2 in ∆∗ ⇐⇒ φ1(x) ≤ φ2(x), for all x ∈ [p, q],

∆∗ is a complete lattice, i.e., every subset of ∆∗ has a supremum and infimum
in ∆∗.

For readers more familiar with lattice theory, we point out that ∆∗ is
actually a completely distributive lattice and therefore a continuous lattice
(for more information see [1, 3]). Many of the questions raised here can be
studied in this more general context.

Here we are, however, interested in the specific case of ∆∗ and it’s applica-
tions; furthermore, the methods used in this paper (see [6, 7]) were developed
for this particular case.

For each φ in ∆∗ there is an associated residual map φ+ : [r, s] → [p, q]
given by

φ+(y) = sup{x ∈ [p, q] | φ(x) ≤ y}.

Note that if x ∈ [p, q] and y ∈ [r, s] then φ(x) ≤ y if and only if x ≤ φ+(y).
This means that φ+(y) is actually the maximum of {x ∈ [p, q] | φ(x) ≤ y}.
Also, for each φ in ∆∗, l+φ(p) denotes the right hand limit of φ at p, that is

l+φ(p) = inf{φ(t) | t > p}
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A mapping between two complete lattices is an order isomorphism if it is
an isotone (order-preserving) bijection whose inverse is also isotone; it is a
dual order isomorphism if it is an antitone (order-reversing) bijection whose
inverse is also antitone. An order isomorphism from a complete lattice onto
itself is called an order automorphism.

The following theorem characterizing the order automorphisms of ∆∗ was
proven in [6].

Theorem 2.1 (Characterization Theorem) The mapping Γ is an order
automorphism of ∆∗ if and only if one of the following holds:
(i) there are order automorphisms θ of [r, s] and τ of [p, q], such that Γ(φ) =
θ ◦ φ ◦ τ for all φ in ∆∗;
(ii) there are dual order isomorphisms α and β from [p, q] onto [r, s] such that
Γ(φ) = α ◦ φ+ ◦ β, for all φ ∈ ∆∗.

The following elements of ∆∗ are of particular interest and therefore deserve
special symbols. Let a ∈ [p, q], b ∈ [r, s], then

δa,b(x) =

{
r, if x ≤ a,
b, if x > a;

and

µa,b(x) =

 r, if x = p,
b, if p < x ≤ a,
s, if x > a.

We note that δp,r and δp,s are, respectively the least and greatest elements
of ∆∗ and that δa,s = µa,r for all a ∈ [p, q], and δp,b = µq,b for all b ∈ [r, s].
Furthermore, in lattice-theoretic terms, the δa,b’s are the join irreducible and
the µa,b’s are the meet irreducible elements in the lattice ∆∗.

We will also need the following topological properties of ∆∗, which can
be found in [8]. A sequence {φn}∞n=1 in ∆∗ is said to converge weakly to φ

in ∆∗, in symbols φn
w→ φ, if limn→∞ φn(x) = φ(x) for every x in the set of

continuity points of φ (see [5] and [9]). We say a mapping Γ : ∆∗ → ∆∗ is

weakly continuous if φn
w→ φ implies that Γ(φn)

w→ Γ(φ). If it is clear from the
context, we will omit the word weakly.

3 Continuous Isotone Bijections

If ∆∗ is the set of all left-continuous cumulative distribution functions of non-
negative random variables then there exists a metric d∗L on ∆∗ such that

d∗L(φn, φ)→ 0 if and only if φn
w→ φ. (3.1)
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In this case [p, q] = [0,∞] and [r, s] = [0, 1] and d∗L is the modified Lévy metric
defined by

d∗L(φ, ψ) = inf{h ∈ (0, 1] | both [φ, ψ;h] and [ψ, φ;h] hold }

where [φ, ψ;h] denotes the condition ψ(x) ≤ φ(x + h) + h for all x ∈
(
0, 1h

)
.

Furthermore, the metric space (∆∗, d∗L) is compact (see [8, 10]).

Since any two nondegenerate closed subintervals of the extended reals are
order isomorphic, it follows that for any possible ∆∗ there is a metric d satis-
fying equation (3.1), such that (∆∗, d) is compact. Therefore, if Γ : ∆∗ → ∆∗

is a continuous isotone bijection then it’s inverse is necessarily continuous, i.e.,
Γ is a homeomorphism. The next example, however, shows that the inverse
of a continuous isotone bijection of ∆∗ need not be isotone. In this example,
for the sake of clarity, we let [p, q] = [r, s] = [0, 1].

