Jacek Hejduk, Institute of Mathematics, Łódź University, ul. Stefana Banacha 22, 90-238 Łódź, Poland.

ON THE DENSITY TOPOLOGY WITH RESPECT TO AN EXTENSION OF LEBESGUE MEASURE

Abstract

We prove that, for every complete extension μ of Lebesgue measure, the μ -density topology is the Hashimoto topology generated by the density topology and the σ -ideal of μ -null sets (cf. [1]).

Let μ be any complete extension of Lebesgue measure l on the real line \mathbb{R} . Let S_{μ} denote the σ -field of μ -measurable sets, \mathcal{I}_{μ} — the σ -ideal of μ -null sets. We denote by \mathcal{L} the σ -field of Lebesgue measurable sets. Let μ^* and μ_* be, respectively, the outer measure and the inner measure induced by μ . We recall that a point $x \in \mathbb{R}$ is a μ -density point of a μ -measurable set X if

$$\lim_{a \to 0+} \frac{\mu(X \cap [x - h, x + h])}{2h} = 1.$$

For each set $X \in \mathcal{S}_{\mu}$, let

 $\Phi_{\mu}(X) = \{ x \in \mathbb{R} : x \text{ is a } \mu \text{-density point of } X \}.$

Let

$$\mathcal{T}_{\mu}^* = \{ X \in \mathcal{S}_{\mu} : X \subset \Phi_{\mu}(X) \}.$$

Theorem 1 (cf. [2]) The family \mathcal{T}^*_{μ} is a topology in \mathbb{R} .

PROOF. It is clear that the sets \emptyset and \mathbb{R} are members of the family \mathcal{T}_{μ}^* . Also, the family \mathcal{T}_{μ}^* is closed under finite intersections. Our task is to prove that, for each family $\{X_t\}_{t\in T} \subset \mathcal{T}_{\mu}^*$, we have $\bigcup_{t\in T} X_t \in \mathcal{T}_{\mu}^*$. It suffices to prove

Key Words: Extension of Lebesgue measure, density point

Mathematical Reviews subject classification: Primary: 28A12 Secondary: 54A09 Received by the editors January 9, 1996

⁸¹¹

that $\bigcup_{t\in T} X_t$ is μ -measurable because the inclusion $\bigcup_{t\in T} X_t \subset \Phi_{\mu}(\bigcup_{t\in T} X_t)$, when $\bigcup_{t\in T} X_t \in S_{\mu}$, is obvious. Let $X = \bigcup_{t\in T} X_t$ and suppose that X is bounded. Let K be a segment such that $X \subset K$. We show that, for each $\varepsilon > 0$, there exists a μ -measurable set C such that $X \subset C$ and $\mu^*(C \setminus X) < \varepsilon$. It suffices to snow that $X \in S_{\mu}$. Fix $0 < \varepsilon < l(K)$. Putting

$$\mathcal{K} = \Big\{ \varDelta \subset K : \mu_*(\varDelta \cap X) > \Big(1 - \frac{\varepsilon}{l(K)} \Big) \mu(\varDelta) \Big\},\$$

where Δ denotes an interval, we can easily check that the family \mathcal{K} forms a Vitali covering of the set X. Hence we have a sequence $\{\Delta_n\}_{n\in\mathbb{N}} \subset K$ of pairwise disjoint intervals such that $l(X \setminus \bigcup_{n=1}^{\infty} \Delta_n) = 0$. We show that $\mu^*(\bigcup_{n=1}^{\infty} \Delta_n \setminus X) < \varepsilon$. For every positive integer n, there exists a μ -measurable set B_n such that $B_n \subset \Delta_n \cap X$ and $\mu(B_n) > (1 - \frac{\varepsilon}{l(K)})\mu(\Delta_n)$. Hence

$$\sum_{n=1}^{\infty} \mu^* (\Delta_n \setminus X) \le \sum_{n=1}^{\infty} \mu (\Delta_n \setminus B_n) = \sum_{n=1}^{\infty} (\mu(\Delta_n) - \mu(B_n))$$
$$< \frac{\varepsilon}{l(K)} \sum_{n=1}^{\infty} \mu(\Delta_n) \le \varepsilon.$$

Putting $C = (X \setminus \bigcup_{n=1}^{\infty} \Delta_n) \cup (\bigcup_{n=1}^{\infty} \Delta_n)$, we have that C has the desired property. Clearly the set C is Lebesgue measurable.

Lemma 1 Every \mathcal{T}^*_{μ} -open set X has the form $Y \setminus Z$ where $Y \in \mathcal{L}$ and $Z \in \mathcal{I}_{\mu}$.

PROOF. Let $X \in \mathcal{T}_{\mu}^*$. Then $X \in \mathcal{S}_{\mu}$ and $X \subset \Phi_{\mu}(X)$. According to the proof of Theorem 1, for any $\varepsilon > 0$ there exists a Lebesgue measurable set $C \supset X$ such that $\mu(C \setminus X) < \varepsilon$. As a simple consequence we obtain that $X = Y \setminus Z$ where $Y \in \mathcal{L}$ and $Z \in \mathcal{I}_{\mu}$.

Lemma 2 If μ is a complete extension of Lebesgue measure, such that, for each set $X \in S_{\mu}$, $\mu(X \triangle \Phi_{\mu}(X)) = 0$, then

$$\{Y \in \mathcal{S}_{\mu} : Y \subset \Phi_{\mu}(Y)\} = \{Y \subset \mathbb{R} : Y = \Phi_{\mu}(Z) \setminus U; Z \in \mathcal{S}_{\mu}, U \in \mathcal{I}_{\mu}\}.$$

PROOF. If $Y \in S_{\mu}$ and $Y \subset \Phi_{\mu}(Y)$, then $Y = \Phi_{\mu}(Y) \setminus (\Phi_{\mu}(Y) \setminus Y)$ has the desired form. If $Y = \Phi_{\mu}(Z) \setminus U$ where $Z \in S_{\mu}$ and $\mu(U) = 0$, then we see that $\Phi_{\mu}(Z) \in S_{\mu}$ and $\Phi_{\mu}(\Phi_{\mu}(Z) \setminus U) = \Phi_{\mu}(\Phi_{\mu}(Z)) = \Phi_{\mu}(Z) \supset \Phi_{\mu}(Z) \setminus U$. \Box

We call the topology \mathcal{T}^*_{μ} a μ -density topology. In case $\mu = l$ the topology \mathcal{T}^*_{μ} is the \mathcal{T}_d -topology called the density topology (cf. [4]).

Lemma 3 If μ is a complete extension of Lebesgue measure, such that $S_{\mu} = \mathcal{L} \ \bigtriangleup \mathcal{I}_{\mu} = \{X \bigtriangleup Y : X \in \mathcal{L}, Y \in \mathcal{I}_{\mu}\}, \text{ then }$

$$\mathcal{T}^*_{\mu} = \{ Y \subset \mathbb{R} : Y = \Phi_l(Z) \setminus U, \ Z \in \mathcal{L}, \ U \in \mathcal{I}_{\mu} \}.$$

PROOF. We see that, for each set $X \in S_{\mu}$, $\mu(X \bigtriangleup \Phi_{\mu}(X)) = 0$. Thus, applying Lemma 2 and taking account of the fact that, for every μ -measurable set Athere exists a Lebesgue measurable set B such that $\Phi_{\mu}(A) = \Phi_{l}(B)$, we obtain the desired equality.

Lemma 4 If μ is any complete extension of Lebesgue measure, then there exists a complete extension of Lebesgue measure μ' , such that

- (1) $\mathcal{S}_{\mu'} = \mathcal{L} \bigtriangleup \mathcal{I}_{\mu},$
- (2) $\mathcal{I}_{\mu'} = \mathcal{I}_{\mu},$
- $(3) \quad \mathcal{T}^*_{\mu'} = \mathcal{T}^*_{\mu}.$

PROOF. If μ is any extension of Lebesgue measure, then, for each $A \in \mathcal{I}_{\mu}$, we have that $l_*(A) = 0$. Thus, applying the Marczewski method of the extension of Lebesgue measure (cf. [3]), we can consider the σ -field

$$\mathcal{S}_{\mu'} = \{ X \bigtriangleup Y : X \in \mathcal{L}, \ Y \in \mathcal{I}_{\mu} \}$$