Example 3.1 Let ∆∗ be the set of all left-continuous isotone φ : [0, 1] −→
[0, 1]. Then there exists a Γ : ∆∗ −→ ∆∗ such that Γ is a continuous isotone
bijection whose inverse is not isotone.

To show this let d : [0, 1] −→ [0, 1] be given by d(x) = 1 − x, then d is a
dual order automorphism of [0, 1]. Further, for any φ ∈ ∆∗ we let t = sup{x ∈
[0, 1] | φ(x) ≤ d(x)}, (note that t is just the x-coordinate of the point at
which the graph of φ intersects or jumps over the graph of 1 − x) and define
θφ : [0, 1]→ [0, 1] by

θφ(x) =

 x, if x ≤ 1− t,
2
3x+ 1

3 −
t
3 , if 1− t < x ≤ 4−t

4 ,
2x− 1, if 4−t

4 < x.

Thus θφ is a piecewise linear function belonging to Aut [0, 1].

We define Γ : ∆∗ → ∆∗ by Γ(φ) = θφ ◦ φ for each φ ∈ ∆∗. It is
straightforward to verify that Γ is isotone. To show continuity, let φn con-
verge weakly to φ in ∆∗, let tn = sup{x ∈ [0, 1] | φn(x) ≤ 1 − x} and
t = sup{x ∈ [0, 1] | φ(x) ≤ 1 − x}, then it is easily seen that limn→∞ tn = t.
Thus θφn

converges pointwise to θφ, and therefore Γ(φn) converges weakly to
Γ(φ). Next we observe that Γ is a bijection with inverse Γ−1(φ) = θ−1φ ◦ φ.

To show that the inverse of Γ does not preserve order, we first show how
Γ acts on the δa,b’s. To this end we note that

t = sup{x ∈ [0, 1] | δa,b(x) ≤ 1− x} =

{
1− b if b ≤ 1− a,
a if 1− a < b.
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Thus, we have

Γ(δa,b) =


δa,b if b ≤ 1− a,
δa, 2b3 + 1

3−
a
3

if 1− a < b ≤ 4−a
4 ,

δa,2b−1 if 4−a
4 ≤ b.

Now consider δ 1
2 ,

1
2

and δ 2
3 ,

7
12

, which are non-comparable. However,

Γ(δ 2
3 ,

7
12

) = δ 2
3 ,

1
2
≤ δ 1

2 ,
1
2

= Γ(δ 1
2 ,

1
2
),

and hence Γ−1 does not preserve order, whence Γ is not an order automor-
phism.

There are many different variations of the example given above: use arbi-
trary intervals [p, q], [r, s]; change the dual order isomorphism d; change the
order automorphism θφ; or compose Γ with one or more continuous isotone
bijections of ∆∗. Moreover, we could modify Example 3.1 to obtain an isotone
bijection which is not continuous. In the future we plan to investigate these
variations and, hopefully, give an order theoretic characterization of all such
examples.

This example shows that an isotone bijection on ∆∗, even a continuous
one, need not be an order automorphism. This is unlike the case for bijections
on real intervals, where every isotone bijection is continuous, hence an order
automorphism. Thus we proceed to investigate some properties of isotone
bijections on ∆∗.

Theorem 3.2 Let Γ : ∆∗ → ∆∗ be an isotone bijection, and let φ be in ∆∗.
(i) If φ+(r) > p and φ(q) < s then Γ(φ)+(r) > p and Γ(φ)(q) < s.
(ii) If l+φ(p) > r and φ(t) = s for some t < q then l+Γ(φ)(p) > r and
Γ(φ)(t′) = s for some t′ < q.