Putting $\mu'(X \bigtriangleup Y) = l(X)$ where $X \in \mathcal{L}$ and $Y \in \mathcal{I}_{\mu}$, we correctly define a measure which is an extension of Lebesgue measure. We have thus proved condition (1). In fact, the measure μ' is the restriction of the measure μ to $\mathcal{S}_{\mu'}$. Now, we prove that $\mathcal{I}_{\mu} = \mathcal{I}_{\mu'}$. Let X be such that $\mu(X) = 0$. Then $X = \emptyset \bigtriangleup X \in \mathcal{S}_{\mu'}$ and $\mu'(X) = 0$. Let X be such that $\mu'(X) = 0$. Then $X \in \mathcal{S}_{\mu'}$. Hence $X = Y \bigtriangleup Z$ where $Y \in \mathcal{L}$ and $\mu(Z) = 0$. We have that $0 = \mu'(X) = l(Y)$. This implies that $\mu(Y) = 0$ and, finally, $\mu(X) = 0$. The demonstration of the fact that $\mathcal{T}_{\mu}^* = \mathcal{T}_{\mu'}^*$ will complete the proof.

demonstration of the fact that $\mathcal{T}_{\mu}^{*} = \mathcal{T}_{\mu'}^{*}$ will complete the proof. We show that $\mathcal{T}_{\mu}^{*} \subset \mathcal{T}_{\mu'}^{*}$. Let $X \in \mathcal{T}_{\mu}^{*}$. Then, by Lemma 1, $X = Y \setminus Z$ where $Y \in \mathcal{L}$ and $Z \in \mathcal{I}_{\mu'}$. By condition 2, $Z \in \mathcal{I}_{\mu}$. This implies that $X \in \mathcal{S}_{\mu'}$ and $\Phi_{\mu'}(X) = \Phi_{\mu'}(Y \setminus Z) = \Phi_{\mu'}(Y) = \Phi_{l}(Y) = \Phi_{\mu}(Y) = \Phi_{\mu}(Y \setminus Z) = \Phi_{\mu}(X) \supset X$. Hence $X \in \mathcal{T}_{\mu'}^{*}$. Let $X \in \mathcal{T}_{\mu'}^{*}$. Then $X \in \mathcal{S}_{\mu'}$ and $X \subset \Phi_{\mu'}(X)$. At the same time $X \in \mathcal{S}_{\mu}$ and $\Phi_{\mu'}(X) = \Phi_{\mu}(X)$. Thus $X \in \mathcal{T}_{\mu}^{*}$. \Box

Combining Lemmas 3 and 4, we have the following.

Theorem 2 Fo any complete extension μ of Lebesgue measure, the μ -density topology \mathcal{T}^*_{μ} is the Hashimoto topology of the form

$$\mathcal{T}^*_{\mu} = \{ X \subset \mathbb{R} : X = Y \setminus Z, \ Y \in \mathcal{T}_d, \ \mu(Z) = 0 \}.$$

Corollary 1 If μ_1 and μ_2 are complete extensions of Lebesgue measure and the families of μ_1 -null sets and μ_2 -null sets are identical, then $\mathcal{T}^*_{\mu_1} = \mathcal{T}^*_{\mu_2}$.

Lemma 5 For any complete extension μ of Lebesgue measure, the family $K(\mathcal{T}^*_{\mu})$ of all \mathcal{T}^*_{μ} -meager sets is identical with the σ -ideal \mathcal{I}_{μ} .