The proof of Theorem 3.2 uses the following observations. If Γ : ∆∗ → ∆∗

is isotone and Γ(φ1) incomparable to Γ(φ2), then φ1 is incomparable to φ2.
Furthermore, if φ is incomparable to δa,b, then φ(a) ≤ b and hence φ ≤ µa,b.
Finally, if φ is incomparable to µa,b then φ(a) > b and so φ ≥ δa,b.
Proof. (i) Suppose φ+(r) > p and φ(q) < s, then φ ≤ δφ+(r),φ(q) = δa,b,
where a > p and b < s. Assume that Γ(φ)+(r) = p, then, since Γ(φ) ≤ Γ(δa,b),
it follows that Γ(δa,b)

+(r) = p. Now let {φn} be a sequence in ∆∗ such that
Γ(φn) = δp+1/n,s, for n large enough that p + 1/n ∈ [p, q]. Note that either
φn is incomparable to δa,b or φn ≤ δa,b. In either case we get φn ≤ µa,b for
every n. Thus Γ(φn) ≤ Γ(µa,b) for every n. Since Γ(φn) = δp+1/n,s, we have
that δp+1/n,s ≤ Γ(µa,b) < δp,s for all n. This leads to a contradiction, since
supn δp+1/n,s = δp,s. Thus Γ(φ)+(r) > p.
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Assume now that Γ(φ)(q) = s. Then Γ(δa,b)(q) = s. Let {τn} be a sequence
in ∆∗ satisfying Γ(τn) = δp,s−1/n. Since Γ(δa,b)

+(r) > p and Γ(δa,b)(q) = s it
follows that Γ(τn) is incomparable to Γ(δa,b) for every n. Therefore τn ≤ µa,b
and so δp,s−1/n = Γ(τn) ≤ Γ(µa,b) for every n. But Γ(µa,b) < δp,s, hence we
have again a contradiction and thus Γ(φ)(q) < s.

(ii) Let φ ∈ ∆∗ satisfy l+φ(p) > r and φ(t) = s for some t < q. Further let
a = inf{x ∈ [p, q] | φ(x) = s} and b = l+φ(p). Then a < q, b > r and φ ≥ µa,b.
Now assume that l+Γ(φ)(p) = r. Then l+Γ(µa,b)(p) = r. Let {φn} ⊂ ∆∗

be such that Γ(φn) = δp,r+1/n , then either Γ(φn) ≥ Γ(µa,b) or Γ(φn) is
incomparable to Γ(µa,b). Hence either φn ≥ µa,b or φn is incomparable to
µa,b. In either case φn ≥ δa,b , hence δp,r+1/n = Γ(φn) ≥ Γ(δa,b) > δp,r for all
n. This contradiction yields l+Γ(φ)(p) > r.

For the second part assume that Γ(φ)(x) < s for all x < q. In this case
Γ(µa,b)(x) < s for all x < q. Now let {τn} ⊂ ∆∗ be the sequence satisfying
Γ(τn) = δq−1/n,s. Since l+Γ(µa,b)(p) > r and Γ(µa,b)(x) < s for every x < q,
it follows that Γ(τn) is incomparable to Γ(µa,b), and thus τn is incomparable
to µa,b for every n. This in turn implies that τn ≥ δa,b for every n, hence
δq−1/n,s = Γ(τn) ≥ Γ(δa,b) > δq,s, which is a contradiction. Thus Γ(φ)(t′) = s
for some t′ < q. �

If we define J ′ = {φ ∈ ∆∗ | φ+(r) > p and φ(q) < s} and M ′ = {φ ∈ ∆∗ |
l+φ(p) > r and φ(t) = s for some t < q}, then Theorem 3.2 states that every
isotone bijection on ∆∗ maps J ′ into J ′ and M ′ into M ′. This is analogous
to the fact that every order automorphism maps J = {δa,b | a ∈ [p, q) and b ∈
(r, s]} into J and M = {µa,b | a ∈ [p, q) and b ∈ (r, s]} into M . Note that
while M ⊂M ′, J and J ′ have a large intersection, neither one is contained in
the other. In fact we have J \ {δa,s | a ∈ [p, q)} ⊂ J ′.

Having stated the properties of isotone bijections on ∆∗, we now proceed
to answer the question posed in our title. To this end we explore the role of
continuity, again guided by the result for bijections on real intervals. In the
real case, any bijection which is continuous and isotone on a set containing at
least two elements is an order automorphism. Recall from Example 3.1 that
this is not the case on ∆∗. This leads us to a third condition, requiring that
J and M be mapped into themselves in a prescribed way.

Let F = {φ ∈ ∆∗ | the range of φ is finite subset of [r, s]}. So each element
in F is a step function with a finite number of steps. It follows that J and M
are subsets of F . A function Γ : ∆∗ → ∆∗ is isotone on F if φ1 ≤ φ2 in F
implies Γ(φ1) ≤ Γ(φ2) in ∆∗, i.e., Γ|F is isotone.

Theorem 3.3 Let Γ : ∆∗ → ∆∗ be a bijection. Then Γ is an order automor-
phism of ∆∗ if and only if the following three conditions hold:
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(i) Γ is continuous;
(ii) Γ is isotone on F ;
(iii) for each a in (p, q) and b in (r, s),

Γ(δa,b) = δx,y and Γ(µa,b) = µx,y (3.2)

for some x in [p, q] and y in [r, s]

If Γ is an order automorphism of ∆∗, then it follows from [6], the defi-
nition of an order automorphism and the Characterization Theorem that Γ
satisfies (i), (ii) and (iii), respectively. Thus it remains to show that any
bijection of ∆∗ satisfying (i), (ii) and (iii) is actually an order automorphism.

Instead of showing directly that the inverse is isotone, we give a construc-
tive proof that involves a series of lemmas. For example, in our next result,
we show that a continuous bijection satisfying equation (3.2) fixes the smallest
and largest elements of the lattice ∆∗. In addition, such a bijection maps the
chain Vp = {δp,b | b ∈ [r, s]} into itself or into the chain Hs = {δa,s | a ∈ [p, q]}.
Notice that these facts hold without assuming that the bijection is isotone.

Lemma 3.4 Let Γ : ∆∗ → ∆∗ be a bijection satisfying conditions (i) and (iii)
in Theorem 3.3. Then
(a) Γ(δp,r) = δp,r and Γ(δp,s) = δp,s.
(b) Either Γ(Vp) is a subset of Vp or of Hs.
(c) Either Γ(Hs) is a subset of Hs or of Vp.

Proof. (a) We will show that Γ(δp,s) = δp,s. Let {p + 1/n}, {s − 1/n}
be sequences in (p, q) and (r, s), respectively. Then δp+1/n,s−1/n

w→ δp,s and

µp+1/n,s−1/n
w→ µp,s = δp,s. By equation (3.2) we have

Γ(δp+1/n,s−1/n) = δxn,yn and Γ(µp+1/n,s−1/n) = µxn,yn .

By working with subsequences when necessary, we can assume that the se-
quences {xn} and {yn} converge to some points x ∈ [p, q] and y ∈ [r, s],
respectively. It follows from the continuity of Γ that Γ(δp,s) = δx,y and
Γ(δp,s) = Γ(µp,s) = µx,y. Since δx,y = µx,y it follows that either x = p and
y = s or x = q and y = r, i.e., either Γ(δp,s) = δp,s or Γ(δp,s) = δq,r = δp,r.

To eliminate the second possibility, let b ∈ (r, s) such that Γ(δp,b) 6= δp,r.
Let {p+ 1/n} be a sequence in (p, q). By equation (3.2), we have

Γ(δp+1/n,b) = δun,vn and Γ(µp+1/n,b) = µun,vn

where un ∈ [p, q] and vn ∈ [r, s] for each n. Using the same argument as
above, we have that Γ(δp,b) = δu,v and Γ(µp,b) = µu,v, for some u ∈ [p, q] and
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v ∈ [r, s]. Note that µp,b = δp,s. Since Γ(δp,b) 6= δp,r it follows that u 6= q and
v 6= r. Hence µu,v 6= δp,r and so Γ(δp,s) = δp,s.

A similar argument shows that Γ(δp,r) = δp,r.
(b) Let δp,b ∈ Vp such that b ∈ (r, s). Following the argument in (a) we

get Γ(δp,b) = δx,y and Γ(µp,b) = µx,y for some x ∈ [p, q] and y ∈ [r, s]. Since
µp,b = δp,s, it follows from (a) that either x = p or y = s, which gives us
Γ(Vp ∪Hs) ⊂ Vp ∪Hs.