PROOF. Let $X \in \mathcal{I}_{\mu}$. We prove that X is \mathcal{T}_{μ}^{*} -nowhere dense. Let U be a nonempty \mathcal{T}_{μ}^{*} -open set. Then, by Theorem 2, $U = Y \setminus Z$ where $Y \in \mathcal{T}_{d}$ and $Z \in \mathcal{I}_{\mu}$. Putting $U' = Y \setminus (Z \cup X)$, we have that U' is a nonempty \mathcal{T}_{μ}^{*} -open subset of U disjoint from X. This means that X is a member of the family $K(\mathcal{T}_{\mu}^{*})$. Now, let $X \in K(\mathcal{T}_{\mu}^{*})$. It suffices to consider the fact that X is a \mathcal{T}_{μ}^{*} -nowhere dense set. Thus the \mathcal{T}_{μ}^{*} -closure \overline{X} is also a \mathcal{T}_{μ}^{*} -nowhere dense set. We see that the set $\mathbb{R} \setminus \overline{X} = Y \setminus Z$ where $Y \in \mathcal{T}_{d}$ and $Z \in \mathcal{I}_{\mu}$. Hence $\overline{X} = (\mathbb{R} \setminus Y) \cup Z$ and $\mathbb{R} \setminus Y$ is a \mathcal{T}_{d} -closed set such that $\operatorname{Int}(\mathbb{R} \setminus Y) = \emptyset$ with respect to the \mathcal{T}_{d} -topology. This means that $\mathbb{R} \setminus Y$ is \mathcal{T}_{d} -nowhere dense and, thus, it is a Lebesgue null set (cf. ([5]). Finally, we conclude that $X \in \mathcal{I}_{\mu}$. \Box

Lemma 6 For any complete extension μ of Lebesgue measure, each set having the Baire property with respect to \mathcal{T}_{μ}^* is the sum of a \mathcal{T}_{μ}^* -open set and a \mathcal{T}_{μ}^* nowhere dense and closed set. Moreover, the family $\mathcal{B}(\mathcal{T}_{\mu}^*)$ of all sets having the Baire property with respect to \mathcal{T}_{μ}^* is identical with the family $\mathcal{L} \bigtriangleup \mathcal{I}_{\mu}$.

PROOF. Let $X \in \mathcal{B}(\mathcal{T}^*_{\mu})$. Thus $X = (U \setminus Y) \cup Z$ where $U \in \mathcal{T}^*_{\mu}$ and $Y, Z \in \mathcal{K}(\mathcal{T}^*_{\mu})$. By Lemma 5, the sets $Y, Z \in \mathcal{I}_{\mu}$ and, at the same time, they are closed and nowhere dense in the topology \mathcal{T}^*_{μ} . Hence $U \setminus Y$ is \mathcal{T}^*_{μ} -open and the set X has the desired representation.

We prove that $\mathcal{B}(\mathcal{T}^*_{\mu}) = \mathcal{L} \bigtriangleup \mathcal{I}_{\mu}$. Let $X \in \mathcal{B}(\mathcal{T}^*_{\mu})$. Thus $X = U \setminus Y$ where $U \in \mathcal{T}^*_{\mu}$ and $Y \in \mathcal{I}_{\mu}$. By Theorem 2, $U = W \setminus Z$ where $W \in \mathcal{T}_d$ and $Z \in \mathcal{I}_{\mu}$. Hence $X \in \mathcal{L} \bigtriangleup \mathcal{I}_{\mu}$.

Now, we show that $\mathcal{L} \bigtriangleup \mathcal{I}_{\mu} \subset \mathcal{B}(\mathcal{T}_{\mu}^*)$. By Lemma 5, $\mathcal{I}_{\mu} \subset \mathcal{B}(\mathcal{T}_{\mu}^*)$. We prove that $\mathcal{L} \subset \mathcal{B}(\mathcal{T}_{\mu}^*)$. Let $X \in \mathcal{L}$. Thus $X = (\Phi_l(X) \setminus (\Phi_l(X) \bigtriangleup X)) \cup ((\Phi_l(X) \bigtriangleup X) \setminus \Phi(X))$. We conclude that the set X is the sum of a \mathcal{T}_{μ}^* -open set and a μ -null set. This implies that $X \in \mathcal{B}(\mathcal{T}_{\mu}^*)$. Finally, we have $\mathcal{L} \bigtriangleup \mathcal{I}_{\mu} \subset \mathcal{B}(\mathcal{T}_{\mu}^*)$.

Corollary 2 $\mathcal{B}(\mathcal{T}^*_{\mu}) = \mathcal{B}(\mathcal{T}_d) \bigtriangleup \mathcal{I}_{\mu}.$

Corollary 3 $\mathcal{B}(\mathcal{T}^*_{\mu}) = Borel(\mathcal{T}^*_{\mu}).$

Corollary 4 Borel $(\mathcal{T}^*_{\mu}) = Borel(\mathcal{T}^*_{\mu}) \bigtriangleup \mathcal{I}_{\mu}.$

Based on Lemmas 5 and 6, we have the following assertion.