Let A = {b ∈ (r, s) | Γ(δp,b) ∈ Vp} and let B = {b ∈ (r, s) | Γ(δp,b) ∈ Hs}.
By (a) and by the fact that Γ is one-to-one, the sets A and B are disjoint. By
the first paragraph, A∪B = (r, s). Next, suppose {bi} is a sequence in A with
limit point b in (r, s). Then b ∈ A. To see this, note that Γ(δp,bi) = δp,ci for
each i and limi→∞ δp,bi = δp,b. By continuity, Γ(δp,b) = limi→∞ δp,ci and from
the above either Γ(δp,b) ∈ Vp or Γ(δp,b) ∈ Hs. It follows that Γ(δp,b) ∈ Vp, i.e.,
b ∈ A. Thus A is closed in (r, s). Similarly, B is closed in (r, s). Since (r, s)
is an interval either A or B is empty. Thus either Γ(Vp) is a subset of Vp or
Γ(Vp) is a subset of Hs.

A similar argument establishes the result for Γ(Hs). �

The next result is straightforward.

Lemma 3.5 The set F is a dense subset of ∆∗.

In Lemmas 3.6 and 3.7 we obtain the two types of order automorphisms of
∆∗, described by (i) and (ii), respectively, in the Characterization Theorem.

Lemma 3.6 Let Γ : ∆∗ → ∆∗ be a bijection that satisfies conditions (i), (ii)
and (iii) in Theorem 3.3. If Γ(Vp) is a subset of Vp, then for each φ ∈ ∆∗,
Γ(φ) = θ ◦ φ ◦ τ , where θ is an order automorphism of [r, s] and τ is an order
automorphism of [p, q].

Proof. Since Γ(Vp) ⊂ Vp, we can define a function θ : [r, s] → [r, s] via
θ(b) = y whenever Γ(δp,b) = δp,y. Note that we have θ(r) = r and θ(s) = s.
Furthermore, θ is continuous, order-preserving and one-to-one since Γ is weakly
continuous, isotone and one-to-one. The fact that θ is also onto follows from
the intermediate value property of continuous functions on real intervals. Thus
θ is an order automorphism of [r, s] and Γ(Vp) = Vp.

Since Γ is also one-to-one it follows from Lemma 3.4 that Γ(Hs) ⊂ Hs.
Now we can define a function σ : [p, q] → [p, q], via σ(a) = x whenever
Γ(δa,s) = δx,s. It follows, as in the above, that σ is an order automorphism of
[p, q].

Let a ∈ (p, q) and b ∈ (r, s), then, using equation (3.2) it follows that
Γ(δa,b) = δx,y and Γ(µa,b) = µx,y for some x ∈ [p, q] and some y ∈ [r, s]. Since
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Γ is isotone on F and δa,b ≤ δa,s ≤ µa,b we have δx,y ≤ δσ(a),s ≤ µx,y and
hence x = σ(a). Similarly it follows that y = θ(b). Thus Γ(δa,b) = δσ(a),θ(b) =
θ ◦ δa,b ◦ σ−1, and Γ(µa,b) = µσ(a),θ(b) = θ ◦ µa,b ◦ σ−1, for all a ∈ [p, q] and
b ∈ [r, s]. We have thus shown that Γ acts on the two sets J and M by left
and right composition with θ and σ−1, respectively. It remains to prove that
this extends to all of ∆∗.

To this end let φ ∈ F , for x ∈ (p, q] let a = σ−1(x) and b = φ(a). Now
we define a sequence of elements of ∆∗ as follows: Let an = σ−1(x − 1/n)
and bn = φ(an), where n is large enough such that x − 1/n ∈ [p, q], then
δan,bn = δan,φ(an) ≤ φ ≤ µa,b. Since Γ is isotone on F we have

θ(bn) = δx−1/n,θ(bn)(x) ≤ Γ(φ)(x) ≤ µx,θ(b)(x) = θ(b).

Since limn→∞ θ(bn) = θ(b) we have that Γ(φ)(x) = θ(b) = θ(φ(σ−1(x))) for
any x ∈ [p, q]. Thus Γ(φ) = θ ◦ φ ◦ τ , where τ = σ−1, for any φ ∈ F . This
extends to all of ∆∗ by applying Lemma 3.5. �

Lemma 3.7 Let Γ : ∆∗ → ∆∗ be a bijection satisfying conditions (i), (ii)
and (iii) in Theorem 3.3. If Γ(Vp) is a subset of Hs, then for each φ ∈ ∆∗,
Γ(φ) = α ◦ φ+ ◦ β where α, β are dual order isomorphisms from [p, q] onto
[r, s].