Theorem 3 For any complete extension μ of Lebesgue measure, the topology \mathcal{T}^*_{μ} is the von Neumann topology associated with the measure μ if and only if $\mathcal{S}_{\mu} = \mathcal{L} \bigtriangleup \mathcal{I}_{\mu}$.

Lemma 7 If μ is any complete extension of Lebesgue measure such that for every $X \in S_{\mu}$, $X \setminus \Phi_{\mu}(X) \in \mathcal{I}_{\mu}$, then the topology \mathcal{T}_{μ}^{*} is the von Neumann topology associated with μ .

PROOF. By Lemma 5, we see that the family $\mathcal{K}(\mathcal{T}^*_{\mu})$ of meager sets with respect to the topology \mathcal{T}^*_{μ} is identical with μ . Thus we need only prove that the family $\mathcal{B}(\mathcal{T}^*_{\mu})$ of Baire sets is identical with \mathcal{S}_{μ} . By Lemma 6, $\mathcal{B}(\mathcal{T}^*_{\mu}) \subset \mathcal{S}_{\mu}$. Let $X \in \mathcal{S}_{\mu}$. By assumption, we have that $X \setminus \Phi_{\mu}(X) \in \mathcal{I}_{\mu}$ and moreover, it is easy to see that $\Phi_{\mu}(X) \setminus X \in \mathcal{I}_{\mu}$. Hence $\Phi_{\mu}(X)$ is the μ -measurable set. Putting $X = (X \cap \Phi_{\mu}(X)) \cup (X \setminus \Phi_{\mu}(X))$, we have that $X \setminus \Phi_{\mu}(X) \in \mathcal{K}(\mathcal{T}^*_{\mu})$ and $X \cap \Phi_{\mu}(X) \subset \Phi_{\mu}(X) = \Phi_{\mu}(X \cap \Phi_{\mu}(X))$. The last assertion means that $X \cap \Phi_{\mu}(X) \in \mathcal{T}^*_{\mu}$ and we have obtained that the set X has the Baire property with respect to the topology \mathcal{T}^*_{μ} .

Theorem 4 If μ is any complete extension of Lebesgue measure, then the condition that for every $X \in S_{\mu}$, $X \bigtriangleup \Phi_{\mu}(X) \in \mathcal{I}_{\mu}$, holds if and only if $S_{\mu} = \mathcal{L} \bigtriangleup \mathcal{I}_{\mu}$.

PROOF. The necessity is the consequence of Theorem 3 and Lemma 7.

The sufficiency is the consequence of the Lebesgue density theorem. \Box

Now, we turn our attention to the family of continuous functions with respect to μ -density topology.

Applying Theorem 4 in [4], we conclude the following property.

Proposition 1 If (X, \mathcal{T}) is a topological space and \mathcal{I} is an arbitrary σ -ideal of subsets of X free from nonempty \mathcal{T} -open sets and such that the family of sets $\mathcal{T} - \mathcal{I} = \{Y \subset X : Y = W \setminus Z, W \in \mathcal{T}, Z \in \mathcal{I}\}$ forms a topology (called the Hashimoto topology), then the family of all real continuous functions in the topology \mathcal{T} is identical with the family of all real continuous functions in the topology $\mathcal{T} - \mathcal{I}$.

As an easy application of this proposition and Theorem 2 we have the following.

Theorem 5 For any complete extension μ of Lebesgue measure, the family of all real functions which are continuous in the μ -density topology is identical with the family of all approximately continuous functions.

References

- H. Hashimoto, On the *topology and its application, Fund. Math., 91 (1976), 5–10.
- [2] A .B. Kharazishvili, The invariant extensions of the Lebesgue measure, Tbilisi 1983. (in Russian)
- [3] E. Marczewski, Sur l'extension de la mesure lebesguienne, Fund. Math., 25 (1935), 551–558.
- [4] N. F. G. Martin, Generalized condensation points, Duke Math. J., 28 (1961), 507–514.
- [5] J. C. Oxtoby, Measure and Category, Springer-Verlag, 1971.