Proof. Since Γ(Vp) ⊂ Hs, we can define a function ε : [r, s]→ [p, q] via ε(b) =
x whenever Γ(δp,b) = δx,s. It is easy to verify that ε is a dual order isomorphism
and thus Γ(Vp) = Hs. This implies, using Lemma 3.4 that Γ(Hs) ⊂ Vp, and
we can define α : [r, s]→ [p, q] by α(a) = y whenever Γ(δa,s) = δp,y.

Following the proof of the above lemma, it is easily verified that Γ(δa,b) =
δε(b),α(a) = α◦δa,b◦ε−1 and Γ(µa,b) = µε(b),α(a) = α◦µa,b◦ε−1 for all a ∈ [p, q]
and all b ∈ [r, s].

Thus it remains to show that Γ acts in the same way on all of ∆∗. We
proceed as in the previous lemma. Let φ ∈ F , for x ∈ (p, q] we let a =
φ+(ε−1(x)), and note that, since φ ≤ µa,φ(a) we have Γ(φ) ≤ Γ(µa,φ(a)) =
µε(φ(a)),α(a). Since x ≤ ε(φ(a)), it follows that

Γ(φ)(x) ≤ α(a) = (α ◦ φ+ ◦ ε−1)(x).

Furthermore, since φ(y) ≤ t if and only if y ≤ φ+(t), we have for every t ∈ [r, s],
where n is large enough such that x − 1/n ∈ [p, q] that δφ+(t),t ≤ φ. Now let
tn = ε−1(x− 1/n), then it follows from δφ+(tn),tn ≤ φ that

Γ(δφ+(tn),tn) = δx−1/n,α(φ+(tn)) ≤ Γ(φ).
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Therefore we have δx−1/n,α(φ+(tn))(x) = α(φ+(tn)) ≤ Γ(φ)(x) for every n.
This yields α(φ+(ε−1(x− 1/n))) ≤ Γ(φ)(x), and by left-continuity,

α(φ+(ε−1(x))) ≤ Γ(φ)(x), for every x ∈ [p, q].

Thus we have that Γ(φ) = α◦φ+◦ε−1 for every φ ∈ F , and by letting β = ε−1,
this yields the result on F . This equation extends to all of ∆∗ by applying
Lemma 3.5. �

Notice that Lemmas 3.4 through 3.7 complete the proof of Theorem 3.3.
The next result is an immediate consequence of this theorem, and gives an
answer to the question posed in our title.

Corollary 3.8 Let Γ : ∆∗ → ∆∗ be a continuous isotone bijection. Then Γ
is an order automorphism of ∆∗ if and only if, for each a in (p, q) and b in
(r, s),

Γ(δa,b) = δx,y and Γ(µa,b) = µx,y

for some x in [p, q] and y in [r, s].

Notice that Example 3.1 demonstrates that condition (iii) in Theorem 3.3
is necessary. Now if we let [p, q] = [0, 1] = [r, s], it is easy to verify that
the function Γ : ∆∗ → ∆∗ given by Γ(φ) = φ if φ ∈ F and Γ(φ) = (φ)2 if
φ ∈ ∆∗−F is a bijection that satisfies conditions (ii) and (iii) in Theorem 3.3
but not condition (i). Thus condition (i) is also necessary. Finally, we do not
know if condition (ii) in Theorem 3.3 is necessary.

In closing we note that the authors have been made aware of the fact
that the result of Corollary 3.8 may be true for continuous isotone bijections
on more general lattices. Preliminary investigations showed that since the
Characterization Theorem was proved only for the case of ∆∗, a completely
different proof is necessary. This question is currently under investigation by
the authors.
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[5] M. Loève, Probability Theory, Springer-Verlag, New York, 1977.

[6] R. C. Powers, Order automorphisms of spaces of nondecreasing functions,
J. Math. Anal. Applic., 136 (1988), 112–123.

[7] R. C. Powers, Induced residuated mappings, Order, 7 (1991), 83–96.

[8] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland,
New York, 1983.

[9] D. A. Sibley, A Metric for weak convergence of distribution functions,
Rocky Mountain J. of Math., 1 (1972), 427–430.

[10] R. M. Tardiff, Topologies for probabilistic metric spaces, PhD thesis, Univ.
of Massachusetts, Amherst, 1975.


